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Numerical Analysis — Lecture 6'

Back to the general case. .. Typically, forming L involves differentiation, integration and linear
combination of function values. Since

—(z— 0% =k(z— o)k, /;(t -0k dt = %H[(x CO)EF (- o)),

the exchange of L with integration is justified in these cases. Similarly for differentiation and,
trivially, for linear combinations.

Theorem Suppose that K doesn’t change sign in (a,b) and that f € C¥*1[a,b]. Then

b
L(f) :% V K(0) d&] fEFD(E)  for some € € (a,b).

Proof. Let K > 0. Then
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Likewise L(f) < ki U K(0 dQ} MaX,¢[a,b] fE+D (), consequently

min D (z) < % < max f*H(g)

z€la,b] 5 [ K(6)dg  zelad]

and the required result follows from the intermediate value theorem. Similar analysis is true in the
case K <0. O

Function norms: We can measure the ‘size’ of function g in various manners. Particular impor-
1/2
tance is afforded to the 1-norm ||g||y = fab | f(z)| dz, the 2-norm ||g||2 = {f;[g(ac)]2 dx} and the

o0-norm ||gllec = max,eiqp) [9(x)]|-

Back to our example We have K > 0 and f02 K(0)d# = 2. Consequently L(f) = 5; x 2 f"(£) =
£/ (€) for some € € (0,2). We deduce in particular that [L(f)| < 3/ [l

Likewise we can easily deduce from ‘f: f(@)g(x) dx’ < |lgllool[f]]1 that

1
LD GIE IS oo and |L(f)] < k,IIKlloollf“““)ll

This is valid also when K changes sign. Moreover, the Cauchy—Schwarz inequality

) dz| < | fl2llgll2

implies the inequality
IL(f)| < k,llKll 2|52

All these provide a very powerful means to bound the size of the error in our approximation proce-
dures and verify how well ‘polynomial assumptions’ translate to arbitrary functions in C**![a, b].

ICorrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are
available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.



4 Ordinary differential equations

We wish to approximate the exact solution of the ordinary differential equation (ODE)
y/ = f(tvy)7 t> Oa (41)

where y € RY and the function f : R x RY — RY is sufficiently ‘nice’. (In principle, it is enough
for f to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we
henceforth assume that f is analytic: in other words, we are always able to expand locally into
Taylor series.) The equation (4.1) is accompanied by the initial condition y(0) = y,.

Our purpose is to approximate y,, . ~ y(tn+1), » = 0,1,..., where t,,, = mh and the time step
h > 0 is small, from y,,¥y1,--.,y, and equation (4.1).

4.1 One-step methods

A one-step method is a map y,, ., = ¢, (tn,y,,), i.e. an algorithm which allows y,,,; to depend
only on t,, y,,, h and the ODE (4.1).

The Euler method: We know y and its slope y’ at t = 0 and wish to approximate y at t = h > 0.
The most obvious approach is to truncate y(h) = y(0) + hy’(0) + $h%y”(0) + - - - at the h? term.
Since y'(0) = f(to,yy), this procedure approximates y(h) ~ y, + hf(to,y,) and we thus set

Y1 = Yo + hf(to,yo)-
By the same token, we may advance from h to 2h by letting y, = y; + hf(t1,y,). In general, we
obtain the Fuler method

Ynt1 :yn+hf(tn>yn)v n:071a"" (42)

Convergence: Let t* > 0 be given. We say that a method, which for every h > 0 produces the
solution sequence y,, = vy,,(h), n =0,1,...,[t*/h], converges if, as h — 0 and ng(h)h Foop t, it is
true that y,,, — y(t), the exact solution of (4.1), uniformly for ¢ € [0,¢*].
Theorem Suppose that f satisfies the Lipschitz condition: there exists A > 0 such that

If(t,v) — f(t,w)] < Av—w|, te[0,t*], wv,weR".
Then the Euler method (4.2) converges.
Proof. Let e, = y,, — y(t,), the error at step n, where 0 < n < ¢*/h. Thus,

ent1 = Ynp1 — Yltng1) = [Up + 1 F (tn.y,)] — [y(tn) + by (tn) + O(hz)]'

By the Taylor theorem, the O(h?) term can be bounded uniformly for all [0,¢*] (in the underlying
norm || - ||) by ch?, where ¢ > 0. Thus, using (4.1) and the triangle inequality,

lenrill < llyn — y(t)ll + hllF(tn,yn) = Fta, y(ta))| + ch?
< yn =yt +hAly, = y(ta)| +ch? = (1 + hA)|leq | + ch®.

Consequently, by induction,
m—1
Hen+1” < (1 + h)‘)mHen+1—m|| + Ch2 Z (1 + h/\)Ja m=0,1,...,n+ 1.
j=0
In particular, letting m = n 4+ 1 and bearing in mind that ey = 0, we have

L+ AN -1 h
A+hN)™ -1 < i(1+h)\)n+1'

1|l < ch? 1+ A\ = ch?

j=0
For small h > 0 it is true that 0 < 14 A\ < e"*. This and (n+ 1)h < t* imply that (1+hA)"T! <
e!"* therefore |le, | < Cei\ 1 "=% 0 uniformly for 0 < nh < * and the theorem is true. m]



