NUMERICAL ANALYSIS: EXAMPLES' SHEET 3

25. Find $\mathcal{D} \cap \mathbb{R}$, the intersection of the linear stability domain \mathcal{D} with the real axis, for the following methods:

- (1) $\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h\boldsymbol{f}(t_n, \boldsymbol{y}_n)$ (2) $\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + \frac{1}{2}h[\boldsymbol{f}(t_n, \boldsymbol{y}_n) + \boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1})]$
- (3) $\boldsymbol{y}_{n+2} = \boldsymbol{y}_n + 2h\boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1})$ (4) $\boldsymbol{y}_{n+2} = \boldsymbol{y}_{n+1} + \frac{1}{2}h[3\boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1}) \boldsymbol{f}(t_n, \boldsymbol{y}_n)]$
- (5) The RK method $\mathbf{k}_1 = \mathbf{f}(t_n, \mathbf{y}_n), \quad \mathbf{k}_2 = \mathbf{f}(t_n + h, \mathbf{y}_n + h\mathbf{k}_1), \quad \mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}h(\mathbf{k}_1 + \mathbf{k}_2).$

26. Show that, if z is a nonzero complex number that is on the boundary of the linear stability domain of the two-step BDF method

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2})$$

then the real part of z is positive. Thus deduce that this method is A-stable.

27. The (stiff) differential equation

$$y'(t) = -10^4(y - t^{-1}) - t^{-2}, \qquad t \ge 1, \qquad y(1) = 1,$$

has the analytic solution $y(t) = t^{-1}$, $t \ge 1$. Let it be solved numerically by Euler's method $y_{n+1} = y_n + h_n f(t_n, y_n)$ and the backward Euler method $y_{n+1} = y_n + h_n f(t_{n+1}, y_{n+1})$, where $h_n = t_{n+1} - t_n$ is allowed to depend on n and to be different in the two cases. Suppose that, for any $t_n \ge 1$, we have $|y_n - y(t_n)| \le 10^{-6}$, and that we require $|y_{n+1} - y(t_{n+1})| \le 10^{-6}$. Show that Euler's method can fail if $h_n = 2 \times 10^{-4}$, but that the backward Euler method always succeeds if $h_n \le 10^{-2}t_nt_{n+1}^2$. *Hint: Find relations between* $y_{n+1} - y(t_{n+1})$ and $y_n - y(t_n)$ for general y_n and t_n .

28. This question concerns the predictor-corrector pair

$$\begin{split} \mathbf{y}_{n+3}^{\mathrm{P}} &= -\frac{1}{2} \mathbf{y}_{n} + 3 \mathbf{y}_{n+1} - \frac{3}{2} \mathbf{y}_{n+2} + 3h \mathbf{f}(t_{n+2}, \mathbf{y}_{n+2}), \\ \mathbf{y}_{n+3}^{\mathrm{C}} &= \frac{1}{11} [2 \mathbf{y}_{n} - 9 \mathbf{y}_{n+1} + 18 \mathbf{y}_{n+2} + 6h \mathbf{f}(t_{n+3}, \mathbf{y}_{n+3})]. \end{split}$$

Show that both methods are third order, and that the estimate of the error of the corrector formula by Milne's device has the value $\frac{6}{17}|\boldsymbol{y}_{n+3}^{\mathrm{P}} - \boldsymbol{y}_{n+3}^{\mathrm{C}}|$.

29. Let p be the cubic polynomial that is defined by $p(t_j) = y_j$, j = n, n + 1, n + 2, and by $p'(t_{n+2}) = f(t_{n+2}, y_{n+2})$. Show that the predictor formula of the previous exercise is $y_{n+3}^{P} = p(t_{n+2} + h)$. Further, show that the corrector formula is equivalent to the equation

$$\boldsymbol{y}_{n+3}^{\rm C} = \boldsymbol{p}(t_{n+2}) + \frac{5}{11}h\boldsymbol{p}'(t_{n+2}) - \frac{1}{22}h^2\boldsymbol{p}''(t_{n+2}) - \frac{7}{66}h^3\boldsymbol{p}'''(t_{n+2}) + \frac{6}{11}h\boldsymbol{f}(t_{n+2} + h, \boldsymbol{y}_{n+3})$$

The point of these remarks is that p can be derived from available data, and then the above forms of the predictor and corrector can be applied for any choice of $h = t_{n+3} - t_{n+2}$.

