Mathematical Tripos Part IB: Lent 2010

Numerical Analysis — Lecture 10*

Definition We say that the ODE y’ = f(t,y) is stiff if (for some methods) we need to depress h
to maintain stability well beyond requirements of accuracy. An important example of stiff systems
occurs when an equation is linear, ReA\; < 0,1 = 1,2,..., N, and the quotient max ||/ min |\g|
is large: a ratio of 10?0 is not unusual in real-life problems!

Stiff equations, mostly nonlinear, occur throughout applications, whenever we have two (or more)
different timescales in the ODE. A typical example are equations of chemical kinetics, where each
timescale is determined by the speed of reaction between two compounds: such speeds can differ
by many orders of magnitude.

Definition Suppose that a numerical method, applied to y' = Ay, y(0) = 1, with constant h,
produces the solution sequence {y, },ez+. We call the set

D={hAeC: lim y, =0}
the linear stability domain of the method. Noting that the set of A € C for which y(t) %0 s
the left half-plane C~ = {z € C : Rez < 0}, we say that the method is A-stable ift C~ C D.

Example We have already seen that for Euler’s method y, — 0 iff |1 + hA| < 1, therefore
D ={z¢€C : |1+ z < 1}. Moreover, solving ¥’ = Ay with the trapezoidal rule, we obtain
Ynt1 = [(1+ 2hA)/(1 — 1hA)]y, thus, by induction, y, = [(1 4+ 2hA)/(1 — LhX)]"yo. Therefore

1+%z
ze€D = —| <1 & Rez <0
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and we deduce that D = C™. Hence, the method is A-stable.
It can be proved by similar means that for backward Euler it is true that D = {z € C : |1—z| > 1},
hence that the method is also A-stable.

Note that A-stability does not mean that any step size will do! We need to choose h small enough
to ensure the right accuracy, but we don’t want to depress it much further to prevent instability.

Discussion A-stability analysis of multistep methods is considerably more complicated. However,
according to the second Dahlquist barrier, no multistep method of order p > 3 may be A-stable.
Note that the p = 2 barrier for A-stability is attained by the trapezoidal rule.

The Dahlquist barrier implies that, in our quest for higher-order methods with good stability
properties, we need to pursue one of the following strategies:

e cither relax the definition of A-stability

e or consider other methods in place of multistep.
The two courses of action will be considered next.
Stiffness and BDF methods Inasmuch as no multistep method of order p > 3 may be A-stable,
stability properties of BDF, say, are satisfactory for most stiff equations. The point is that in
many stiff linear systems in applications the eigenvalues are not just in C~ but also well away from
iR. [Analysis of nonlinear stiff equations is difficult and well outside the scope of this course.] All

BDF methods of order p < 6 (i.e., all convergent BDF methods) share the feature that the linear
stability domain D includes a wedge about (—o0,0): such methods are said to be Ag-stable.

Stiffness and Runge—Kutta Unlike multistep methods, implicit high-order RK may be A-stable.
For example, recall the 3rd-order method

kl = .f (t’nayn + ih(kl - k?)) )
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k2 = f (tn + 2h,y, + 151(3k1 + 5k2)) ,
yn+1 =Y, + ih(kl + 3k2)

from the last lecture. Applying it to 3y’ = Ay, we have

hki = hA (yn + thk1 — $his)
hky = hA (yn + $hky + $5hks) .

This is a linear system, whose solution is

I T VO N Y DU R VSV hAyn L - 3hA
hka | = | —ihA 1—Zhx hAyn | 1= 2hA + L(hA)2 1 ’

therefore

1+ £h)
1= Zha+ 122

Yn+1 = Yn + ihkl + %hk2 —

Let .

rz) = 1— 224122

Then y,+1 = 7(hA\)yy, therefore, by induction, y,, = [r(h\)]"*yo and we deduce that
D={z€C: |r(z) <1}

We wish to prove that |r(z)| < 1 for every z € C™, since this is equivalent to A-stability. This will
be done by a technique that can be applied to other RK methods. According to the mazimum
modulus principle from Complex Methods, if ¢ is analytic in the closed complex domain V then |g|
attains its maximum on 9V. We let g = r. This is a rational function, hence its only singularities
are the poles 2 +1iy/2 and g is analytic in V = cIC~ = {z € C : Rez < 0}. Therefore it attains its
maximum on JVY = iR and

A-stability = r(z)] <1, zeC~ & [r(it)] <1, teR.

In turn,
i) <1 e 1= Zit- 2P -1+ L2 >0
But |1 — %it - %t2|2 -1+ %it|2 = 3—16t4 > 0 and it follows that the method is A-stable.

Example It is possible to prove that the 2-stage Gauss—Legendre method

ki = f(ta+ (3 — L)h,y, + thks + (2 — L)hks),
ko = F(ta + (5 + )y, + (5 + F)hky + {hky),

Yntr1 = Yn + %h(kzl + kQ)

is of order 4. [You can do this for y' = f(y) by expansion, but it becomes messy for vy’ = f(¢,y).] It
can be easily verified that for y’ = Ay we have y, = [r(hA)]"yo, where r(z) = (1+ 124+ £22)/(1 -
12+ 2%). Since the poles of 7 reside at 3 £1iv/3 and |r(it)| = 1, we can again use the maximum
modulus principle to argue that D = C~ and the Gauss—Legendre method is A-stable.

4.5 Implementation of ODE methods

The step size h is not some preordained quantity: it is a parameter of the method (in reality, many
parameters, since we may vary it from step to step). The basic input of a well-written computer
package for ODEs is not the step size but the error tolerance: the level of precision, as required
by the user. The choice of A > 0 is an important tool at our disposal to keep a local estimate of
the error beneath the required tolerance in the solution interval. In other words, we need not just
a time-stepping algorithm, but also mechanisms for error control and for amending the step size.



