Mathematical Tripos Part IB: Lent 2010

Numerical Analysis – Lecture 6¹

Back to the general case... Typically, forming L involves differentiation, integration and linear combination of function values. Since

$$\frac{\mathrm{d}}{\mathrm{d}x}(x-\theta)_{+}^{k} = k(x-\theta)_{+}^{k-1}, \qquad \int_{a}^{x} (t-\theta)_{+}^{k} \, \mathrm{d}t = \frac{1}{k+1} [(x-\theta)_{+}^{k+1} - (a-\theta)_{+}^{k+1}],$$

the exchange of L with integration is justified in these cases. Similarly for differentiation and, trivially, for linear combinations.

Theorem Suppose that K doesn't change sign in (a, b) and that $f \in \mathbb{C}^{k+1}[a, b]$. Then

$$L(f) = \frac{1}{k!} \left[\int_a^b K(\theta) \, \mathrm{d}\theta \right] f^{(k+1)}(\xi) \quad \text{for some} \quad \xi \in (a,b).$$

Proof. Let $K \geq 0$. Then

$$L(f) \ge \frac{1}{k!} \int_a^b K(\theta) \min_{x \in [a,b]} f^{(k+1)}(x) d\theta = \frac{1}{k!} \left(\int_a^b K(\theta) d\theta \right) \min_{x \in [a,b]} f^{(k+1)}(x).$$

Likewise $L(f) \leq \frac{1}{k!} \left[\int_a^b K(\theta) d\theta \right] \max_{x \in [a,b]} f^{(k+1)}(x)$, consequently

$$\min_{x \in [a,b]} f^{(k+1)}(x) \le \frac{L[f]}{\frac{1}{k!} \int_a^b K(\theta) \, d\theta} \le \max_{x \in [a,b]} f^{(k+1)}(x)$$

and the required result follows from the intermediate value theorem. Similar analysis is true in the case $K \leq 0$.

Function norms: We can measure the 'size' of function g in various manners. Particular importance is afforded to the 1-norm $||g||_1 = \int_a^b |f(x)| \, \mathrm{d}x$, the 2-norm $||g||_2 = \left\{ \int_a^b [g(x)]^2 \, \mathrm{d}x \right\}^{1/2}$ and the ∞ -norm $||g||_{\infty} = \max_{x \in [a,b]} |g(x)|$.

Back to our example We have $K \ge 0$ and $\int_0^2 K(\theta) d\theta = \frac{2}{3}$. Consequently $L(f) = \frac{1}{2!} \times \frac{2}{3} f'''(\xi) = \frac{1}{3} f'''(\xi)$ for some $\xi \in (0,2)$. We deduce in particular that $|L(f)| \le \frac{1}{3} ||f'''||_{\infty}$.

Likewise we can easily deduce from $\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \leq \|g\|_{\infty} \|f\|_1$ that

$$|L(f)| \le \frac{1}{k!} ||K||_1 ||f^{(k+1)}||_{\infty}$$
 and $|L(f)| \le \frac{1}{k!} ||K||_{\infty} ||f^{(k+1)}||_1$.

This is valid also when K changes sign. Moreover, the Cauchy-Schwarz inequality

$$\left| \int_{a}^{b} f(x)g(x) \, \mathrm{d}x \right| \le \|f\|_{2} \|g\|_{2}$$

implies the inequality

$$|L(f)| \le \frac{1}{k!} ||K||_2 ||f^{(k+1)}||_2.$$

All these provide a very powerful means to bound the size of the error in our approximation procedures and verify how well 'polynomial assumptions' translate to arbitrary functions in $C^{k+1}[a,b]$.

¹Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.

4 Ordinary differential equations

We wish to approximate the exact solution of the ordinary differential equation (ODE)

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}), \qquad t \ge 0, \tag{4.1}$$

where $\boldsymbol{y} \in \mathbb{R}^N$ and the function $\boldsymbol{f} : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is sufficiently 'nice'. (In principle, it is enough for \boldsymbol{f} to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that \boldsymbol{f} is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (4.1) is accompanied by the initial condition $\boldsymbol{y}(0) = \boldsymbol{y}_0$.

Our purpose is to approximate $y_{n+1} \approx y(t_{n+1})$, n = 0, 1, ..., where $t_m = mh$ and the time step h > 0 is small, from $y_0, y_1, ..., y_n$ and equation (4.1).