30. Let u(x), $0 \le x \le 1$, be a six-times differentiable function that satisfies the ODE u''(x) = f(x), $0 \le x \le 1$, u(0) and u(1) being given. Further, we let $x_m = mh = m/M$, $m = 0, 1, \ldots, M$, for some positive integer M, and calculate the estimates $u_m \approx u(x_m)$, $m = 1, 2, \ldots, M - 1$, by solving the difference equation

$$u_{m-1} - 2u_m + u_{m+1} = h^2 f(x_m) + \alpha h^2 [f(x_{m-1}) - 2f(x_m) + f(x_{m+1})], \qquad m = 1, 2, \dots, M - 1,$$

where $u_0 = u(0)$, $u_M = u(1)$, and α is a positive parameter. Show that there exists a choice of α such that the local truncation error of the difference equation is $\mathcal{O}(h^6)$. In this case, deduce that the Euclidean norm of the vector of errors $u(x_m) - u_m$, $m = 0, 1, \ldots, M$, is bounded above by a constant multiple of $||u^{(6)}||_{\infty}h^{7/2}$, and provide an upper bound on this constant.

31. Let f be a smooth function from \mathbb{R} to \mathbb{R} , and let $f^{(k)}$ denote its kth derivative. Further, let Δ_0 be the *central difference operator* $\Delta_0 f(mh) = f(mh + \frac{1}{2}h) - f(mh - \frac{1}{2}h)$ and Υ be the *averaging operator* $\Upsilon f(mh) = \frac{1}{2}[f(mh - \frac{1}{2}h) + f(mh + \frac{1}{2}h)]$. Deduce that the approximation

$$f^{(2q+1)}(mh) \approx h^{-2q-1} \Upsilon[\Delta_0^{2q+1} - \frac{1}{12}(q+2)\Delta_0^{2q+3}]f(mh)$$

has the form $f^{(2q+1)}(mh) \approx \sum_{j=-q-2}^{q+2} c_j f(mh+jh)$, where q is a nonnegative integer. We set q = 1 for the rest of the question. In this case, find the values of the coefficients c_j , $j = -3, -2, \ldots, 3$ (which are multiples of h^{-3}). Then show that the error of the approximation to f''(mh) is $\mathcal{O}(h^2)$.

32. The Laplace operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is approximated by the nine-point formula

$$(\Delta x)^2 \nabla^2 u(l\Delta x, j\Delta x) \approx -\frac{10}{3} u_{l,j} + \frac{2}{3} (u_{l+1,j} + u_{l-1,j} + u_{l,j+1} + u_{l,j-1}) + \frac{1}{6} (u_{l+1,j+1} + u_{l+1,j-1} + u_{l-1,j+1} + u_{l-1,j-1}),$$

where $u_{l,j} \approx u(l\Delta x, j\Delta x)$. Find the error of this approximation when u is any infinitely-differentiable function. Show that the error is smaller if u happens to satisfy Laplace's equation $\nabla^2 u = 0$.

