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Numerical Analysis – Lecture 151

The Gram–Schmidt algorithm Given an m×n matrix A 6= O with the columns a1,a2, . . . ,an ∈
R

m, we construct Q & R where Q is orthogonal, R upper-triangular and A = QR: in other words,

ℓ
∑

k=1

Rk,ℓqk = aℓ, ℓ = 1, 2, . . . , n, where A = [ a1 a2 · · · an ]. (5.2)

Assuming a1 6= 0, we derive q1 and R1,1 from the equation (5.2) for k = 1. Since ‖q1‖ = 1, we let
q1 = a1/‖a1‖, R1,1 = ‖a1‖.
Next we form the vector b = a2 − 〈q1,a2〉q1. It is orthogonal to q1, since 〈q1,a2 − 〈q1,a2〉q1〉 =
〈q1,a2〉 − 〈q1,a2〉〈q1, q1〉 = 0. If b 6= 0, we set q2 = b/‖b‖, hence q1 and q2 are orthonormal.
Moreover,

〈q1,a2〉q1 + ‖b‖q2 = 〈q1,a2〉q1 + b = a2,

hence, to obey (5.2) for k = 2, we let R1,2 = 〈q1,a2〉, R2,2 = ‖b‖.

The above idea can be extended to all columns of A.

Step 1 Set k := 0, j := 0 (k is the number of columns of Q that have been already formed and j
is the number of columns of A that have been already considered, clearly k ≤ j);

Step 2 Increase j by 1. If k = 0 then set b := aj , otherwise (i.e., when k ≥ 1) set Ri,j := 〈qi,aj〉,

i = 1, 2, . . . , k, and b := aj −
∑k

i=1〈qi,aj〉qi. [Note: b is orthogonal to q1, q2, . . . , qk.]

Step 3 If b 6= 0 increase k by 1. Subsequently, set qk := b/‖b‖, Rk,j := ‖b‖ and Ri,j := 0 for

i ≥ k + 1. [Note: Hence, each column of Q has unit length, as required, aj =
∑k

i=1 Ri,jqj and R
is upper triangular, because k ≤ j.]

Step 4 Terminate if j = n, otherwise go to Step 2.

Previous lecture ⇒ Since the columns of Q are orthonormal, there are at most m of them, i.e. the
final value of k can’t exceed m. If it is less then m then a previous lemma demonstrates that we
can add columns so that Q becomes m × m and orthogonal.

The disadvantage of Gram–Schmidt is its ill-conditioning : using finite arithmetic, small impreci-
sions in the calculation of inner products spread rapidly, leading to effective loss of orthogonality.
Errors accumulate fast and the computed off-diagonal elements of Q⊤Q may become large.

Orthogonality conditions are preserved well when one generates a new orthogonal matrix by com-
puting the product of two given orthogonal matrices. Therefore algorithms that express Q as a
product of simple orthogonal matrices are highly useful. This suggests an alternative way forward.

Orthogonal transformations Given real m×n matrix A0 = A, we seek a sequence Ω1,Ω2, . . . ,Ωk

of m × m orthogonal matrices such that the matrix Ai := ΩiAi−1 has more zero elements below
the main diagonal than Ai−1 for i = 1, 2, . . . , k and so that the manner of insertion of such zeros
is such that Ak is upper triangular. We then let R = Ak, therefore ΩkΩk−1 · · ·Ω2Ω1A = R
and Q = (ΩkΩk−1 · · ·Ω1)

−1 = (ΩkΩk−1 · · ·Ω1)
⊤ = Ω⊤

1 Ω⊤

2 · · ·Ω⊤

k . Hence A = QR, where Q is
orthogonal and R upper triangular.

Givens rotations We say that an m×m orthogonal matrix Ωj is a Givens rotation if it coincides
with the unit matrix, except for four elements, and det Ωj = 1. Specifically, we use the notation
Ω[p,q], where 1 ≤ p < q ≤ m for a matrix such that

Ω[p,q]
p,p = Ω[p,q]

q,q = cos θ, Ω[p,q]
p,q = sin θ, Ω[p,q]

q,p = − sin θ

for some θ ∈ [−π, π]. The remaining elements of Ω[p,q] are those of a unit matrix. For example,

m = 4 =⇒ Ω[1,2] =









cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1









, Ω[2,4] =









1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ









.

