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NUMERICAL ANALYSIS: EXAMPLES’ SHEET 3

25.  FindD N R, the intersection of the linear stability domaihwith the real axis, for the following
methods:

(1) yn+1 = yn + h.f(tnvyn) (2) yn+1 = yn + %h[f(tna yn) + f(tn+17yn+1)]
(3) yn+2 =Y, + 2hf(tn+17yn+1> (4) yn+2 = yn+1 + %h[3f(tn+17 yn+1) - f(tnayn>]
(5) The RK methodky = f(tn,y,), k2= f(tn +h,y, +hk1), Y1 =y, + sh(ki +k2).

26. Show that, itz is a nonzero complex number that is on the boundary of thadistbility domain of
the two-step BDF method

Ynt2 — %ynJrl + %yn - %hf<tn+27 yn+2)
then the real part of is positive. Thus deduce that this method is A-stable.
27. The (stiff) differential equation

y/(t) = _104(y - t_l) - t_27 t> 17 y(l) = 17

has the analytic solutiop(t) = ¢t~!, ¢+ > 1. Let it be solved numerically by Euler's methag.,; =
Yn + hn f(tn, yn) and the backward Euler method., 1 = v, + hn f(tnt1, Ynt1), Whereh,, = t, 11 — t,

is allowed to depend on and to be different in the two cases. Suppose that, fortgny 1, we have
lyn — y(t,)] < 1075, and that we requirgy,,+1 — y(t,+1)| < 1075. Show that Euler's method can fail if
h, =2 x 10~*, but that the backward Euler method always succeelds # 10~2¢,,t2_ ;.

Hint: Find relations between y,, 11 — y(t,+1) and y,, — y(¢,,) for general y,, and ¢,,.

28. This gquestion concerns the predictor-corrector pair

Ynts = —5Yn +3Uni1 — 3Unyo + 30F (tus2, Y po),
yg+3 = 111290 — W1 + 18y po + 6 f (tnts, Yngs)]-

Show that both methods are third order, and that the estiofi#itie error of the corrector formula by Milne’s
device has the valug [yF_ 5 — & |.

29. Letp be the cubic polynomial that is defined pyt;) = y,, j = n,n + 1,n + 2, and byp'(t,12) =
f(tn+2,Y,,2). Show that the predictor formula of the previous exercigghis; = p(t,2 + h). Further,
show that the corrector formula is equivalent to the equatio

Ytz = Ptns2) + 5D (tnsa) — 957°D" (tnya) — ggh®P” (tnya) + ThF (tnsz + 1o Yy ys).

The point of these remarks is thatcan be derived from available data, and then the above fofritgeo
predictor and corrector can be applied for any choick eft,, 13 — t,, 2.

30. Letu(z), 0 < z < 1, be a six-times differentiable function that satisfies tHeEQ." (x) = f(x),
0 <z < 1, u0) andu(l) being given. Further, we let,, = mh = m/M, m = 0,1,..., M, for
some positive integek/, and calculate the estimates, ~ u(x,,), m = 1,2,..., M — 1, by solving the
difference equation

Upm—1 — 2 + U1 = W2 f(2m) + ah?[f(Tm_1) — 2f (Tm) + f(Zmi1)], m=1,2,....,M—1,

whereuy = u(0), ups = u(1), anda is a positive parameter. Show that there exists a choice safch
that the local truncation error of the difference equat'sa(i)(h6). In this case, deduce that the Euclidean
norm of the vector of errorg(z,,) — u,, m = 0,1,..., M, is bounded above by a constant multiple of
|4(®)||xh7/2, and provide an upper bound on this constant.



31. Letf be a smooth function froik to R, and letf(*) denote itskth derivative. Further, lef\, be the
central difference operator Ao f(mh) = f(mh+ 3h) — f(mh — $h) andY be theaveraging operator
Y f(mh) = 3[f(mh — 1h) + f(mh + $h)]. Deduce that the approximation

FEHD (mh) = W2 IOACTT — f5(q +2) A0 f (mh)

has the formf(2a+1) (mh) ~ Z;’fiq , ¢; f(mh + jh), whereg is a nonnegative integer. We sgt= 1 for
the rest of the question. In this case, f|nd the values of tedficentsc;, j = —3,—-2,...,3 (which are

multiples ofh~3). Then show that the error of the approximatiorytt(mh) is O (h?).
32. The Laplace operatdr? = 9%/92% + 9% /0y? is approximated by the nine-point formula

