Numerical Analysis – Lecture 2¹

Theorem 1.7 (The Householder–John theorem) If the real symmetric matrices A and $A - B - B^{\top}$ are both positive definite and B is real then the spectral radius of $H = -(A - B)^{-1}B$ is strictly less than one.

Proof Let λ be an eigenvalue of H, so $Hv = \lambda v$ holds where $v \neq 0$ is an eigenvector. (Note that both λ and v may have nonzero imaginary parts when H is not symmetric, e.g. in the Gauss–Seidel method.) The definition of H provides $-Bv = \lambda(A - B)v$, and the value of λ is different from one because A is nonsingular. Thus we deduce

$$\bar{\boldsymbol{v}}^{\top} B \boldsymbol{v} = \frac{\lambda}{\lambda - 1} \bar{\boldsymbol{v}}^{\top} A \boldsymbol{v}. \tag{1.2}$$

Moreover, writing $\boldsymbol{v} = \boldsymbol{v}_{\mathrm{R}} + i\boldsymbol{v}_{\mathrm{I}}$, where $\boldsymbol{v}_{\mathrm{R}}$ and $\boldsymbol{v}_{\mathrm{I}}$ are real, we find the identity $\bar{\boldsymbol{v}}^{\top}A\boldsymbol{v} = \boldsymbol{v}_{\mathrm{R}}^{\top}A\boldsymbol{v}_{\mathrm{R}} + \boldsymbol{v}_{\mathrm{I}}^{\top}A\boldsymbol{v}_{\mathrm{I}}$, so positive definiteness implies $\bar{\boldsymbol{v}}^{\top}A\boldsymbol{v} > 0$ and $\bar{\boldsymbol{v}}^{\top}(A - B - B^{\top})\boldsymbol{v} > 0$. It follows from equation (1.2), $\bar{\boldsymbol{v}}^{\top}B\boldsymbol{v} = \lambda/(\lambda - 1)\bar{\boldsymbol{v}}^{\top}A\boldsymbol{v}$, $\bar{\boldsymbol{v}}^{\top}B^{\top}\boldsymbol{v} = \bar{\lambda}/(\bar{\lambda} - 1)\bar{\boldsymbol{v}}^{\top}A\boldsymbol{v}$ and from the fact that B is real that the last inequality is the condition

$$0 < \bar{\boldsymbol{v}}^{\top} A \boldsymbol{v} - \bar{\boldsymbol{v}}^{\top} B \boldsymbol{v} - \bar{\boldsymbol{v}}^{\top} B^{\top} \boldsymbol{v} = \left(1 - \frac{\lambda}{\lambda - 1} - \frac{\bar{\lambda}}{\bar{\lambda} - 1}\right) \bar{\boldsymbol{v}}^{\top} A \boldsymbol{v} = \frac{(1 - |\lambda|^2) \bar{\boldsymbol{v}}^{\top} A \boldsymbol{v}}{|\lambda - 1|^2}.$$

Now $\lambda \neq 1$ implies $|\lambda - 1|^2 > 0$. Hence, recalling that $\bar{v}^\top A v > 0$, we see that $1 - |\lambda|^2$ is positive. Therefore $|\lambda| < 1$ occurs for every eigenvalue of H as required.

Corollary 1.8 (Application to Example 1.2) Both Jacobi and Gauss–Seidel methods converge when A is the matrix of Example 1.2.

Proof Positive definiteness of the symmetric matrix A has been already established in Lemma 1.3. For Jacobi's method, $A - B - B^{\top}$ is the same as A except that the signs of the off-diagonal elements are reversed. Therefore the proof of Lemma 1.3 shows too that $A - B - B^{\top}$ is positive definite: recall that the proof depended on the *modulus* of off-diagonal elements, not on their sign! Moreover, for the Gauss–Seidel method, $A - B - B^{\top}$ is just the diagonal part of A, all the off-diagonal elements being zero, so this matrix is also positive definite. Therefore Theorem 1.7 implies $\rho(H) < 1$ in both cases. It follows from Revision 1.5 that the corollary is true.

Technique 1.9 (Relaxation). It is often possible to improve the efficiency of Method 1.4 (simple iteration) by *relaxation*. Specifically, instead of letting $(A - B)x^{(k+1)} = -Bx^{(k)} + b$, k = 0, 1, ..., we let

$$(A-B)\tilde{x}^{(k+1)} = -Bx^{(k)} + b$$
 and $x^{(k+1)} = x^{(k)} + \omega(\tilde{x}^{(k+1)} - x^{(k)}), \quad k = 0, 1, \dots,$

where ω is a real constant called the *relaxation parameter*. Note that $\omega = 1$ corresponds to the former, "unrelaxed" iteration.

