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Numerical Analysis — Lecture 3!

2 Orthogonal polynomials

2.1 Orthogonality in general linear spaces

We have already seen the scalar product (x,y) = Y ., 2;y;, acting on z,y € R". Likewise, given
arbitrary weights wy,ws, ..., w, > 0, we may define (z,y) = > ; w;z;y;. In general, a scalar (or
inner) product is any function V x V — R, where V is a vector space over the reals, subject to the
following three axioms:

Symmetry: (x,y) = (y,z) Yo,y € V;

Nonnegativity: (x,xz) >0 Ve € V and (z,x) =0 iff x = 0; and

Linearity: (ax + by, z) = alx, z) + bly,z) Va,y,z € V, a,b € R.

Given a scalar product, we may define orthogonality: x,y € V are orthogonal if (x,y) = 0.

Let V = Cla,b], w € V be a fixed positive function and define (f, g) := f:w(x)f(x)g(x) dz for all
f,g € V. It is easy to verify all three axioms of the scalar product.

2.2 Orthogonal polynomials — definition, existence, uniqueness

Given a scalar product in V = P,[z], we say that p, € P,[z] is the nth orthogonal polynomial
if (pn,p) = 0 for all p € P,,_1[z]. [Note: different inner products lead to different orthogonal
polynomials.] A polynomial in P,[z] is monic if the coefficient of 2™ therein equals one.

Theorem For every n > 0 there exists a unique monic orthogonal polynomial of degree n. More-
over, any p € P,[z] can be expanded as a linear combination of pg,p1,...,pn,

Proof. We let po(x) = 1 and prove the theorem by induction on n. Thus, suppose that
Po,P1,---,Pn have been already derived consistently with both assertions of the theorem and let
q(z) :== 2"t € P, 41 [x]. Motivated by the Gram—Schmidt algorithm, we choose

(@) = a@) = 3 LB ) ser (2.1)

k=0 <pk37 pk>

Clearly, ppy1 € Ppi1[z] and it is monic (since all the terms in the sum are of degree < n).
Let m € {0,1,...,n}. It follows from (2.1) and the induction hypothesis that

_ - S (q, ) _ o (¢, Pm) _
<pn+1;pm> = <Q7pm> kZZO <pk7pk> <pk'7pm> <Qapm> <pm7pm> <pmapm> 0.

Hence, p,,11 is orthogonal to po, ..., p,. Consequently, according to the second inductive assertion,
it is orthogonal to all p € P, [z].

To prove uniqueness, we suppose the existence of two monic orthogonal polynomials pyy1,pnt+1 €
Ppy1fz]. Let p:= pni1 — Put1 € Pplz], hence (ppi1,p) = (Pnt1,p) = 0, and this implies

0= (Pn+1:0) — (Pns1:0) = (Pnt1 — Pnt1,0) = (P, D),
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and we deduce p = 0.

Finally, in order to prove that each p € P,,41[z] is a linear combination of py,...,pnt1, We note
that we can always write it in the form p = ¢p,+1 + ¢, where c is the coefficient of 2"*! in p and
where ¢ € P,,[z]. According to the induction hypothesis, ¢ can be expanded as a linear combination
of po,p1,...,pn, hence our assertion is true. O

Well-known examples of orthogonal polynomials include

Name Notation | Interval Weight function
Legendre P, —1,1] w(x)=1
Chebyshev T, [-1,1] | w(z) = (1 —2?)"1/2
Laguerre L, [0, 00) w(x) =e 7
Hermite H, (—00, 00) w(z) =e*

2.3 The three-term recurrence relation

How to construct orthogonal polynomials? (2.1) might help, but it suffers from loss of accuracy
due to imprecisions in the calculation of scalar products. A considerably better procedure follows
from our next theorem.

Theorem Monic orthogonal polynomials are given by the formula

p-1(z) =0, po(z) =1,
Pnt1(z) = (2 — an)pn(x) — Bupn—1(2), n=0,1,..., (2.2)
where
oy = <pn,$pn>’ B8, = (Pns Pn) > 0.
(P, Pn) (Pn—1,Pn—1)

Proof. Pick n > 0 and let ¢(z) := ppt1(z) — (& — an)pn () + Bupn—1(z). Since p,, and p,41 are
monic, it follows that ¢ € P,,[z]. Moreover, because of orthogonality of p,—1,pn, Pn+1,
<w;pf> = <pn+17p£> - <pn7 (i[: - a’n)pl> + ﬁn<pn717pf> = 07 f = 07 17 e, — 2

Because of monicity, 2p,—1 = pn + ¢, where ¢ € P,,_1[z]. Thus, from the definition of a,, G,,

<7/)7pn—1> = _<pnaxpn—1> + ﬂn(pn—lapn—1> = _<pnapn> + 6n<pn—1apn—1> =0,
<¢>pn> = _<-rpn7pn> + an<pn;pn> =0.
Every p € P,[z] that obeys (p,ps) = 0, £ = 0,1,...,n, must necessarily be the zero polynomial.

For suppose that it is not so and let 2° be the highest power of x in p. Then (p, ps) # 0, which is
impossible. We deduce that ¢ = 0, hence (2.2) is true. O

Example Chebyshev polynomials We choose the scalar product

1 dx
) =/_1f(a?)g(fc)ﬁ, fgec-11]

and define T,, € P, [z] by the relation T,,(cos ) = cos(nf). Hence To(z) = 1, T1(z) = x, Ta(z) =
222 — 1 etc. Changing the integration variable,

1 ™
(T, Ton) :/Tn( Vo (x )\/1(1_7%‘2 /cosn@cosm@d&— 7/0[cos(n+m)0+cos(nfm)9] dfd =0

~1
whenever n # m. The recurrence relation for Chebyshev polynomials is particularly simple,
Thy1(x) = 22T, (z) — T,—1 (), as can be verified at once from the identity cos[(n + 1)0] 4 cos[(n —
1)0] = 2cos(f) cos(nb). Note that the T,s aren’t monic, hence the inconsistency with (2.2). To
obtain monic polynomials take T, (x)/2"~!, n > 1.