4.1 One-step methods

A one-step method is a map $y_{n+1} = \varphi_h(t_n, y_n)$, i.e. an algorithm which allows y_{n+1} to depend only on t_n, y_n, h and the ODE (4.1).

The Euler method: We know \boldsymbol{y} and its slope \boldsymbol{y}' at t=0 and wish to approximate \boldsymbol{y} at t=h>0. The most obvious approach is to truncate $\boldsymbol{y}(h)=\boldsymbol{y}(0)+h\boldsymbol{y}'(0)+\frac{1}{2}h^2\boldsymbol{y}''(0)+\cdots$ at the h^2 term. Since $\boldsymbol{y}'(0)=\boldsymbol{f}(t_0,\boldsymbol{y}_0)$, this procedure approximates $\boldsymbol{y}(h)\approx\boldsymbol{y}_0+h\boldsymbol{f}(t_0,\boldsymbol{y}_0)$ and we thus set $\boldsymbol{y}_1=\boldsymbol{y}_0+h\boldsymbol{f}(t_0,\boldsymbol{y}_0)$.

By the same token, we may advance from h to 2h by letting $\mathbf{y}_2 = \mathbf{y}_1 + h\mathbf{f}(t_1, \mathbf{y}_1)$. In general, we obtain the Euler method

$$y_{n+1} = y_n + h f(t_n, y_n), \qquad n = 0, 1, \dots$$
 (4.2)

Convergence: Let $t^* > 0$ be given. We say that a method, which for every h > 0 produces the solution sequence $\mathbf{y}_n = \mathbf{y}_n(h), n = 0, 1, \dots, \lfloor t^*/h \rfloor$, converges if, as $h \to 0$ and $n_k(h)h \xrightarrow{k \to \infty} t$, it is true that $\mathbf{y}_{n_k} \to \mathbf{y}(t)$, the exact solution of (4.1), uniformly for $t \in [0, t^*]$.

Theorem Suppose that f satisfies the Lipschitz condition: there exists $\lambda \geq 0$ such that

$$\|\boldsymbol{f}(t,\boldsymbol{v}) - \boldsymbol{f}(t,\boldsymbol{w})\| \le \lambda \|\boldsymbol{v} - \boldsymbol{w}\|, \qquad t \in [0,t^*], \quad \boldsymbol{v},\boldsymbol{w} \in \mathbb{R}^N.$$

Then the Euler method (4.2) converges.

Proof. Let $e_n = y_n - y(t_n)$, the error at step n, where $0 \le n \le t^*/h$. Thus,

$$e_{n+1} = y_{n+1} - y(t_{n+1}) = [y_n + hf(t_n, y_n)] - [y(t_n) + hy'(t_n) + O(h^2)].$$

By the Taylor theorem, the $\mathcal{O}(h^2)$ term can be bounded uniformly for all $[0, t^*]$ (in the underlying norm $\|\cdot\|$) by ch^2 , where c>0. Thus, using (4.1) and the triangle inequality,

$$||e_{n+1}|| \le ||y_n - y(t_n)|| + h||f(t_n, y_n) - f(t_n, y(t_n))|| + ch^2$$

$$\le ||y_n - y(t_n)|| + h\lambda||y_n - y(t_n)|| + ch^2 = (1 + h\lambda)||e_n|| + ch^2.$$

Consequently, by induction,

$$\|e_{n+1}\| \le (1+h\lambda)^m \|e_{n+1-m}\| + ch^2 \sum_{j=0}^{m-1} (1+h\lambda)^j, \qquad m = 0, 1, \dots, n+1.$$

In particular, letting m = n + 1 and bearing in mind that $e_0 = 0$, we have

$$\|e_{n+1}\| \le ch^2 \sum_{j=0}^n (1+h\lambda)^j = ch^2 \frac{(1+h\lambda)^{n+1}-1}{(1+h\lambda)-1} \le \frac{ch}{\lambda} (1+h\lambda)^{n+1}.$$

For small h > 0 it is true that $0 < 1 + h\lambda \le e^{h\lambda}$. This and $(n+1)h \le t^*$ imply that $(1+h\lambda)^{n+1} \le e^{t^*\lambda}$, therefore $\|e_n\| \le \frac{ce^{t^*\lambda}}{\lambda}h \xrightarrow{h\to 0} 0$ uniformly for $0 \le nh \le t^*$ and the theorem is true.