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Back to the general case. . . Typically, forming L involves differentiation, integration and linear
combination of function values. Since

d

dx
(x − θ)k

+ = k(x − θ)k−1
+ ,

∫ x

a

(t − θ)k
+ dt =

1

k + 1
[(x − θ)k+1

+ − (a − θ)k+1
+ ],

the exchange of L with integration is justified in these cases. Similarly for differentiation and,
trivially, for linear combinations.

Theorem Suppose that K doesn’t change sign in (a, b) and that f ∈ Ck+1[a, b]. Then

L(f) =
1

k!

[

∫ b

a

K(θ) dθ

]

f (k+1)(ξ) for some ξ ∈ (a, b).

Proof. Let K ≥ 0. Then

L(f) ≥
1

k!

∫ b

a

K(θ) min
x∈[a,b]

f (k+1)(x) dθ =
1

k!

(

∫ b

a

K(θ) dθ

)

min
x∈[a,b]

f (k+1)(x).

Likewise L(f) ≤ 1
k!

[

∫ b

a
K(θ) dθ

]

maxx∈[a,b] f
(k+1)(x), consequently

min
x∈[a,b]

f (k+1)(x) ≤
L[f ]

1
k!

∫ b

a
K(θ) dθ

≤ max
x∈[a,b]

f (k+1)(x)

and the required result follows from the intermediate value theorem. Similar analysis is true in the
case K ≤ 0. 2

Function norms: We can measure the ‘size’ of function g in various manners. Particular impor-

tance is afforded to the 1-norm ‖g‖1 =
∫ b

a
|f(x)|dx, the 2-norm ‖g‖2 =

{

∫ b

a
[g(x)]2 dx

}1/2

and the

∞-norm ‖g‖∞ = maxx∈[a,b] |g(x)|.

Back to our example We have K ≥ 0 and
∫ 2

0
K(θ) dθ = 2

3 . Consequently L(f) = 1
2! ×

2
3f ′′′(ξ) =

1
3f ′′′(ξ) for some ξ ∈ (0, 2). We deduce in particular that |L(f)| ≤ 1

3‖f
′′′‖∞.

Likewise we can easily deduce from
∣

∣

∣

∫ b

a
f(x)g(x) dx

∣

∣

∣
≤ ‖g‖∞‖f‖1 that

|L(f)| ≤
1

k!
‖K‖1‖f

(k+1)‖∞ and |L(f)| ≤
1

k!
‖K‖∞‖f (k+1)‖1.

This is valid also when K changes sign. Moreover, the Cauchy–Schwarz inequality
∣

∣

∣

∣

∣

∫ b

a

f(x)g(x) dx

∣

∣

∣

∣

∣

≤ ‖f‖2‖g‖2

implies the inequality

|L(f)| ≤
1

k!
‖K‖2‖f

(k+1)‖2.

All these provide a very powerful means to bound the size of the error in our approximation proce-
dures and verify how well ‘polynomial assumptions’ translate to arbitrary functions in Ck+1[a, b].

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.
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4 Ordinary differential equations

We wish to approximate the exact solution of the ordinary differential equation (ODE)

y′ = f(t,y), t ≥ 0, (4.1)

where y ∈ R
N and the function f : R × R

N → R
N is sufficiently ‘nice’. (In principle, it is enough

for f to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we
henceforth assume that f is analytic: in other words, we are always able to expand locally into
Taylor series.) The equation (4.1) is accompanied by the initial condition y(0) = y0.
Our purpose is to approximate yn+1 ≈ y(tn+1), n = 0, 1, . . ., where tm = mh and the time step
h > 0 is small, from y0,y1, . . . ,yn and equation (4.1).

4.1 One-step methods

A one-step method is a map yn+1 = ϕh(tn,yn), i.e. an algorithm which allows yn+1 to depend
only on tn, yn, h and the ODE (4.1).

The Euler method: We know y and its slope y′ at t = 0 and wish to approximate y at t = h > 0.
The most obvious approach is to truncate y(h) = y(0) + hy′(0) + 1

2h2y′′(0) + · · · at the h2 term.
Since y′(0) = f(t0,y0), this procedure approximates y(h) ≈ y0 + hf(t0,y0) and we thus set
y1 = y0 + hf(t0,y0).
By the same token, we may advance from h to 2h by letting y2 = y1 + hf(t1,y1). In general, we
obtain the Euler method

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . . (4.2)

Convergence: Let t∗ > 0 be given. We say that a method, which for every h > 0 produces the

solution sequence yn = yn(h), n = 0, 1, . . . , ⌊t∗/h⌋, converges if, as h → 0 and nk(h)h
k→∞
−→ t, it is

true that ynk
→ y(t), the exact solution of (4.1), uniformly for t ∈ [0, t∗].

Theorem Suppose that f satisfies the Lipschitz condition: there exists λ ≥ 0 such that

‖f(t,v) − f(t,w)‖ ≤ λ‖v − w‖, t ∈ [0, t∗], v,w ∈ R
N .

Then the Euler method (4.2) converges.

Proof. Let en = yn − y(tn), the error at step n, where 0 ≤ n ≤ t∗/h. Thus,

en+1 = yn+1 − y(tn+1) = [yn + hf(tn,yn)] − [y(tn) + hy′(tn) + O
(

h2
)

].

By the Taylor theorem, the O
(

h2
)

term can be bounded uniformly for all [0, t∗] (in the underlying
norm ‖ · ‖) by ch2, where c > 0. Thus, using (4.1) and the triangle inequality,

‖en+1‖ ≤ ‖yn − y(tn)‖ + h‖f(tn,yn) − f(tn,y(tn))‖ + ch2

≤ ‖yn − y(tn)‖ + hλ‖yn − y(tn)‖ + ch2 = (1 + hλ)‖en‖ + ch2.

Consequently, by induction,

‖en+1‖ ≤ (1 + hλ)m‖en+1−m‖ + ch2
m−1
∑

j=0

(1 + hλ)j , m = 0, 1, . . . , n + 1.

In particular, letting m = n + 1 and bearing in mind that e0 = 0, we have

‖en+1‖ ≤ ch2
n
∑

j=0

(1 + hλ)j = ch2 (1 + hλ)n+1 − 1

(1 + hλ) − 1
≤

ch

λ
(1 + hλ)n+1.

For small h > 0 it is true that 0 < 1 + hλ ≤ ehλ. This and (n + 1)h ≤ t∗ imply that (1 + hλ)n+1 ≤

et∗λ, therefore ‖en‖ ≤ cet
∗

λ

λ h
h→0
−→ 0 uniformly for 0 ≤ nh ≤ t∗ and the theorem is true. 2
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