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NUMERICAL ANALYSIS: EXAMPLES’ SHEET 3

25. FindD ∩ R, the intersection of the linear stability domainD with the real axis, for the following
methods:

(1) yn+1 = yn + hf(tn,yn) (2) yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)]

(3) yn+2 = yn + 2hf(tn+1,yn+1) (4) yn+2 = yn+1 + 1
2h[3f(tn+1,yn+1) − f(tn,yn)]

(5) The RK methodk1 = f(tn,yn), k2 = f(tn + h,yn + hk1), yn+1 = yn + 1
2h(k1 + k2).

26. Show that, ifz is a nonzero complex number that is on the boundary of the linear stability domain of
the two-step BDF method

yn+2 −
4
3yn+1 + 1

3yn = 2
3hf(tn+2,yn+2)

then the real part ofz is positive. Thus deduce that this method is A-stable.

27. The (stiff) differential equation

y′(t) = −104(y − t−1) − t−2, t ≥ 1, y(1) = 1,

has the analytic solutiony(t) = t−1, t ≥ 1. Let it be solved numerically by Euler’s methodyn+1 =
yn + hnf(tn, yn) and the backward Euler methodyn+1 = yn + hnf(tn+1, yn+1), wherehn = tn+1 − tn
is allowed to depend onn and to be different in the two cases. Suppose that, for anytn ≥ 1, we have
|yn − y(tn)| ≤ 10−6, and that we require|yn+1 − y(tn+1)| ≤ 10−6. Show that Euler’s method can fail if
hn = 2 × 10−4, but that the backward Euler method always succeeds ifhn ≤ 10−2tnt2n+1.
Hint: Find relations between yn+1 − y(tn+1) and yn − y(tn) for general yn and tn.

28. This question concerns the predictor-corrector pair

yP
n+3 = − 1

2yn + 3yn+1 −
3
2yn+2 + 3hf(tn+2,yn+2),

yC
n+3 = 1

11 [2yn − 9yn+1 + 18yn+2 + 6hf(tn+3,yn+3)].

Show that both methods are third order, and that the estimateof the error of the corrector formula by Milne’s
device has the value617 |y

P
n+3 − yC

n+3|.

29. Letp be the cubic polynomial that is defined byp(tj) = yj , j = n, n + 1, n + 2, and byp′(tn+2) =

f(tn+2,yn+2). Show that the predictor formula of the previous exercise isyP
n+3 = p(tn+2 + h). Further,

show that the corrector formula is equivalent to the equation

yC
n+3 = p(tn+2) + 5

11hp′(tn+2) −
1
22h2p′′(tn+2) −

7
66h3p′′′(tn+2) + 6

11hf(tn+2 + h,yn+3).

The point of these remarks is thatp can be derived from available data, and then the above forms of the
predictor and corrector can be applied for any choice ofh = tn+3 − tn+2.

30. Letu(x), 0 ≤ x ≤ 1, be a six-times differentiable function that satisfies the ODE u′′(x) = f(x),
0 ≤ x ≤ 1, u(0) andu(1) being given. Further, we letxm = mh = m/M , m = 0, 1, . . . ,M , for
some positive integerM , and calculate the estimatesum ≈ u(xm), m = 1, 2, . . . ,M − 1, by solving the
difference equation

um−1 − 2um + um+1 = h2f(xm) + αh2[f(xm−1) − 2f(xm) + f(xm+1)], m = 1, 2, . . . ,M − 1,

whereu0 = u(0), uM = u(1), andα is a positive parameter. Show that there exists a choice ofα such
that the local truncation error of the difference equation isO

(

h6
)

. In this case, deduce that the Euclidean
norm of the vector of errorsu(xm) − um, m = 0, 1, . . . ,M , is bounded above by a constant multiple of
‖u(6)‖∞h7/2, and provide an upper bound on this constant.
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31. Letf be a smooth function fromR to R, and letf (k) denote itskth derivative. Further, let∆0 be the
central difference operator ∆0f(mh) = f(mh + 1

2h) − f(mh − 1
2h) andΥ be theaveraging operator

Υf(mh) = 1
2 [f(mh − 1

2h) + f(mh + 1
2h)]. Deduce that the approximation

f (2q+1)(mh) ≈ h−2q−1Υ[∆2q+1
0 − 1

12 (q + 2)∆2q+3
0 ]f(mh)

has the formf (2q+1)(mh) ≈
∑q+2

j=−q−2 cjf(mh + jh), whereq is a nonnegative integer. We setq = 1 for
the rest of the question. In this case, find the values of the coefficientscj , j = −3,−2, . . . , 3 (which are
multiples ofh−3). Then show that the error of the approximation tof ′′′(mh) is O

(

h2
)

.

