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Numerical Analysis – Lecture 91

Formally, y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt, and this can be ‘approximated’ by

yn+1 = yn + h

ν
∑

l=1

blf(tn + clh,y(tn + clh)). (4.11)

except that, of course, the vectors y(tn + clh) are unknown! Runge–Kutta methods are a means
of implementing (4.11) by replacing unknown values of y by suitable linear combinations. The
general form of a ν-stage explicit Runge–Kutta method (RK) is

k1 = f(tn,yn),

k2 = f(tn + c2h,yn + hc2k1),

k3 = f(tn + c3h,yn + h(a3,1k1 + a3,2k2)), a3,1 + a3,2 = c3,

...

kν = f



tn + cνh,yn + h

ν−1
∑

j=1

aν,jkj



 ,

ν−1
∑

j=1

aν,j = cν ,

yn+1 = yn + h
ν

∑

l=1

blkl.

The choice of the RK coefficients al,j is motivated at the first instance by order considerations.

Example Set ν = 2. We have k1 = f(tn,yn) and, Taylor-expanding about (tn,yn),

k2 = f(tn + c2h,yn + c2hf(tn,yn))

= f(tn,yn) + hc2

[

∂f(tn,yn)

∂t
+

∂f(tn,yn)

∂y
f(tn,yn)

]

+ O
(

h2
)

.

But

y′ = f(t,y) ⇒ y′′ =
∂f(t,y)

∂t
+

∂f(t,y)

∂y
f(t,y).

Therefore, substituting the exact solution yn = y(tn), we obtain k1 = y′(tn) and k2 = y′(tn) +
hc2y

′′(tn) + O
(

h2
)

. Consequently, the local error is

y(tn+1) − yn+1 = [y(tn) + hy′(tn) + 1

2
h2y′′(tn) + O

(

h3
)

]

− [y(tn) + h(b1 + b2)y
′(tn) + h2b2c2y

′′(tn) + O
(

h3
)

].

We deduce that the RK method is of order 2 if b1 + b2 = 1 and b2c2 = 1

2
. It is easy to demonstrate

that no such method may be of order ≥ 3 (e.g. by applying it to y′ = λy).

General RK methods A general ν-stage Runge–Kutta method is

kl = f



tn + clh,yn + h
ν

∑

j=1

al,jkj



 where
ν

∑

j=1

al,j = cl, l = 1, 2, . . . , ν,

yn+1 = yn + h

ν
∑

l=1

blkl.

Obviously, al,j = 0 for all l ≤ j yields the standard explicit RK. Otherwise, an RK method is said
to be implicit.

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.
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Example Consider the 2-stage method

k1 = f
(

tn,yn + 1

4
h(k1 − k2)

)

, k2 = f
(

tn + 2

3
h,yn + 1

12
h(3k1 + 5k2)

)

,

yn+1 = yn + 1

4
h(k1 + 3k2).

In order to analyse the order of this method, we restrict our attention to scalar, autonomuous
equations of the form y′ = f(y). (This procedure might lead to loss of generality for methods of
order ≥ 5.) For brevity, we use the convention that all functions are evaluated at y = yn, e.g.
fy = df(yn)/dy. Thus,

k1 = f + 1

4
hfy(k1 − k2) + 1

32
h2fyy(k1 − k2)

2 + O
(

h3
)

,

k2 = f + 1

12
hfy(3k1 + 5k2) + 1

288
h2fyy(3k1 + 5k2)

2 + O
(

h3
)

.

We have k1, k2 = f + O(h) and substitution in the above equations yields k1 = f + O
(

h2
)

,

k2 = f + 2

3
hfyf + O

(

h2
)

. Substituting again, we obtain

k1 = f − 1

6
h2f2

y f + O
(

h3
)

,

k2 = f + 2

3
hfyf + h2

(

5

18
f2

y f + 2

9
fyyf2

)

+ O
(

h3
)

⇒ yn+1 = y + hf + 1

2
h2fyf + 1

6
h3(f2

y f + fyyf2) + O
(

h4
)

.

But y′ = f ⇒ y′′ = fyf ⇒ y′′′ = f2
y f + fyyf2 and we deduce from Taylor’s theorem that the

method is at least of order 3. (It is easy to verify that it isn’t of order 4, for example applying it
to the equation y′ = λy.)

4.4 Stiff equations

Linear stability Consider the linear system

y′ = Ay where A =

[

−100 1
0 − 1

10

]

.

The exact solution is a linear combination of e−t/10 and e−100t: the first decays gently, whereas the
second becomes practically zero almost at once. Suppose that we solve the ODE with the forward
Euler method. As will be shown soon, the requirement that limn→∞ yn = 0 (for fixed h > 0) leads
to an unacceptable restriction on the size of h.

With greater generality, let us solve y′ = Ay, for general N × N constant matrix A, with Euler’s
method. Then yn+1 = (I + hA)yn, therefore yn = (I + hA)ny0. Let the eigenvalues of A be
λ1, . . . , λN , with corresponding linearly-independent eigenvectors v1,v2, . . . ,vN . Let D = diagλ

and V = [v1,v2, . . . ,vN ], whence A = V DV −1. We assume further that Re λl < 0, l = 1, . . . , N .
In that case it is easy to prove that limt→∞ y(t) = 0, e.g. by representing the exact solution of the
ODE explicitly as y(t) = etAy0, where etA =

∑

∞

k=0
1

k!
tkAk = V etDV −1. However, yn = V (I +

hD)nV −1y0, where A = V DV −1 and the matrix D is diagonal, therefore limn→∞ yn = 0 for all
initial values y0 iff |1+hλl| < 1, l = 1, . . . , N . In our example we thus require |1− 1

10
h|, |1−100h| <

1, hence h < 1

50
.

This restriction, necessary to recovery of correct asymptotic behaviour, has nothing to do with local
accuracy, since, for large n, the genuine ‘unstable’ component is exceedingly small. Its purpose is
solely to prevent this component from leading to an unbounded growth in the numerical solution.

Stiffness We say that the ODE y′ = f(t,y) is stiff if (for some methods) we need to depress h
to maintain stability well beyond requirements of accuracy. An important example of stiff systems
occurs when an equation is linear, Reλl < 0, l = 1, 2, . . . , N , and the quotient max |λk|/min |λk|
is large: a ratio of 1020 is not unusual in real-life problems!

Stiff equations, mostly nonlinear, occur throughout applications, whenever we have two (or more)
different timescales in the ODE. A typical example are equations of chemical kinetics, where each
timescale is determined by the speed of reaction between two compounds: such speeds can differ
by many orders of magnitude.
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