33. Let $M \ge 2$ and $N \ge 2$ be integers and let $u \in \mathbb{R}^{(M-1)\times(N-1)}$ have the components $u_{m,n}$, $1 \le m \le M-1$, $1 \le n \le N-1$, where two subscripts occur because we associate the components with the interior points of a rectangular grid. Further, let $u_{m,n}$ be zero on the boundary of the grid, which means $u_{m,n} = 0$ if $0 \le m \le M$ and $0 \le n \le N$ and at least one of these four inequalities holds as an equation. Thus, for any real constants α , β and γ , we can define a linear transformation A from $\mathbb{R}^{(M-1)\times(N-1)}$ to $\mathbb{R}^{(M-1)\times(N-1)}$ by the equations

$$(A\boldsymbol{u})_{m,n} = \alpha u_{m,n} + \beta (u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1}) + \gamma (u_{m-1,n-1} + u_{m+1,n-1}) + u_{m-1,n+1} + u_{m+1,n+1}), \qquad 1 \le m \le M - 1, \quad 1 \le n \le N - 1.$$

We now let the components of \boldsymbol{u} have the special form $u_{m,n} = \sin(mk\pi/M)\sin(nl\pi/N)$, $1 \le m \le M-1$, $1 \le n \le N-1$, where k and l are integers. Prove that \boldsymbol{u} is an eigenvector of A and find its eigenvalue. Hence deduce that, if α , β and γ provide the nine-point formula of Exercise 32, and if M and N are large, then the least modulus of an eigenvalue is approximately $4\sin^2(\frac{\pi}{2M}) + 4\sin^2(\frac{\pi}{2N})$.

34. The function u(x) = x(x-1), $0 \le x \le 1$, is defined by the equations u''(x) = 2, $0 \le x \le 1$, and u(0) = u(1) = 0. A difference approximation to the differential equation provides the estimates $u_m \approx u(mh)$, $m = 1, 2, \ldots, M - 1$, through the system of equations $u_{m-1} - 2u_m + u_{m+1} = 2h^2$, $m = 1, 2, \ldots, M - 1$, where $u_0 = u_M = 0$, h = 1/M, and M is a large positive integer. Show that the exact solution of the system is just $u_m = u(mh)$, $m = 1, 2, \ldots, M - 1$.

We employ the notation $u_m^{(\infty)} = u(mh)$, because we let the system be solved by the Jacobi iteration, using the starting values $u_m^{(0)} = 0$, m = 1, 2, ..., M - 1. Prove that the iteration matrix has the spectral radius $\rho(H) = \cos(\pi/M)$. Further, by regarding the initial error vector $\mathbf{u}^{(0)} - \mathbf{u}^{(\infty)}$ as a linear combination of the eigenvectors of H, show that the largest component of $\mathbf{u}^{(k)} - \mathbf{u}^{(\infty)}$ for large k is approximately $(8/\pi^3) \cos^k(\pi/M)$. Hence deduce that the Jacobi method requires about $2.5M^2$ iterations to achieve $\|\mathbf{u}^{(k+1)} - \mathbf{u}^{(\infty)}\|_{\infty} \leq 10^{-6}$.

35. The function u(x,y) = 18x(1-x)y(1-y), $0 \le x, y \le 1$, is the solution of the Poisson equation $u_{xx} + u_{yy} = 36(x^2 + y^2 - x - y) = f(x, y)$, say, subject to u being zero on the boundary of the unit square. We pick $\Delta x = 1/6$ and seek the solution of the five-point equations

$$u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{m,n} = (\Delta x)^2 f(mh, nh), \qquad 1 \le m \le 5, \ 1 \le n \le 5,$$

where $u_{m,n}$ is zero if (mh, nh) is on the boundary of the square. Let the multigrid method be applied, using only this fine grid and a coarse grid of mesh size 1/3, and let every $u_{m,n}$ be zero initially. Calculate the 25 residuals of the starting vector on the fine grid. Then, following the *restriction* procedure in the hand-outs, find the residuals for the initial calculation on the coarse grid. Further, show that if the equations on the coarse grid are solved exactly, then the resultant estimates of u at the four interior points of the coarse grid all have the value 5/6. By applying the *prolongation operator* to these estimates, find the 25 starting values of $u_{m,n}$ for the subsequent iterations of Gauss–Seidel or Jacobi on the fine grid. Further, show that if one Jacobi iteration is performed, then $u_{3,3} = 23/24$ occurs, which is the estimate of $u(\frac{1}{2}, \frac{1}{2}) = 9/8$.