32. The Laplace operator∇2 = ∂2/∂x2 + ∂2/∂y2 is approximated by the nine-point formula

(∆x)2∇2u(l∆x, j∆x) ≈ − 10
3 ul,j + 2

3 (ul+1,j + ul−1,j + ul,j+1 + ul,j−1)

+ 1
6 (ul+1,j+1 + ul+1,j−1 + ul−1,j+1 + ul−1,j−1),

whereul,j ≈ u(l∆x, j∆x). Find the error of this approximation whenu is any infinitely-differentiable
function. Show that the error is smaller ifu happens to satisfy Laplace’s equation∇2u = 0.

33. LetM ≥ 2 andN ≥ 2 be integers and letu ∈ R
(M−1)×(N−1) have the componentsum,n, 1 ≤ m ≤

M − 1, 1 ≤ n ≤ N − 1, where two subscripts occur because we associate the components with the interior
points of a rectangular grid. Further, letum,n be zero on the boundary of the grid, which meansum,n = 0 if
0 ≤ m ≤ M and0 ≤ n ≤ N and at least one of these four inequalities holds as an equation. Thus, for any
real constantsα, β andγ, we can define a linear transformationA from R

(M−1)×(N−1) to R
(M−1)×(N−1)

by the equations

(Au)m,n = αum,n + β(um−1,n + um+1,n + um,n−1 + um,n+1) + γ(um−1,n−1 + um+1,n−1

+ um−1,n+1 + um+1,n+1), 1 ≤ m ≤ M − 1, 1 ≤ n ≤ N − 1.

We now let the components ofu have the special formum,n = sin(mkπ/M) sin(nlπ/N), 1 ≤ m ≤ M−1,
1 ≤ n ≤ N − 1, wherek andl are integers. Prove thatu is an eigenvector ofA and find its eigenvalue.
Hence deduce that, ifα, β andγ provide the nine-point formula of Exercise 32, and ifM andN are large,
then the least modulus of an eigenvalue is approximately4 sin2( π

2M ) + 4 sin2( π
2N ).

34. The functionu(x) = x(x − 1), 0 ≤ x ≤ 1, is defined by the equationsu′′(x) = 2, 0 ≤ x ≤ 1,
andu(0) = u(1) = 0. A difference approximation to the differential equation provides the estimates
um ≈ u(mh), m = 1, 2, . . . ,M − 1, through the system of equationsum−1 − 2um + um+1 = 2h2,
m = 1, 2, . . . ,M − 1, whereu0 = uM = 0, h = 1/M , andM is a large positive integer. Show that the
exact solution of the system is justum = u(mh), m = 1, 2, . . . ,M − 1.

We employ the notationu(∞)
m = u(mh), because we let the system be solved by the Jacobi iteration,

using the starting valuesu(0)
m = 0, m = 1, 2, . . . ,M − 1. Prove that the iteration matrix has the spec-

tral radiusρ(H) = cos(π/M). Further, by regarding the initial error vectoru(0) − u(∞) as a linear
combination of the eigenvectors ofH, show that the largest component ofu(k) − u(∞) for largek is ap-
proximately(8/π3) cosk(π/M). Hence deduce that the Jacobi method requires about2.5M2 iterations to
achieve‖u(k+1) − u(∞)‖∞ ≤ 10−6.

35. The functionu(x, y) = 18x(1 − x)y(1 − y), 0 ≤ x, y ≤ 1, is the solution of the Poisson equation
uxx + uyy = 36(x2 + y2 − x − y) = f(x, y), say, subject tou being zero on the boundary of the unit
square. We pick∆x = 1/6 and seek the solution of the five-point equations

um−1,n + um+1,n + um,n−1 + um,n+1 − 4um,n = (∆x)2f(mh, nh), 1 ≤ m ≤ 5, 1 ≤ n ≤ 5,

whereum,n is zero if(mh, nh) is on the boundary of the square. Let the multigrid method be applied, using
only this fine grid and a coarse grid of mesh size1/3, and let everyum,n be zero initially. Calculate the 25
residuals of the starting vector on the fine grid. Then, following therestriction procedure in the hand-outs,
find the residuals for the initial calculation on the coarse grid. Further, show that if the equations on the
coarse grid are solved exactly, then the resultant estimates ofu at the four interior points of the coarse grid
all have the value5/6. By applying theprolongation operator to these estimates, find the 25 starting values
of um,n for the subsequent iterations of Gauss–Seidel or Jacobi on the fine grid. Further, show that if one
Jacobi iteration is performed, thenu3,3 = 23/24 occurs, which is the estimate ofu( 1

2 , 1
2 ) = 9/8.
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