Good choice of ω leads to small spectral radius of the iteration matrix: clearly, it should be less than one, but ideally it should be the least possible: the smaller the spectral radius, the faster the iteration converges. To choose ω , we need to determine the iteration matrix \tilde{H} . First, we relate $\boldsymbol{x}^{(k+1)}$ to $\boldsymbol{x}^{(k)}$ by eliminating $\tilde{\boldsymbol{x}}^{(k+1)}$ from the last displayed equation. Multiplying the equation for $\boldsymbol{x}^{(k+1)}$ by A - B we obtain

$$(A - B)\mathbf{x}^{(k+1)} = (A - B)[(1 - \omega)\mathbf{x}^{(k)} + \omega \tilde{\mathbf{x}}^{(k+1)}] = (1 - \omega)(A - B)\mathbf{x}^{(k)} + \omega(-B\mathbf{x}^{(k)} + \mathbf{b}) = [(1 - \omega)A - B]\mathbf{x}^{(k)} + \omega \mathbf{b}.$$

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

Thus, the iteration matrix is

$$\tilde{H} = (A - B)^{-1}[(1 - \omega)A - B] = I - \omega(A - B)^{-1}A.$$

Recall the 'unrelaxed' iteration matrix $H = -(A-B)^{-1}B = (A-B)^{-1}(A-B-A) = I - (A-B)^{-1}A$. Substituting $(A-B)^{-1}A = I - H$, we deduce that

$$\tilde{H} = I - \omega(I - H) = (1 - \omega)I + \omega H.$$
(1.3)

Suppose that $\omega \neq 0$. Then (1.3) proves that

 $\lambda \in \sigma(\tilde{H}) \qquad \Leftrightarrow \qquad \lambda = 1 - \omega + \omega \mu, \quad \mu \in \sigma(H),$

where $\sigma(C)$ is the set of the eigenvalues (the *spectrum*) of the square matrix C. Therefore one may try to choose $\omega \in \mathbb{R} \setminus \{0\}$ to minimize

$$\rho(H) = \max\{|1 - \omega + \omega\mu| : \mu \in \sigma(H)\}.$$

In general, $\sigma(H)$ is unknown, but often we have some information about it which can be utilized to find a 'good' (rather than 'best') value of ω . For example, suppose that it is known that $\sigma(H)$ is real and resides in the interval $[\alpha, \beta]$, where $-1 < \alpha < \beta < 1$. In that case we seek ω to minimize

$$\max\{|1 - \omega + \omega\mu| : \mu \in [\alpha, \beta]\}.$$

Since maxima of the function above occur at endpoints, for optimal ω we have $|1-\omega+\omega\alpha| = |1-\omega+\omega\beta|$, and this is satisfied by $\omega_{opt} = 2/(2-\alpha-\beta)$. (You can easily prove that $\omega_{opt} \in (0,2)$.)

Approach 1.10 (An optimization calculation). We continue to assume that A is symmetric and positive definite. Therefore the quadratic function

$$F(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\top}A\boldsymbol{x} - \boldsymbol{b}^{\top}\boldsymbol{x}, \qquad \boldsymbol{x} \in \mathbb{R}^{n},$$
(1.4)

is bounded below, and its least value occurs when x satisfies $\nabla F(x) = 0$, which is equivalent to x being a solution of the system Ax = b of Problem 1.1. Therefore, when an iterative method generates the sequence $x^{(k+1)}$, k = 0, 1, 2, ..., it may be helpful to force the condition $F(x^{(k+1)}) < F(x^{(k)})$ for every $k \in \mathbb{Z}_+$. This remark can provide an alternative useful way of choosing ω in Technique 1.9, especially if ω is allowed to depend on k.

We now turn to algorithms of the following form. We pick any starting vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$. For $k = 0, 1, 2, \ldots$, the calculation stops if $\|\nabla F(\mathbf{x}^{(k)})\| = \|A\mathbf{x}^{(k)} - \mathbf{b}\|$ is acceptably small. Otherwise, a search direction $\mathbf{d}^{(k)}$ is generated that satisfies the descent condition $[dF(\mathbf{x}^{(k)} + \omega \mathbf{d}^{(k)})/d\omega]_{\omega=0} < 0$. Then the value of ω that minimizes $F(\mathbf{x}^{(k)} + \omega \mathbf{d}^{(k)}), \omega > 0$, is calculated, and we call it $\omega^{(k)}$. Finally, the kth iteration sets $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega^{(k)}\mathbf{d}^{(k)}$. Thus the strict inequalities $F(\mathbf{x}^{(k+1)}) < F(\mathbf{x}^{(k)})$ and $\omega^{(k)} > 0$ are achieved.

There is a convenient form of the descent condition that has been mentioned. Specifically, because the definition (1.4) implies the identity

$$F(\boldsymbol{x}^{(k)} + \omega \boldsymbol{d}^{(k)}) = F(\boldsymbol{x}^{(k)}) + \omega \boldsymbol{d}^{(k)^{\top}} \boldsymbol{g}^{(k)} + \frac{1}{2} \omega^2 \boldsymbol{d}^{(k)^{\top}} A \boldsymbol{d}^{(k)}, \qquad \omega \in \mathbb{R},$$
(1.5)

where $\boldsymbol{g}^{(k)} = \nabla F(\boldsymbol{x}^{(k)})$, the search direction has to satisfy $\boldsymbol{d}^{(k)^{\top}}\boldsymbol{g}^{(k)} < 0$, which is possible, because termination occurs when $\boldsymbol{g}^{(k)}$ is zero. Further, $\omega^{(k)}$ is the ω that minimizes the quadratic equation (1.5), so it has the value

$$\omega^{(k)} = -\frac{\boldsymbol{d}^{(k)} \boldsymbol{g}^{(k)}}{\boldsymbol{d}^{(k)} \boldsymbol{d}^{(k)}}.$$