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NUMERICAL ANALYSIS: EXAMPLES’ SHEET 1

1. Prove that the Gauss–Seidel method for the solution ofAx = b converges whenever the matrixA is
symmetric and positive definite. Show, however, by a3 × 3 counterexample, that the Jacobi method need
not converge.

2. Verify that then × n tridiagonal matrix
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has the eigenvaluesα+2β cos[kπ/(n+1)], k = 1, 2, . . . , n. Hence deduceρ(A) = |α|+2|β| cos[π/(n+
1)].
[Hint: Show thatv ∈ R

n satisfies the eigenvalue equationAv = λv if it has the componentsvk =
sin[klπ/(n + 1)], k = 1, 2, . . . , n, wherel is any integer.]

3. Let the Gauss–Seidel method be applied to the equationsAx = b whenA is the nonsymmetric2 × 2

matrix

[

10 −3
3 1

]

. Find the spectral radius of the iteration matrix. Then showthat the relaxation method,

described in Lecture 2, can reduce the spectral radius by a factor of 2.9. Further, show that iterating twice
with Gauss–Seidel with this relaxation decreases the error‖x(k) − x(∞)‖ by more than a factor of ten.
Estimate the number of iterations of the original Gauss–Seidel method that would be required to achieve
this decrease in the error.

4. Apply the standard form of the conjugate gradient method to the linear system




1 0 0
0 2 0
0 0 3



 x =





1
1
1



 ,

starting as usual withx(0) = 0. Verify that the residualsr(0), r(1) andr(2) are mutually orthogonal, that
the search directionsd(0), d(1) andd(2) are mutually conjugate, and thatx(3) satisfies the equations.

5. Let the standard form of the conjugate gradient method be applied whenA is positive definite. Express
d(k) in terms ofr(j) andβ(j), j = 0, 1, . . . , k. Then deduce in a few lines from the formulax(k+1) =
∑k

j=0 ω(j)d(j), fromω(j) > 0, and from the theorem on the conjugate gradient method in thelecture notes,

that the sequence{‖x(j)‖ : j = 0, 1, . . . , k + 1} increases monotonically.

6. The polynomialp(x) = xm +
∑m−1

l=0 clx
l is theminimal polynomialof then × n matrix A if it is

the polynomial of lowest degree that satisfiesp(A) = O. Note thatm ≤ n holds because of the Cayley–
Hamilton theorem.

Give an example of a3 × 3 symmetric matrix with a quadratic minimal polynomial.

Prove that (in exact arithmetic) the conjugate gradient method requires at mostm iterations to calculate the
exact solution ofAv = b, wherem is the degree of the minimal polynomial ofA.

7. LetA be the3 × 3 matrix

A =





λ 1 0
0 λ 1
0 0 λ



 ,

1



whereλ is real and nonzero. Find an explicit expression forAk, k = 1, 2, 3, . . ..

The sequencex(k+1), k = 0, 1, 2, . . ., is generated by the power methodx(k+1) = Ax(k)/‖Ax(k)‖, where
x(0) is any nonzero vector inR3. Deduce from your expression forAk that the second and third components
of x(k+1) tend to zero ask → ∞. Further, show that this remark impliesAx(k+1) − λx(k+1) → 0, so the
power method tends to provide a solution to the eigenvalue equation.

8. Let A be ann × n matrix with the real and distinct eigenvaluesλn > λn−1 = 1 > λn−2 > · · · >
λ1 = 0. Three versions of the power method are used to estimate the eigenvector ofA whose eigenvalue is
λn. Specifically, the(k + 1)st iteration has the formx(k+1) = (A − s(k)I)x(k)/‖Ax(k)‖, k = 0, 1, 2, . . .,
where eachs(k) is a real shift. In the first versions(k) ≡ 0, in the second versions(k) ≡ 1

2 , and in the third
versions(2k) ≡ 1

4 (2 −
√

2) ands(2k+1) = 1
4 (2 +

√
2). Compare these shift strategies whenλn = 1 + ε

whereε > 0 is very small, assuming thatx(0) contains substantial components of all the eigenvectors. You
should find that the use of the single shift (version 2) instead of no shift (version 1) approximately halves
the number of iterations that are needed to achieve a prescribed accuracy, while the use of a double shift
(version 3) instead of a single shift (version 2) approximately halves the number of iterations again.

9. LetA be a symmetric2 × 2 matrix with distinct eigenvalues and normalized eigenvectorsv1 andv2.
Givenx(0) ∈ R

2, the sequencex(k+1), k = 0, 1, 2, . . ., is generated in the following way. TheRayleigh

quotientλk = x(k)>Ax(k)/‖x(k)‖2 is taken as an estimate of an eigenvalue ofA, the vector norm being
Euclidean. Then inverse iteration gives

y = (A − λkI)−1x(k), and we set x(k+1) = y/‖y‖.

Show that, ifx(k) = (v1 + εkv2)/(1 + ε2
k)1/2, where|εk| is small, then|εk+1| is of magnitude|εk|3. In

other words, the method enjoys athird order rate of convergence.

10. The symmetric matrix

A =





9 −8 2
−8 9 −2

2 −2 10



 has the eigenvectorv =





2
−2

1



 .

Calculate an orthogonal matrixΩ by a Householder transformation such thatΩv is a multiple of the first
coordinate vector. Then form the productΩ>AΩ. You should find that this matrix is suitable for deflation.
Hence identify all the eigenvalues and eigenvectors ofA.

11. Show that the vectorsx, Ax andA2x are linearly dependent in the case

A =









4 5 2 0
−26 −14 1 4
−2 2 3 1
−43 −8 13 9









and x =









1
0
1
5









.

Hence calculate two of the eigenvalues ofA. Obtain by deflation a2 × 2 matrix whose eigenvalues are the
remaining eigenvalues ofA. Then find the other two eigenvalues ofA.

12. Use Householder transformations to generate a tridiagonal matrix that is similar to the matrix

A =









9 −1 2 2
−1 3 4 2

2 4 14 −3
2 2 −3 4









.

Your final matrix should be symmetric and should have the sametrace asA.
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