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NUMERICAL ANALYSIS: EXAMPLES’ SHEET 2

13. LetA be ann × n symmetric tridiagonal matrix that is not deflatable (i.e., all the elements ofA that
are adjacent to the diagonal are nonzero). Prove thatA hasn distinct eigenvalues. Prove also that, ifA has
a zero eigenvalue and a single iteration of the QR algorithm is applied toA, then the resultant tridiagonal
matrix is deflatable.
Hint: In the second part deduce that a diagonal element ofR is zero.

14. LetA be a2 × 2 symmetric matrix whose trace does not vanish, letA0 = A, and let the sequence
of matrices{Ak : k = 1, 2, . . .} be calculated by applying the QR algorithm toA0 (without any origin
shifts). Express the matrix element(Ak+1)1,1 in terms of the elements ofAk. Show that, except in the
special case whenA is already diagonal, the sequence{(Ak)1,1 : k = 0, 1, . . .} converges monotonically
to the eigenvalue ofA of larger modulus.
Hint: The sign of this eigenvalue is same as the sign of the trace ofA.

15. Apply a single step of the QR method to the matrix

A =





4 3 0
3 1 ε
0 ε 0



 .

You should find that the(2, 3) element of the new matrix isO
(

ε3
)

and that the new matrix has exactly the
same trace asA.

16. (For those who like analysis). LetA be a real4 × 4 upper Hessenberg matrix whose eigenvalues all
have nonzero imaginary parts, where the moduli of the two complex pairs of eigenvalues are different. Prove
that, if the matricesAk, k = 0, 1, 2, . . ., are calculated fromA by the QR algorithm, then the subdiagonal
elements(Ak)2,1 and(Ak)4,3 stay bounded away from zero, but(Ak)3,2 converges to zero ask → ∞.

17. Apply a single iteration of the QR algorithm with double shifts to the matrix

A =









0 2 −1 −1
−1 1 0 2

0 ε −1 −5
0 0 1 2









,

assuming|ε| is so small thatO
(

ε2
)

terms are negligible and can be disregarded. You should find that the
first column of(A − s0I)(A − s1I), wheres0 and s1 are the shifts, has the elements1, 0, −ε and0.
Further, you should find that the iteration provides a matrixthat is deflatable, because its(3, 2) element is
of magnitudeε2.

18. Leth = 1/M , whereM ≥ 1 is an integer, and let Euler’s method be applied to calculatethe estimates
{yn}n=1,2,...,M of y(nh) for each of the differential equations

y′ = −
y

1 + t
and y′ = 2

y

1 + t
, 0 ≤ t ≤ 1,

starting withy0 = y(0) = 1 in both cases. By using induction and by cancelling as many terms as possible
in the resultant products, deduce simple explicit expressions foryn, n = 1, 2, . . . ,M , which should be free
from summations and products ofn terms. Hence deduce the exact solutions of the equations from the limit
h → 0. Verify that the magnitude of the errorsyn − y(nh), n = 1, 2, . . . ,M , is at mostO(h).

19. Assuming thatf satisfies the Lipschitz condition and possesses a bounded third derivative in[0, t∗],
apply the method of analysis of the Euler method, given in thelectures, to prove that the trapezoidal rule

yn+1 = yn + 1

2
h[f(tn,yn) + f(tn+1,yn+1)]

1



converges and that‖yn − y(tn)‖ ≤ ch2 for somec > 0 and alln such that0 ≤ nh ≤ t∗.

20. Thes-step Adams–Bashforth method is of orders and has the form

yn+s = yn+s−1 + h

s−1
∑

j=0

σjf(tn+j ,yn+j).

Calculate the actual values of the coefficients in the cases = 3

Denoting the polynomials generating thes-step Adams–Bashforth by{ρs, σs}, prove that

σs(z) = zσs−1(z) + αs−1(z − 1)s−1,

whereαs 6= 0 is a constant s.t.ρs(z) − σs(z) log z = αs(z − 1)s+1 + O
(

|z − 1|s+2
)

, z → 1.
[Hint: Use induction, the order conditions and the fact thatthe degree of eachσs is s − 1.]

21. By solving a three-term recurrence relation, calculateanalytically the sequence of values{yn : n =
2, 3, 4, . . .} that is generated by theexplicit midpoint rule

yn+2 = yn + 2hf(tn+1,yn+1),

when it is applied to the ODEy′ = −y, t ≥ 0. Starting from the valuesy0 = 1 andy1 = 1 − h, show that
the sequence diverges asn → ∞ for all h > 0. Recall, however, that order≥ 1, the root condition and
suitable starting conditions imply convergence in afinite interval. Prove that the above implementation of
the explicit midpoint rule is consistent with this theorem.
Hint: In the last part, relate the roots of the recurrence relation to±e∓h + O

(

h3
)

.

22. Show that the multistep method

3
∑

j=0

ρjyn+j = h

2
∑

j=0

σjf(tn+j ,yn+j)

is fourth order only if the conditionsρ0 +ρ2 = 8 andρ1 = −9 are satisfied. Hence deduce that this method
cannot be both fourth order and satisfy the root condition

23. An s-stage explicit Runge–Kutta method of orders with constant step sizeh > 0 is applied to the
differential equationy′ = λy, t ≥ 0. Prove the identity

yn =

[

s
∑

l=0

1

l!
(hλ)l

]n

y0, n = 0, 1, 2, . . . .

24. The following four-stage Runge–Kutta method has order four,

k1 = f(tn,yn)

k2 = f(tn + 1

3
h,yn + 1

3
hk1)

k3 = f(tn + 2

3
h,yn − 1

3
hk1 + hk2)

k4 = f(tn + h,yn + hk1 − hk2 + hk3)

yn+1 = yn + h( 1

8
k1 + 3

8
k2 + 3

8
k3 + 1

8
k4).

By considering the equationy′ = y, show that the order is at most four. Then,for scalar functions,prove
that the order is at least four in the easy case whenf is independent ofy, and that the order is at least three
in the relatively easy case whenf is independent oft.
[You are not expected to derive all of the (gory) details whenf(t, y) depends on botht andy.]
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