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Numerical Analysis — Lecture 2

Theorem 1.7 (The Householder—John theorerf)the real symmetric matriced and A — B — BT are
both positive definite ang is real then the spectral radius ¢f = —(A — B) !B is strictly less than one.

Proof Let A be an eigenvalue dff, so Hv = Av holds wherev # 0 is an eigenvector. (Note that both
A andv may have nonzero imaginary parts whinis not symmetric, e.g. in the Gauss—Seidel method.)
The definition ofH provides—Bv = A(A — B)v, and the value oA is different from one becausé is
nonsingular. Thus we deduce

v Bv =

T
Av. 1.2
oY v 1.2)
Moreover, writingy = vy +ivy, wherevg andv; are real, we find the identity " Av = vy Avg +v] Avy,
so positive definiteness implias” Av > 0 andv " (A — B — B")v > 0. It follows from equation (1.2),
v'Bv = A\/(A\ = 1)oTAv, " BTv = A\/(A — 1)o" Av and from the fact thaB3 is real that the last
inequality is the condition
0<® Av—9' Bv—v B'v= 1—L — _L v Av =
A—-1 A-1

(1—|A\2)5" Av
|A—1P?

Now A # 1 implies|\ — 1|2 > 0. Hence, recalling thab " Av > 0, we see thal — |\|? is positive.
ThereforelA| < 1 occurs for every eigenvalue éf as required. O

Corollary 1.8 (Application to Example 1.2Both Jacobi and Gauss—Seidel methods converge whisn
the matrix of Example 1.2.

Proof Positive definiteness of the symmetric matdxhas been already established in Lemma 1.3. For
Jacobi’'s methodA — B — BT is the same asl except that the signs of the off-diagonal elements are
reversed. Therefore the proof of Lemma 1.3 shows too4hatB — B is positive definite: recall that the
proof depended on threodulusof off-diagonal elements, not on their sign! Moreover, foe Gauss—Seidel
method,A — B — B is just the diagonal part od, all the off-diagonal elements being zero, so this matrix
is also positive definite. Therefore Theorem 1.7 impli€H) < 1 in both cases. It follows from Revision
1.5 that the corollary is true. a

Technigue 1.9(Relaxation). It is often possible to improve the efficierdyMethod 1.4 (simple iteration)
by relaxation. Specifically, instead of lettingAd — B)x*+1) = —Bx®*) 4 b,k =0,1,..., we let

(A—B)z**) = —Bz® +p and  x*+D = ) 4 @k tD _ 50 k=0,1,...,

wherew is a real constant called thelaxation parameter.Note thatw = 1 corresponds to the former,
“unrelaxed” iteration.

Good choice ofv leads to small spectral radius of the iteration matrix: ided should be less than one,
but ideally it should be the least possible: the smaller geesal radius, the faster the iteration converges.
To choosev, we need to determine the iteration matfix First, we relatex(*+1) to 2(*) by eliminating
&*+1) from the last displayed equation. Multiplying the equationz(*+) by A — B we obtain

(A—B)z® ) = (A - B)[(1 — w)z® + wz*F+1)]
=(1-w)(A-B)z"™ +w(-Bz™® +b)
=[(1-w)A - Blz™ +wb.
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Thus, the iteration matrix is
H=(A-B) Y(1-w)A-B]=I-w(A-B)'A.

Recall the ‘unrelaxed’ iteration matrif = —(A—B) !B = (A-B) Y (A-B—-A)=1—(A-B)'A.
Substituting(A — B)~'A = I — H, we deduce that

H=I-w(I-H)=(1-w)l+wH. (1.3)

Suppose that # 0. Then (1.3) proves that

Aeo(H) & A=1—w+wy, peo(H),

whereo (C) is the set of the eigenvalues (tepectrun of the square matriX’. Therefore one may try to
choosev € R\ {0} to minimize

p(H) =max{|l —w+wu| : p€o(H)}.

In generalg (H) is unknown, but often we have some information about it witigh be utilized to find a
‘good’ (rather than ‘best’) value ab. For example, suppose that it is known thd#l ) is real and resides
in the intervall«, 5], where—1 < a < 8 < 1. In that case we seekto minimize

max{|1 - w+wpl : g€ o, B},

Since maxima of the function above occur at endpoints, fin@w we havel —w+wa| = |1 —w+wp|,
and this is satisfied by, = 2/(2 — a — 3). (You can easily prove thai,,; € (0,2).)

Approach 1.10 (An optimization calculation). We continue to assume thais symmetric and positive
definite. Therefore the quadratic function

F(x) = %xTAw —b'x, x e R", (1.4)
is bounded below, and its least value occurs whesatisfiesV F'(x) = 0, which is equivalent tec being a
solution of the systerx = b of Problem 1.1. Therefore, when an iterative method geesthe sequence
2+ k& =0,1,2,..., it may be helpful to force the conditioR(x*+1)) < F(z®) for everyk € Z..
This remark can provide an alternative useful way of chapsim Technique 1.9, especiallydf is allowed
to depend ork.

We now turn to algorithms of the following form. We pick anyaging vectorz(®) € R™. Fork =
0,1,2,..., the calculation stops ifVF(z®))|| = |Az*) — b]| is acceptably small. Otherwise saarch
directiond®) is generated that satisfies tescent conditiofd F'(z® + wd®)/dw].,—o < 0. Then the
value ofw that minimizesF(z*) + wd®), w > 0, is calculated, and we call i&). Finally, thekth
iteration setse(*t1) = z(*) + ,*Md*®  Thus the strict inequalities (z*1)) < F(z®) andw® > 0
are achieved.

There is a convenient form of the descent condition that le@s bmentioned. Specifically, because the
definition (1.4) implies the identity

Fla® +wd®) = F@®) + wd® g® + L,2d® " 4d®  weR, (L.5)

.
whereg®) = VF(z®), the search direction has to satistf) g*) < 0, which is possible, because
termination occurs wheg®) is zero. Furtherp(¥) is thew that minimizes the quadratic equation (1.5), so

it has the value -
d®) g(k)

(k) —
w =
d® " 4q®