272 . ~ _10 2
(A(ﬂ) Vv u(leJAx) R —FU + g(ul+1’j +up—1,5 + U1+ ul_j,l)
1
+ g(ul+1,j+1 + U1 o1+ W1 1+ W1 —1),

wherew; ; =~ u(lAz, jAz). Find the error of this approximation whenis any infinitely-differentiable
function. Show that the error is smallerifhappens to satisfy Laplace’s equatiGfu = 0.

33. LetM >2andN > 2 be integers and let € R ~D*(¥=1) have the components,, ,,, 1 < m <
M —1,1<n < N —1, where two subscripts occur because we associate the cemigamith the interior
points of a rectangular grid. Further, tet, ,, be zero on the boundary of the grid, which meaps, = 0 if
0 <m < M and0 <n < N and at least one of these four inequalities holds as an equathus, for any
real constants, 3 and~, we can define a linear transformatidrfrom RV 1 x(N=1) o R(M—1)x(N=1)
by the equations

(Au)m,n = QUm,n + ﬁ(umfl,n + Um+1,n + Um,n—1 + um,n+1) + fY(umfl,nfl + Um+1,n—1
+Um—1,n+1+um+1,n+1)7 1§m§M71; 1§’HSN71

We now let the components afhave the special form,,, ,, = sin(mkn /M) sin(nir/N),1 <m < M -1,
1 < n < N — 1, wherek and! are integers. Prove thatis an eigenvector ofi and find its eigenvalue.
Hence deduce that, if, G and~ provide the nine-point formula of Exercise 32, andifand N are large,

then the least modulus of an eigenvalue is approximate'hf(;]fw) + 4sin (2N)

34. The functionu(z) = z(z — 1), 0 < z < 1, is defined by the equationg’(z) = 2,0 < z < 1,
andu(0) = u(1) = 0. A difference approximation to the differential equatioroyides the estimates
Um ~ u(mh), m = 1,2,...,M — 1, through the system of equations, ; — 2u,, + Uy,11 = 2h>,
m=1,2,...,M — 1, whereug = up; = 0, h = 1/M, andM is a large positive integer. Show that the
exact solution of the system is jusf, = u(mh),m=1,2,.... M — 1.

We employ the notatlom(‘”) u(mh), because we let the system be solved by the Jacobi iteration,

using the starting values,, O =0,m= 1,2,..., M — 1. Prove that the iteration matrix has the spec-
tral radiusp(H) = cos(w/M). Further, by regarding the initial error vectat®) — u(>) as a linear
combination of the eigenvectors &f, show that the largest componentwf) — w(>) for largek is ap-
proximately(8/73) cos® (7 /M). Hence deduce that the Jacobi method requires @bt ? iterations to
achieve||u*+1) — ()|, <1076,

35. The functionu(z,y) = 18z(1 — z)y(1 — y), 0 < z,y < 1, is the solution of the Poisson equation
Upy + Uyy = 36(2? +y? — 2 —y) = f(x,y), say, subject ta being zero on the boundary of the unit
square. We picldz = 1/6 and seek the solution of the five-point equations

Um—1,n + Um+1,n + Um,n—1 + Um,n+1 — 4um,n = (A:L)Qf(mh,nh), 1 S m S 5; 1 S n S 5;

whereu,, ,, is zero if(mh, nh) is on the boundary of the square. Let the multigrid methoddpdied, using
only this fine grid and a coarse grid of mesh siz8, and let everw,, ,, be zero initially. Calculate the 25
residuals of the starting vector on the fine grid. Then, feilg therestriction procedure in the hand-outs,
find the residuals for the initial calculation on the coarsd.gFurther, show that if the equations on the
coarse grid are solved exactly, then the resultant estsdite at the four interior points of the coarse grid
all have the valué /6. By applying theprolongation operator to these estimates, find the 25 starting values
of u,, ., for the subsequent iterations of Gauss—Seidel or Jacoltiefirte grid. Further, show that if one
Jacobi iteration is performed, then ; = 23/24 occurs, which is the estimate of3, 3) = 9/8.



