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Theorem 1.7 (The Householder–John theorem)If the real symmetric matricesA andA − B − B> are
both positive definite andB is real then the spectral radius ofH = −(A−B)−1B is strictly less than one.

Proof Let λ be an eigenvalue ofH, soHv = λv holds wherev 6= 0 is an eigenvector. (Note that both
λ andv may have nonzero imaginary parts whenH is not symmetric, e.g. in the Gauss–Seidel method.)
The definition ofH provides−Bv = λ(A − B)v, and the value ofλ is different from one becauseA is
nonsingular. Thus we deduce

v̄>Bv =
λ

λ − 1
v̄>Av. (1.2)

Moreover, writingv = vR+ivI, wherevR andvI are real, we find the identitȳv>Av = v>

RAvR+v>

I AvI,
so positive definiteness implies̄v>Av > 0 andv̄>(A − B − B>)v > 0. It follows from equation (1.2),
v̄>Bv = λ/(λ − 1)v̄>Av, v̄>B>v = λ̄/(λ̄ − 1)v̄>Av and from the fact thatB is real that the last
inequality is the condition

0 < v̄>Av − v̄>Bv − v̄>B>v =

(

1 −
λ

λ − 1
−

λ̄

λ̄ − 1

)

v̄>Av =
(1 − |λ|2)v̄>Av

|λ − 1|2
.

Now λ 6= 1 implies |λ − 1|2 > 0. Hence, recalling that̄v>Av > 0, we see that1 − |λ|2 is positive.
Therefore|λ| < 1 occurs for every eigenvalue ofH as required. 2

Corollary 1.8 (Application to Example 1.2)Both Jacobi and Gauss–Seidel methods converge whenA is
the matrix of Example 1.2.

Proof Positive definiteness of the symmetric matrixA has been already established in Lemma 1.3. For
Jacobi’s method,A − B − B> is the same asA except that the signs of the off-diagonal elements are
reversed. Therefore the proof of Lemma 1.3 shows too thatA−B −B> is positive definite: recall that the
proof depended on themodulusof off-diagonal elements, not on their sign! Moreover, for the Gauss–Seidel
method,A−B −B> is just the diagonal part ofA, all the off-diagonal elements being zero, so this matrix
is also positive definite. Therefore Theorem 1.7 impliesρ(H) < 1 in both cases. It follows from Revision
1.5 that the corollary is true. 2

Technique 1.9(Relaxation). It is often possible to improve the efficiencyof Method 1.4 (simple iteration)
by relaxation.Specifically, instead of letting(A − B)x(k+1) = −Bx(k) + b, k = 0, 1, . . ., we let

(A − B)x̃(k+1) = −Bx(k) + b and x(k+1) = x(k) + ω(x̃(k+1) − x(k)), k = 0, 1, . . . ,

whereω is a real constant called therelaxation parameter.Note thatω = 1 corresponds to the former,
“unrelaxed” iteration.

Good choice ofω leads to small spectral radius of the iteration matrix: clearly, it should be less than one,
but ideally it should be the least possible: the smaller the spectral radius, the faster the iteration converges.
To chooseω, we need to determine the iteration matrixH̃. First, we relatex(k+1) to x(k) by eliminating
x̃(k+1) from the last displayed equation. Multiplying the equationfor x(k+1) by A − B we obtain

(A − B)x(k+1) = (A − B)[(1 − ω)x(k) + ωx̃(k+1)]

= (1 − ω)(A − B)x(k) + ω(−Bx(k) + b)

= [(1 − ω)A − B]x(k) + ωb.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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Thus, the iteration matrix is

H̃ = (A − B)−1[(1 − ω)A − B] = I − ω(A − B)−1A.

Recall the ‘unrelaxed’ iteration matrixH = −(A−B)−1B = (A−B)−1(A−B−A) = I−(A−B)−1A.
Substituting(A − B)−1A = I − H, we deduce that

H̃ = I − ω(I − H) = (1 − ω)I + ωH. (1.3)

Suppose thatω 6= 0. Then (1.3) proves that

λ ∈ σ(H̃) ⇔ λ = 1 − ω + ωµ, µ ∈ σ(H),

whereσ(C) is the set of the eigenvalues (thespectrum) of the square matrixC. Therefore one may try to
chooseω ∈ R \ {0} to minimize

ρ(H̃) = max{|1 − ω + ωµ| : µ ∈ σ(H)}.

In general,σ(H) is unknown, but often we have some information about it whichcan be utilized to find a
‘good’ (rather than ‘best’) value ofω. For example, suppose that it is known thatσ(H) is real and resides
in the interval[α, β], where−1 < α < β < 1. In that case we seekω to minimize

max{|1 − ω + ωµ| : µ ∈ [α, β]}.

Since maxima of the function above occur at endpoints, for optimal ω we have|1−ω+ωα| = |1−ω+ωβ|,
and this is satisfied byωopt = 2/(2 − α − β). (You can easily prove thatωopt ∈ (0, 2).)

Approach 1.10 (An optimization calculation). We continue to assume thatA is symmetric and positive
definite. Therefore the quadratic function

F (x) = 1
2x>Ax − b>x, x ∈ R

n, (1.4)

is bounded below, and its least value occurs whenx satisfies∇F (x) = 0, which is equivalent tox being a
solution of the systemAx = b of Problem 1.1. Therefore, when an iterative method generates the sequence
x(k+1), k = 0, 1, 2, . . ., it may be helpful to force the conditionF (x(k+1)) < F (x(k)) for everyk ∈ Z+.
This remark can provide an alternative useful way of choosing ω in Technique 1.9, especially ifω is allowed
to depend onk.

We now turn to algorithms of the following form. We pick any starting vectorx(0) ∈ R
n. For k =

0, 1, 2, . . ., the calculation stops if‖∇F (x(k))‖ = ‖Ax(k) − b‖ is acceptably small. Otherwise, asearch
directiond(k) is generated that satisfies thedescent condition[dF (x(k) + ωd(k))/dω]ω=0 < 0. Then the
value ofω that minimizesF (x(k) + ωd(k)), ω > 0, is calculated, and we call itω(k). Finally, thekth
iteration setsx(k+1) = x(k) + ω(k)d(k). Thus the strict inequalitiesF (x(k+1)) < F (x(k)) andω(k) > 0
are achieved.

There is a convenient form of the descent condition that has been mentioned. Specifically, because the
definition (1.4) implies the identity

F (x(k) + ωd(k)) = F (x(k)) + ωd(k)>g(k) + 1
2ω2d(k)>Ad(k), ω ∈ R, (1.5)

whereg(k) = ∇F (x(k)), the search direction has to satisfyd(k)>g(k) < 0, which is possible, because
termination occurs wheng(k) is zero. Further,ω(k) is theω that minimizes the quadratic equation (1.5), so
it has the value

ω(k) = −
d(k)>g(k)

d(k)>Ad(k)
.
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