
Mathematical Tripos Part IB: Lent 2010

Numerical Analysis – Lecture 141

Banded matrices The matrix A is a banded matrix if there exists an integer r < n such that
Ai,j = 0 for |i − j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a
band of width 2r + 1 along the main diagonal. In that case, according to the statement from the
end of the last lecture, A = LU implies that Li,j = Ui,j = 0 ∀ |i − j| > r and sparsity structure is
inherited by the factorization.
In general, the expense of calculating an LU factorization of an n × n dense matrix A is O

(

n3
)

operations and the expense of solving Ax = b, provided that the factorization is known, is O
(

n2
)

.

However, in the case of a banded A, we need just O
(

r2n
)

operations to factorize and O(rn)
operations to solve a linear system. If r ≪ n this represents a very substantial saving!

General sparse matrices feature a wide range of applications, e.g. the solution of partial differ-
ential equations, and there exists a wealth of methods for their solution. One approach is efficient
factorization, that minimizes fill in. Yet another is to use iterative methods (cf. Part II Numeri-
cal Analysis course). There also exists a substantial body of other, highly effective methods, e.g.
Fast Fourier Transforms, preconditioned conjugate gradients and multigrid techniques (cf. Part II
Numerical Analysis course), fast multipole techniques and much more.

Sparsity and graph theory An exceedingly powerful (and beautiful) methodology of ordering
pivots to minimize fill-in of sparse matrices uses graph theory and, like many other cool applications
of mathematics in numerical analysis, is alas not in the schedules :-(

5.2 QR factorization of matrices

Scalar products, norms and orthogonality We first recall a few definitions. R
n is the linear

space of all real n-tuples.

• For all u,v ∈ R
n we define the scalar product

〈u,v〉 = 〈v,u〉 =
n

∑

j=1

ujvj = u⊤v = v⊤u .

• If u,v,w ∈ R
n and α, β ∈ R then 〈αu + βw,v〉 = α〈u,v〉 + β〈w,v〉.

• The norm (a.k.a. the Euclidean length) of u ∈ R
n is ‖u‖ =

(

∑n
j=1

u2
j

)1/2

= 〈u,u〉1/2 ≥ 0.

• For u ∈ R
n, ‖u‖ = 0 iff u = 0.

• We say that u ∈ R
n and v ∈ R

n are orthogonal to each other if 〈u,v〉 = 0.

• The vectors q1, q2, . . . , qm ∈ R
n are orthonormal if

〈qk, qℓ〉 =

{

1, k = ℓ,
0, k 6= ℓ,

k, ℓ = 1, 2, . . . ,m.

• An n × n real matrix Q is orthogonal if all its columns are orthonormal. Since (Q⊤Q)k,ℓ =
〈qk, qℓ〉, this implies that Q⊤Q = I (I is the unit matrix ). Hence Q−1 = Q⊤ and QQ⊤ =
QQ−1 = I. We conclude that the rows of an orthogonal matrix are also orthonormal, and
that Q⊤ is an orthogonal matrix. Further, 1 = det I = det(QQ⊤) = detQdet Q⊤ = (detQ)2,
and thus we deduce that detQ = ±1, and that an orthogonal matrix is nonsingular.

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.

1



Proposition If P,Q are orthogonal then so is PQ.
Proof. Since P⊤P = Q⊤Q = I, we have (PQ)⊤(PQ) = (Q⊤P⊤)(PQ) = Q⊤(P⊤P )Q = Q⊤Q =

I, hence PQ is orthogonal. 2

Proposition Let q1, q2, . . . , qm ∈ R
n be orthonormal. Then m ≤ n.

Proof. We argue by contradiction. Suppose that m ≥ n+1 and let Q be the orthogonal matrix
whose columns are q1, q2, . . . , qn. Since Q is nonsingular and qm 6= 0, there exists a nonzero
solution to the linear system Qa = qm, hence qm =

∑n
j=1

ajqj . But

0 = 〈qℓ, qm〉 =

〈

qℓ,

n
∑

j=1

ajqj

〉

=

n
∑

j=1

aj〈qℓ, qj〉 = aℓ, ℓ = 1, 2, . . . , n,

hence a = 0, a contradiction. We deduce that m ≤ n. 2

Lemma Let q1, q2, . . . , qm ∈ R
n be orthonormal and m ≤ n − 1. Then there exists qm+1 ∈ R

n

such that q1, q2, . . . , qm+1 are orthonormal.
Proof. We construct qm+1. Let Q be the n × m matrix whose columns are q1, . . . , qm. Since

n
∑

k=1

m
∑

j=1

Q2
k,j =

m
∑

j=1

‖qj‖
2 = m < n,

it follows that ∃ ℓ ∈ {1, 2, . . . , n} such that
∑m

j=1
Q2

ℓ,j < 1. We let w = eℓ −
∑m

j=1
〈qj ,eℓ〉qj . Then

for i = 1, 2, . . . ,m

〈qi,w〉 = 〈qi,eℓ〉 −

m
∑

j=1

〈qj ,eℓ〉〈qi, qj〉 = 0,

i.e. by design w is orthogonal to q1, . . . , qm. Further, since Qℓ,j = 〈qj ,eℓ〉, we have

‖w‖2 = 〈w,w〉 = 〈eℓ,eℓ〉−2

m
∑

j=1

〈qj ,eℓ〉〈eℓ, qj〉+

m
∑

j=1

〈qj ,eℓ〉

m
∑

k=1

〈qk,eℓ〉〈qj , qk〉 = 1−

m
∑

j=1

Q2
ℓ,j > 0.

Thus we define qm+1 = w/‖w‖. 2

The QR factorization The QR factorization of an m×n matrix A has the form A = QR, where
Q is an m × m orthogonal matrix and R is an m × n upper triangular matrix (i.e., Ri,j = 0 for
i > j). We will demonstrate in the sequel that every matrix has a (non-unique) QR factorization.
We say that R is in a standard form if, given that Rk,jk

is the first nonzero entry in the kth row,
the jks form a strictly monotone sequence. (Such R is also allowed entire rows of zeros, but only
at the bottom.)

An application Let m = n and A be nonsingular. We can solve Ax = b by calculating the QR
factorization of A and solving first Qy = b (hence y = Q⊤b) and then Rx = y (a triangular
system!).

Interpretation of the QR factorization Let m ≥ n and denote the columns of A and Q by
a1,a2, . . . ,an and q1, q2, . . . , qm respectively. Since

[ a1 a2 · · · an ] = [ q1 q2 · · · qm ]
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,

we have ak =
∑k

j=1
Rj,kqj , k = 1, 2, . . . , n. In other words, Q has the property that each kth

column of A can be expressed as a linear combination of the first k columns of Q.

2