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/Handouts.html.
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Geometrically, such matrices correspond to the underlying coordinate system being rigidly rotated
along a two-dimensional plane (in mechanics this is called an Euler rotation). It is trivial to confirm
that they are orthogonal.

Theorem Let A be an m × n matrix. Then, for every 1 ≤ p < q ≤ m, i ∈ {p, q} and 1 ≤ j ≤ n,
there exists θ ∈ [−π, π] such that (Ω[p,q]A)i,j = 0. Moreover, all the rows of Ω[p,q]A, except for the
pth and the qth, are the same as the corresponding rows of A, whereas the pth and the qth rows
are linear combinations of the ‘old’ pth and qth rows.

Proof. Let i = q. If Ap,j = Aq,j = 0 then any θ will do, otherwise we let

cos θ := Ap,j/
√

A2
p,j + A2

q,j , sin θ := Aq,j/
√

A2
p,j + A2

q,j .

Hence

(Ω[p,q]A)q,k = −(sin θ)Ap,k + (cos θ)Aq,k, k = 1, 2, . . . , n ⇒ (Ω[p,q]A)q,j = 0.

Likewise, when i = p we let cos θ := Aq,j/
√

A2
p,j + A2

q,j , sin θ := −Ap,j/
√

A2
p,j + A2

q,j .

The last two statements of the theorem are an immediate consequence of the construction of Ω[p,q].
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An example: Suppose that A is 3 × 3. We can force zeros underneath the main diagonal as
follows.

1 First pick Ω[1,2] so that (Ω[1,2]A)2,1 = 0 ⇒ Ω[1,2]A =





× × ×
0 × ×
× × ×



.

2 Next pick Ω[1,3] so that (Ω[1,3]Ω[1,2]A)3,1 = 0. Multiplication by Ω[1,3] doesn’t alter the second

row, hence (Ω[1,3]Ω[1,2]A)2,1 remains zero ⇒ Ω[1,3]Ω[1,2]A =





× × ×
0 × ×
0 × ×



.

3 Finally, pick Ω[2,3] so that (Ω[2,3]Ω[1,3]Ω[1,2]A)3,2 = 0. Since both second and third row of
Ω[1,3]Ω[1,2]A have a leading zero, (Ω[2,3]Ω[1,3]Ω[1,2]A)2,1 = (Ω[2,3]Ω[1,3]Ω[1,2]A)3,1 = 0. It follows
that Ω[2,3]Ω[1,3]Ω[1,2]A is upper triangular. Therefore

R = Ω[2,3]Ω[1,3]Ω[1,2]A =





× × ×
0 × ×
0 0 ×



 , Q = (Ω[2,3]Ω[1,3]Ω[1,2])⊤.

The Givens algorithm Given m × n matrix A, let ℓi be the number of leading zeros in the ith
row of A, i = 1, 2, . . . ,m.

Step 1 Stop if the (integer) sequence {ℓ1, ℓ2, . . . , ℓm} increases monotonically, the increase being
strictly monotone for ℓi ≤ n.

Step 2 Pick any two integers 1 ≤ p < q ≤ m such that either ℓp > ℓq or ℓp = ℓq < n.

Step 3 Replace A by Ω[p,q]A, using the Givens rotation that annihilates the (q, ℓq + 1) element.

Update the values of ℓp and ℓq and go to Step 1.

The final matrix A is upper triangular and also has the property that the number of leading zeros
in each row increases strictly monotonically until all the rows of A are zero – a matrix of this form
is said to be in standard form. This end result, as we recall, is the required matrix R.

The cost There are less than mn rotations and each rotation replaces two rows by their linear
combinations, hence the total cost is O

(

mn2
)

.

If we wish to obtain explicitly an orthogonal Q s.t. A = QR then we commence by letting Ω be the
m×m unit matrix and, each time A is premultiplied by Ω[p,q], we also premultiply Ω by the same
rotation. Hence the final Ω is the product of all the rotations, in correct order, and we let Q = Ω⊤.
The extra cost is O

(

m2n
)

. However, in most applications we don’t need Q but, instead, just the
action of Q⊤ on a given vector (recall: solution of linear systems!). This can be accomplished by
multiplying the vector by successive rotations, the cost being O(mn).
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