Mathematical Tripos Part IB: Lent 2010 Numerical Analysis – Lecture 1¹

1 Polynomial interpolation

1.1 The interpolation problem

Given n+1 distinct real points x_0, x_1, \ldots, x_n and real numbers f_0, f_1, \ldots, f_n , we seek a function $p: \mathbb{R} \to \mathbb{R}$ such that $p(x_i) = f_i, i = 0, 1, \ldots, n$. Such a function is called an *interpolant*.

We denote by $\mathbb{P}_n[x]$ the *linear space* of all real polynomials of degree at most n and observe that each $p \in \mathbb{P}_n[x]$ is uniquely defined by its n+1 coefficients. In other words, we have n+1 degrees of freedom, while interpolation at x_0, x_1, \ldots, x_n constitutes n+1 conditions. This, intuitively, justifies seeking an interpolant from $\mathbb{P}_n[x]$.

1.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a polynomial interpolant, this can be accomplished more easily by using the explicit *Lagrange formula*. We claim that

$$p(x) = \sum_{k=0}^{n} f_k \prod_{\substack{\ell=0\\\ell\neq k}}^{n} \frac{x - x_{\ell}}{x_k - x_{\ell}}, \qquad x \in \mathbb{R}.$$

Note that $p \in \mathbb{P}_n[x]$, as required. We wish to show that it interpolates the data. Define

$$L_k(x) := \prod_{\substack{\ell=0\\\ell\neq k}}^n \frac{x - x_\ell}{x_k - x_\ell}, \qquad k = 0, 1, \dots, n$$

(Lagrange cardinal polynomials). It is trivial to verify that $L_j(x_j) = 1$ and $L_j(x_k) = 0$ for $k \neq j$, hence

$$p(x_j) = \sum_{k=0}^{n} f_k L_k(x_j) = f_j, \quad j = 0, 1, \dots, n,$$

and p is an interpolant,

Uniqueness Suppose that both $p \in \mathbb{P}_n[x]$ and $q \in \mathbb{P}_n[x]$ interpolate to the same n+1 data. Then the nth degree polynomial p-q vanishes at n+1 distinct points. But the only nth-degree polynomial with $\geq n+1$ zeros is the zero polynomial. Therefore $p-q \equiv 0$ and the interpolating polynomial is unique.

1.3 The error of polynomial interpolation

Let [a, b] be a closed interval of \mathbb{R} . We denote by C[a, b] the space of all continuous functions from [a, b] to \mathbb{R} and let $C^s[a, b]$, where s is a positive integer, stand for the linear space of all functions in C[a, b] that possess s continuous derivatives.

¹Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/.

Theorem Given $f \in C^{n+1}[a,b]$, let $p \in \mathbb{P}_n[x]$ interpolate the values $f(x_i)$, $i = 0, 1, \ldots, n$, where $x_0, \ldots, x_n \in [a, b]$ are pairwise distinct. Then for every $x \in [a, b]$ there exists $\xi \in [a, b]$ such that

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i).$$
(1.1)

Proof. The formula (1.1) is true when $x = x_j$ for $j \in \{0, 1, ..., n\}$, since both sides of the equation vanish. Let $x \in [a, b]$ be any other point and define

$$\phi(t) := [f(t) - p(t)] \prod_{i=0}^{n} (x - x_i) - [f(x) - p(x)] \prod_{i=0}^{n} (t - x_i), \qquad t \in [a, b].$$

[Note: The variable in ϕ is t, whereas x is a fixed parameter.] Note that $\phi(x_j) = 0, j = 0, 1, \ldots, n$, and $\phi(x) = 0$. Hence, ϕ has at least n + 2 distinct zeros in [a, b]. Moreover, $\phi \in C^{n+1}[a, b]$. We now apply the Rolle theorem: if the function $g \in C^1[a,b]$ vanishes at two distinct points in [a,b] then its derivative vanishes at an intermediate point. We deduce that ϕ' vanishes at (at least) n+1 distinct points in [a,b]. Next, applying Rolle to ϕ' , we conclude that ϕ'' vanishes at n points in [a,b]. In general, we prove by induction that $\phi^{(s)}$ vanishes at n+2-s distinct points of [a,b]for $s=0,1,\ldots,n+1$. Letting s=n+1, we have $\phi^{(n+1)}(\xi)=0$ for some $\xi\in[a,b]$. Hence

$$0 = \phi^{(n+1)}(\xi) = [f^{(n+1)}(\xi) - p^{(n+1)}(\xi)] \prod_{i=0}^{n} (x - x_i) - [f(x) - p(x)] \frac{\mathrm{d}^{n+1}}{\mathrm{d}t^{n+1}} \prod_{i=0}^{n} (\xi - x_i).$$

Since
$$p^{(n+1)} \equiv 0$$
 and $d^{n+1} \prod_{i=0}^{n} (t-x_i)/dt^{n+1} \equiv (n+1)!$, we obtain (1.1).

Runge's example We interpolate $f(x) = 1/(1+x^2)$, $x \in [-5,5]$, at the equally-spaced points $x_j = -5 + 10\frac{1}{n}$, $j = 0, 1, \dots, n$. Some of the errors are displayed below

x	f(x) - p(x)	$\prod_{i=0}^{n} (x - x_i)$
0.75	3.2×10^{-3}	-2.5×10^{6}
1.75	7.7×10^{-3}	-6.6×10^{6}
2.75	3.6×10^{-2}	-4.1×10^{7}
3.75	5.1×10^{-1}	-7.6×10^{8}
4.75	$4.0 \times 10^{+2}$	-7.3×10^{10}

Table: Errors for n = 20

Figure: Errors for n = 15

The growth in the error is explained by the product term in (1.1) (the rightmost column of the table). Adding more interpolation points makes the largest error even worse. A remedy to this state of affairs is to cluster points toward the end of the range. A considerably smaller error is attained for $x_j = 5\cos\frac{(n-j)\pi}{n}$, j = 0, 1, ..., n (so-called *Chebyshev points*). It is possible to prove that this choice of points minimizes the magnitude of $\max_{x \in [-5,5]} |\prod_{i=0}^{n} (x-x_i)|$.