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Numerical Analysis – Lecture 101

Definition We say that the ODE y′ = f(t,y) is stiff if (for some methods) we need to depress h
to maintain stability well beyond requirements of accuracy. An important example of stiff systems
occurs when an equation is linear, Reλl < 0, l = 1, 2, . . . , N , and the quotient max |λk|/min |λk|
is large: a ratio of 1020 is not unusual in real-life problems!

Stiff equations, mostly nonlinear, occur throughout applications, whenever we have two (or more)
different timescales in the ODE. A typical example are equations of chemical kinetics, where each
timescale is determined by the speed of reaction between two compounds: such speeds can differ
by many orders of magnitude.

Definition Suppose that a numerical method, applied to y′ = λy, y(0) = 1, with constant h,
produces the solution sequence {yn}n∈Z+ . We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domain of the method. Noting that the set of λ ∈ C for which y(t)
t→∞−→ 0 is

the left half-plane C
− = {z ∈ C : Re z < 0}, we say that the method is A-stable if C

− ⊆ D.

Example We have already seen that for Euler’s method yn → 0 iff |1 + hλ| < 1, therefore
D = {z ∈ C : |1 + z| < 1}. Moreover, solving y′ = λy with the trapezoidal rule, we obtain
yn+1 = [(1 + 1

2
hλ)/(1 − 1

2
hλ)]yn thus, by induction, yn = [(1 + 1

2
hλ)/(1 − 1

2
hλ)]ny0. Therefore

z ∈ D ⇔
∣

∣

∣

∣

1 + 1

2
z

1 − 1

2
z

∣

∣

∣

∣

< 1 ⇔ Re z < 0

and we deduce that D = C
−. Hence, the method is A-stable.

It can be proved by similar means that for backward Euler it is true that D = {z ∈ C : |1−z| > 1},
hence that the method is also A-stable.

Note that A-stability does not mean that any step size will do! We need to choose h small enough
to ensure the right accuracy, but we don’t want to depress it much further to prevent instability.

Discussion A-stability analysis of multistep methods is considerably more complicated. However,
according to the second Dahlquist barrier, no multistep method of order p ≥ 3 may be A-stable.
Note that the p = 2 barrier for A-stability is attained by the trapezoidal rule.

The Dahlquist barrier implies that, in our quest for higher-order methods with good stability
properties, we need to pursue one of the following strategies:

• either relax the definition of A-stability

• or consider other methods in place of multistep.

The two courses of action will be considered next.

Stiffness and BDF methods Inasmuch as no multistep method of order p ≥ 3 may be A-stable,
stability properties of BDF, say, are satisfactory for most stiff equations. The point is that in
many stiff linear systems in applications the eigenvalues are not just in C

− but also well away from
iR. [Analysis of nonlinear stiff equations is difficult and well outside the scope of this course.] All
BDF methods of order p ≤ 6 (i.e., all convergent BDF methods) share the feature that the linear
stability domain D includes a wedge about (−∞, 0): such methods are said to be A0-stable.

Stiffness and Runge–Kutta Unlike multistep methods, implicit high-order RK may be A-stable.
For example, recall the 3rd-order method

k1 = f
(

tn,yn + 1

4
h(k1 − k2)

)

,
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k2 = f
(

tn + 2

3
h,yn + 1

12
h(3k1 + 5k2)

)

,

yn+1 = yn + 1

4
h(k1 + 3k2).

from the last lecture. Applying it to y′ = λy, we have

hk1 = hλ
(

yn + 1

4
hk1 − 1

4
hk2

)

,

hk2 = hλ
(

yn + 1

4
hk1 + 5

12
hk2

)

.

This is a linear system, whose solution is

[

hk1

hk2

]

=

[

1 − 1

4
hλ 1

4
hλ

− 1

4
hλ 1 − 5

12
hλ

]−1 [

hλyn

hλyn

]

=
hλyn

1 − 2

3
hλ + 1

6
(hλ)2

[

1 − 2

3
hλ

1

]

,

therefore

yn+1 = yn + 1

4
hk1 + 3

4
hk2 =

1 + 1

3
hλ

1 − 2

3
hλ + 1

6
h2λ2

yn.

Let

r(z) =
1 + 1

3
z

1 − 2

3
z + 1

6
z2

.

Then yn+1 = r(hλ)yn, therefore, by induction, yn = [r(hλ)]ny0 and we deduce that

D = {z ∈ C : |r(z)| < 1}

We wish to prove that |r(z)| < 1 for every z ∈ C
−, since this is equivalent to A-stability. This will

be done by a technique that can be applied to other RK methods. According to the maximum
modulus principle from Complex Methods, if g is analytic in the closed complex domain V then |g|
attains its maximum on ∂V. We let g = r. This is a rational function, hence its only singularities
are the poles 2± i

√
2 and g is analytic in V = cl C− = {z ∈ C : Re z ≤ 0}. Therefore it attains its

maximum on ∂V = iR and

A-stability ⇔ |r(z)| < 1, z ∈ C
− ⇔ |r(it)| ≤ 1, t ∈ R.

In turn,
|r(it)|2 ≤ 1 ⇔ |1 − 2

3
it − 1

6
t2|2 − |1 + 1

3
it|2 ≥ 0.

But |1 − 2

3
it − 1

6
t2|2 − |1 + 1

3
it|2 = 1

36
t4 ≥ 0 and it follows that the method is A-stable.

Example It is possible to prove that the 2-stage Gauss–Legendre method

k1 = f(tn + (1

2
−

√
3

6
)h,yn + 1

4
hk1 + (1

4
−

√
3

6
)hk2),

k2 = f(tn + (1

2
+

√
3

6
)h,yn + (1

4
+

√
3

6
)hk1 + 1

4
hk2),

yn+1 = yn + 1

2
h(k1 + k2)

is of order 4. [You can do this for y′ = f(y) by expansion, but it becomes messy for y′ = f(t,y).] It
can be easily verified that for y′ = λy we have yn = [r(hλ)]ny0, where r(z) = (1 + 1

2
z + 1

12
z2)/(1−

1

2
z + 1

12
z2). Since the poles of r reside at 3 ± i

√
3 and |r(it)| ≡ 1, we can again use the maximum

modulus principle to argue that D = C
− and the Gauss–Legendre method is A-stable.

4.5 Implementation of ODE methods

The step size h is not some preordained quantity: it is a parameter of the method (in reality, many
parameters, since we may vary it from step to step). The basic input of a well-written computer
package for ODEs is not the step size but the error tolerance: the level of precision, as required
by the user. The choice of h > 0 is an important tool at our disposal to keep a local estimate of
the error beneath the required tolerance in the solution interval. In other words, we need not just
a time-stepping algorithm, but also mechanisms for error control and for amending the step size.
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