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Numerical Analysis – Exercise Sheet 11

1. Suppose that the function values f(0), f(1), f(2) and f(3) are given and that
we wish to estimate

f(6), f ′(0) and
∫ 3

0
f(x) dx.

One method is to let p be the cubic polynomial that interpolates these function
values, and then to employ the approximants

p(6), p′(0) and
∫ 3

0
p(x) dx

respectively. Deduce from the Lagrange formula for p that each approximant is a
linear combination of the four data with constant coefficients. Calculate the numer-
ical values of these constants. Verify your work by showing that the approximants
are exact when f is an arbitrary cubic polynomial.

2. Let f be a function in C4[0, 1] and let p be a cubic polynomial that interpolates
f(0), f ′(0), f(1) and f ′(1). Deduce from the Rolle theorem that for every x ∈ [0, 1]
there exists ξ ∈ [0, 1] such that the equation

f(x) − p(x) = 1
24

x2(x − 1)2f (4)(ξ)

is satisfied.

3. Let a, b and c be distinct real numbers (not necessarily in ascending order), and
let f(a), f(b), f ′(a), f ′(b) and f ′(c) be given. Because there are five data, one might
try to approximate f by a polynomial of degree at most four that interpolates the
data. Prove by a general argument that this interpolation problem has a solution
and the solution is unique if and only if there is no nonzero polynomial p ∈ P4[x]
that satisfies p(a) = p(b) = p′(a) = p′(b) = p′(c) = 0. Hence, given a and b, show
that there exists a unique value of c 6= a, b such that there is no unique solution.
[Note: This form of interpolation when both function values and derivatives are
fitted, perhaps at different points, is known as Birkhoff–Hermite interpolation.]

4. Let f : R → R be a given function and let p be the polynomial of degree at most
n that interpolates f at the pairwise distinct points x0, x1, . . . , xn. Further, let x be
any real number that is not an interpolation point. Deduce the identity

f(x) − p(x) = f [x0, x1, . . . , xn, x]
n

∏

j=0

(x − xj)
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from the definition of the divided difference f [x0, x1, . . . , xn, x].

5. Simulating a computer that works to only four decimal places, form the table
of divided differences of the values f(0) = 0, f(0.1) = 0.0998, f(0.4) = 0.3894 and
f(0.7) = 0.6442 of sin x. Hence identify the polynomial that is given by Newton’s
interpolation method. Due to rounding errors, this polynomial should differ from
the one that would be given by exact arithmetic. Take the view, however, that the
computed values of f [0.0, 0.1], f [0.0, 0.1, 0.4] and f [0.0, 0.1, 0.4, 0.7] and the function
value f(0) are correct. Then, by working backwards through the difference table,
identify the values of f(0), f(0.1), f(0.4) and f(0.7) that would give these divided
differences in exact arithmetic.

6. Set f(x) = 2x − 1, x ∈ [0, 1]. We require a function of form

p(x) =
n

∑

k=0

ak cos(kπx), 0 ≤ x ≤ 1,

that satisfies the condition

∫ 1

0
[f(x) − p(x)]2 dx < 10−4.

Explain why it is sufficient if the value of a2
0 + 1

2

∑n
k=1 a2

k exceeds 1
3
−10−4, where the

coefficients {ak}n
k=0 are calculated to minimize this integral. Hence find the smallest

acceptable value of n.

7. The polynomials {pn}n∈Z+ are defined by the three-term recurrence formula

p0(x) ≡ 1,

p1(x) = 2x,

pn+1(x) = 2xpn(x) − pn−1(x), n = 1, 2, . . . .

Prove that they are orthogonal with respect to the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)

√
1 − x2 dx

and evaluate 〈pn, pn〉 for n ∈ Z
+. [Hint: Prove that pn(x) = sin(n+1)θ/ sin θ, where

x = cos θ.]
[Note: These pns are known as Chebyshev polynomials of the second kind and
denoted by pn = Un.]

8. Calculate the coefficients b1, b2, c1 and c2 so that the approximant

∫ 1

0
f(x) dx ≈ b1f(c1) + b2f(c2)
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is exact when f is a cubic polynomial. You may exploit the fact that c1 and c2

are the zeros of a quadratic polynomial that is orthogonal to all linear polynomials.
Verify your calculation by testing the formula when f(x) = 1, x, x2 and x3.

9. The functions p0, p1, p2, . . . are generated by the Rodrigues formula

pn(x) = ex dn

dxn
(xne−x), 0 ≤ x < ∞.

Show that these functions are polynomials and prove by integration by parts that
for every p ∈ Pn−1[x] we have the orthogonality condition 〈pn, p〉 = 0 with respect
to the scalar product

〈f, g〉 :=
∫

∞

0
e−xf(x)g(x) dx.

Derive the coefficients of p3, p4 and p5 from the Rodrigues formula. Verify that these
coefficients are compatible with a three term recurrence relation of the form

p5(x) = (γx − α)p4(x) − βp3(x), x ∈ R,

where α, β and γ are constants.
[Note: These pns are known as Laguerre polynomials and denoted by pn = Ln – or,
if you want to be really sophisticated, L(0)

n .]

10. Let p(1
2
) = 1

2
(f(0) + f(1)), where f is a function in C2[0, 1]. Find the least

constants c0, c1 and c2 such that the error bounds

|f(1
2
) − p(1

2
)| ≤ ck‖f (k)‖∞ , k = 0, 1, 2,

are valid.
[Note: The cases k = 0 and k = 1 are easy if one works from first principles, and
the Peano kernel theorem is suitable when k = 2. Also try the Peano kernel theorem
when k = 1.]

11. Express the divided difference f [0, 1, 2, 4] in the form

f [0, 1, 2, 4] =
∫ 4

0
K(θ)f ′′′(θ) dθ,

assuming that f ′′′ exists and is continuous. Sketch the kernel function K(θ) for
0 ≤ θ ≤ 4. By integrating K(θ) analytically and using the mean value theorem
prove that

f [0, 1, 2, 4] = 1
6
f ′′′(ξ)

for some point ξ ∈ [0, 4]. Note that another proof of this result was given in the
lecture on divided differences.

12. Let f be a function in C4[0, 1] and let ξ be any fixed point in [0, 1]. Calculate
the coefficients α, β, γ and δ such that the approximant

f ′′′(ξ) ≈ αf(0) + βf(1) + γf ′(0) + δf ′(1)
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is exact for all cubic polynomials. Prove that the inequality

|f ′′′(ξ) − αf(0) − βf(1) − γf ′(0) − δf ′(1)| ≤
{

1
2
− ξ + 2ξ3 − ξ4

}

‖f (4)‖∞

is satisfied. Show that this inequality holds as an equation if we allow f to be the
function

f(x) =







−(x − ξ)4, 0 ≤ x ≤ ξ,

(x − ξ)4, ξ ≤ x ≤ 1.

13. [Not easy!] Given f and g in C[a, b], let h := fg. Prove by induction that
the divided differences of h satisfy the equation

h[x0, x1, . . . , xn] =
n

∑

j=0

f [x0, x1, . . . , xj]g[xj, xj+1, . . . , xn].

By expressing the differences in terms of derivatives and by letting the points
x0, x1, . . . , xn become coincident, deduce the Leibniz formula for the nth derivative
of a product of two functions.
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