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Numerical Analysis – Lecture 11

1 Polynomial interpolation

1.1 The interpolation problem

Given n + 1 distinct real points x0, x1, . . . , xn and real numbers f0, f1, . . . , fn, we seek a function
p : R → R such that p(xi) = fi, i = 0, 1, . . . , n. Such a function is called an interpolant.
We denote by Pn[x] the linear space of all real polynomials of degree at most n and observe that
each p ∈ Pn[x] is uniquely defined by its n + 1 coefficients. In other words, we have n + 1 degrees
of freedom, while interpolation at x0, x1, . . . , xn constitutes n + 1 conditions. This, intuitively,
justifies seeking an interpolant from Pn[x].

1.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a poly-
nomial interpolant, this can be accomplished more easily by using the explicit Lagrange formula.
We claim that

p(x) =

n∑

k=0

fk

n∏

ℓ=0
ℓ 6=k

x − xℓ

xk − xℓ

, x ∈ R.

Note that p ∈ Pn[x], as required. We wish to show that it interpolates the data. Define

Lk(x) :=

n∏

ℓ=0
ℓ 6=k

x − xℓ

xk − xℓ

, k = 0, 1, . . . , n

(Lagrange cardinal polynomials). It is trivial to verify that Lj(xj) = 1 and Lj(xk) = 0 for k 6= j,
hence

p(xj) =

n∑

k=0

fkLk(xj) = fj , j = 0, 1, . . . , n,

and p is an interpolant,

Uniqueness Suppose that both p ∈ Pn[x] and q ∈ Pn[x] interpolate to the same n + 1 data.
Then the nth degree polynomial p − q vanishes at n + 1 distinct points. But the only nth-degree
polynomial with ≥ n + 1 zeros is the zero polynomial. Therefore p − q ≡ 0 and the interpolating
polynomial is unique.

1.3 The error of polynomial interpolation

Let [a, b] be a closed interval of R. We denote by C[a, b] the space of all continuous functions from
[a, b] to R and let Cs[a, b], where s is a positive integer, stand for the linear space of all functions
in C[a, b] that possess s continuous derivatives.

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/.
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Theorem Given f ∈ Cn+1[a, b], let p ∈ Pn[x] interpolate the values f(xi), i = 0, 1, . . . , n, where
x0, . . . , xn ∈ [a, b] are pairwise distinct. Then for every x ∈ [a, b] there exists ξ ∈ [a, b] such that

f(x) − p(x) =
1

(n + 1)!
f (n+1)(ξ)

n∏

i=0

(x − xi). (1.1)

Proof. The formula (1.1) is true when x = xj for j ∈ {0, 1, . . . , n}, since both sides of the
equation vanish. Let x ∈ [a, b] be any other point and define

φ(t) := [f(t) − p(t)]

n∏

i=0

(x − xi) − [f(x) − p(x)]

n∏

i=0

(t − xi), t ∈ [a, b].

[Note: The variable in φ is t, whereas x is a fixed parameter.] Note that φ(xj) = 0, j = 0, 1, . . . , n,
and φ(x) = 0. Hence, φ has at least n + 2 distinct zeros in [a, b]. Moreover, φ ∈ Cn+1[a, b].
We now apply the Rolle theorem: if the function g ∈ C1[a, b] vanishes at two distinct points in
[a, b] then its derivative vanishes at an intermediate point. We deduce that φ′ vanishes at (at least)
n + 1 distinct points in [a, b]. Next, applying Rolle to φ′, we conclude that φ′′ vanishes at n points
in [a, b]. In general, we prove by induction that φ(s) vanishes at n + 2 − s distinct points of [a, b]
for s = 0, 1, . . . , n + 1. Letting s = n + 1, we have φ(n+1)(ξ) = 0 for some ξ ∈ [a, b]. Hence

0 = φ(n+1)(ξ) = [f (n+1)(ξ) − p(n+1)(ξ)]

n∏

i=0

(x − xi) − [f(x) − p(x)]
dn+1

dtn+1

n∏

i=0

(ξ − xi).

Since p(n+1) ≡ 0 and dn+1
∏n

i=0(t − xi)/dtn+1 ≡ (n + 1)!, we obtain (1.1). 2

Runge’s example We interpolate f(x) = 1/(1 + x2), x ∈ [−5, 5], at the equally-spaced points
xj = −5 + 10 j

n
, j = 0, 1, . . . , n. Some of the errors are displayed below

x f(x) − p(x)
∏n

i=0(x − xi)

0.75 3.2 × 10−3 −2.5 × 106

1.75 7.7 × 10−3 −6.6 × 106

2.75 3.6 × 10−2 −4.1 × 107

3.75 5.1 × 10−1 −7.6 × 108

4.75 4.0 × 10+2 −7.3 × 1010

Table: Errors for n = 20

Figure: Errors for n = 15
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The growth in the error is explained by the product term in (1.1) (the rightmost column of the
table). Adding more interpolation points makes the largest error even worse. A remedy to this
state of affairs is to cluster points toward the end of the range. A considerably smaller error is

attained for xj = 5 cos (n−j)π
n

, j = 0, 1, . . . , n (so-called Chebyshev points). It is possible to prove
that this choice of points minimizes the magnitude of maxx∈[−5,5] |

∏n

i=0(x − xi)|.
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