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Numerical Analysis — Lecture 1

1 Iterative methods for linear algebraic systems

Problem 1.1 (Positive definite systems). We consider linear systemgjoégons of the formdx = b,
whereA is ann x n real positive definite symmetric matrix abds R" is known. Such systems occur, for
example, in numerical methods for solving elliptic partidferential equations.

Example 1.2(Poisson’s equation on a square). We seek the funetfeny), 0 < z,y < 1, that satisfies
V2u = f on the square, whergis a given function and whergis given on the boundary of the square.
The best known finite difference method (ffinee-point formuld results in the approximation

(Az)*V2u(z,y) ~ u(z — Az, y) + u(z + Az, y) + u(z,y — Az) + u(z,y + Az) — du(z,y), (1.1)

where Az = 1/(m + 1) for some positive integem. Thus, we estimate thex? unknown function
valuesu(pAx,qAx), 1 < p,q < m, by letting the approximation te-(Ax)2V2u(pAx, ¢Ax) equal
—(Ax)? f(pAx, qAx) at these values qf andg. This yields an x n system of linear equations, where
n = m?2. The matrix of this systemd say, has the following properties.

Lemma 1.3 The matrixA of Example 1.2 is symmetric and positive definite.

Proof Equation (1.1) implies thatifi, ; # 0 for ¢ # j then theith andjth points of the gridpAz, ¢Az),
1 < p,q < m, are nearest neighbours. Hendg; # 0 implies A; ; = A;; = —1, which proves the
symmetry ofA.

ThereforeA has real eigenvalues and eigenvectors. We consider theveige equatiomax = Az, and let
k be an integer i{1,...,n} such thafz;| = max{|z;| : 1 < i < n}, wherez; is theith component of
x. Then we address the identity

(A]ﬁk — /\)Ik = — ZAk’jxj'
j=1
Jj#k
Assume first thah < 0. SinceAy, , = 4, Ax; € {0, —1} for k # j and at most four off-diagonal elements
are nonzero for each it follows by the triangle inequality that

.....

(Ara=Nzel = | Y Awgas| <3 [Argllegl <4 max o] = dlze] < (@44+A)|er] = [(Arp=A)arl,
Jj=1 n
j=1 j=1
£k Gk

a contradiction. Thereforg > 0. If A = 0 then
(A = Nlax] = 4|z = |Ar ;]
j=1
J#k

implies that|z;| = |z,| wheneverd, ; = —1. Continuing by induction, this implies thit;| = |z for
all j, but this leads to contradiction in the equations that haveef than four off-diagonal terms: such
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equations occur at the boundary of the grid. It follows thitih@ eigenvalues are positive andis positive
definite. O

Method 1.4 (Simple iteration). We writedx = b in the form
(A—B)x=—-Bx+b,

where the matrixB is chosen so that it is easy to solve the system- B)x = y for any giveny. Then
simple iterationcommences with an estima#€®) of the required solution, and generates the sequence
x®+tD 1 =0,1,2,..., by solving

(A—B)xe™ ) = —B2®™ b £=0,1,2,....

If the sequence converges to a linitpy_,., () = &, say, then the limit has the property — B)
—Bz + b. Thereforez is a solution ofAx = b as required.

Revision 1.5(Conditions for convergence). Method 1.4 requires hdétAnd A — B to be nonsingular.
Moreover, defininge by Az = b, we recall from the IB Numerical Analysis course that it istictive
to write the expression (1.4) in the fordl — B)(z**1) — &) = —B(z® — &). Indeed we deduce the
relation

2 Y — g = Hx® — ) = H* 1 (2 — &),

whereH = —(A — B)~'B. We found in Part IB that the required convergence of the esecgu*),

k = 0,1,2,..., is achieved for all choices at(®) if and only if H has the property(H) < 1. Here
p(H) is thespectral radiusof H, which means the largest modulus of an eigenvaluf/ ofSome of the
eigenvalues may have nonzero imaginary parts.)

Methods 1.6(Jacobi and Gauss—Seidel). Both of these methods are ne@igimple iteration for the case
when A is symmetric and positive definifeln the Jacobi methodhe matrix B has a zero diagonal but the
off-diagonal elements aB are those ofd. In other words B is defined by the condition that — B is the
diagonal matrix whose diagonal elements are the nonzerdersd, ;,i =1,2,...,n.

In the Gauss—Seidel methashe setsB; ; = Ofor j < iandB;; = A;; forj > i,s0A - Bisa
lower-triangular matrix with nonzero diagonal elementse Eomponents at(**1) satisfy

ZAi7.jx§'k+1) == Z Ai,jﬁg-k) + bi, 1=1,2,...,n,
j=1 j=i+1
and it is straightforward to calculate them in sequence bydiod substitution.
Let us return to Example 1.2. Denoting by , our approximation ta(pAzx, gAx), we have the equations
Up—1,q + Upt1,g + Upg—1 + Upgt1 — dUpq = (Aaj)2f(pA:13, qAz).

Arranging grid points by columns (so calledtural ordering, we obtain

i k k k k
Jacobi: uz(;—)l,q + u;ﬁl,q + u;;_l + u;_g_*_l — 4u§,’fq+1) = (Az)?f(pAz, gAx);

- k k k k
Gauss—Seidel: u;jf; + u;Jr)l,q + u;;ll) + u;’gﬂ - 4u§)1;1) = (Az)? f(pAx, ¢Ax).

We will find that both methods converge for Example 1.2 by wiol the following theorem. Its proof will
be given in the next handout.

Theorem 1.7 (The Householder—John theorem). If the real symmetriciocestid and A — B — BT are
both positive definite, then the spectral radiugbf= —(A — B)~! B is strictly less than one.

2Actually, it is sufficient for all diagonal elements df to be nonzero.



