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Numerical Analysis — Lecture 3

Method 1.11(The steepest descent method). This method makes the alibice —g'® for everyk that
requires a search direction in the procedure of the pre\deason. It can be proved that, if the number of
iterations is infinite, then the sequene®’, k = 0,1, 2, . . ., converges to the solution of the systeim = b

as required, but usually the speed of convergence is unatdgslow. Fortunately, the use obnjugate
directions provides an extension of the steepest descent method tffiatrps very well for reasons that will
be explained in the sequel.

Definition 1.12 (Conjugate directions). The vectansv € R™ areconjugate with respect to the positive-
definite matrixA if they are nonzero and satisfy’ Av = 0.

The importance of conjugacy to Approach 1.10 depends ordtgity g(*+1) = g(®) 4 w*) Ad¥) which
is derived frome(*+1) = £*) 1 ,(®) d*) and fromg*) = VF(x®) = Az®*) — b:

Az*+D = Az® 4 (0 4g*) = (A — p) = (Ax® — b) + w®™ Ad®
= VF(@") = VF(@®) +u® 4g® = g* ) = g®) M Agk),

Hence, ifd®) is conjugate to any vectat that satisfiest' g(*) = 0, thend " g(*+) = 0 also holds. Thus
T

the following algorithm provideg?) g+ =0, j =0,1,2,...,k, for everyk € Z., .

Algorithm 1.13 (The conjugate gradient method). This algorithm is of themf@iven in the second

paragraph of Approach 1.10, whef@ =) is arbitrary, (b) termination occurs if|g(¥)| is acceptably
small, (c) every search direction satisfies the descent condition(dritie parametex*) in the formula

20+ = 28) 4,0 g®) equals-d® " g® /d® " Ad®). The search directions are the vectors
d? =—-g© and d¥ =_g® 4 g0gkEN " p =123 .., (1.6)
where3(*) is determined by theonjugacy condition d(’“)TAd(’“_l) = 0, which yields

@ g™ AdD

W, k:1,2,3,.‘.. (17)

These directions obey the descent condition. Indgéd;!) = g*) + w® Ad*) and the value of.(®
give the important orthogonality properd}’“)Tg(k“) =0, sowe havei(’“_l)TTg(k) =0,k=1,2,3,....
It follows from (1.6) that the search direction of every #gon satisfiesd®) g*) = —||g()|2 < 0,
regardless of the values of the parameters (1.7).

Theorem 1.14 (Properties of Algorithm 1.13). For every integer k£ > 1 until ||g(*)| is acceptably small, the
conjugate gradient method enjoys the following properties.
(1) The linear space spanned by the gradients g%, j =0,1,...,k — 1, isthe same as the linear space
spanned by the search directionsd"), j = 0,1,...,k — 1;
T .
(2) The conjugacy conditionsd* " AdY) =0, =0,1,...,k — 2, holdfor k > 2;
(3) The gradients satisfy the orthogonality conditions g "g®) = 0, = 0,1,...,k — 1.
Proof We use induction ot > 1, the assertions being easy to verify for= 1: Indeed,(1) follows
T
fromd® = —g(©, (2) is vacuous, an¢B) follows fromd®) = —g(© andd® g*+1) = 0 whenk = 0.
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Therefore, assuming that the assertions are true for domel, we ask if they remain true whehnis
increased by one.
The definition (1.6) ott® and(1) of the inductive hypothesis imply that any vector in spafgf) : j =
0,1,...,k} is also in span of d¥) : j = 0,1,...,k} andvice versa. Thus(1) is preserved whek is
increased.

T T .
Turning to assertior2), the value of3®) givesd® Ad*~Y = 0, sod®™ 4d"Y) = 0 is required for
j € {0,1,...,k — 2} whenk > 2. Therefore, in view of the definition (1.6) af*) and (2) of the
inductive hypothesis, it is sufficient to establight) " 4dV) =0, j = 0, 1,...,k — 2. Now, the formula
20U+ = 20) 4, dY) and equation (1.4) yield(+) — g(i) = ,() AdY), and we have noted) > 0.
Therefore we require the conditioggv)T(g(Hl) —g¥)=0,j=0,1,...,k—2. They are a consequence
of assertion(3) of the inductive argument.

It remains to justifyg®) ' g*+1) = 0, j = 0,1,...,k which is equivalent tal(j)Tg(’”l) =0,j =
0,1,...,k, becausgl) is preserved wheh is increased. The cage= k is covered b)d(’“)Tg(k“) =0.
Moreover, the old assertiori$) and(3) give d(j)Tg(k) =0,7=0,1,...,k — 1. Therefore it is sufficient
to showd(j)T(g(’““) —g®) =0,5=0,1,...,k — 1, which is equivalent tal?) ' Ad® — 0,j =
0,1,...,k — 1, because of 1) — g®) = ,() Ad*®) andw® > 0. It follows from the symmetry of4
and the new assertidR) that the proof is complete. ]

Corollary 1.15 (A termination property). If Algorithm 1.13 is applied in exact arithmetic, then, for any
x(©) ¢ R™, termination occurs after at most » iterations.

Proof Assertion(3) of Theorem 1.14 states thgt*), k = 0, 1,2, . . ., is a sequence of mutually orthogonal
vectors. Therefore at most of them can be nonzero, sg® || is acceptably small for some iteration
numberk < n. a

Standard Form 1.16(Reformulation of the conjugate gradient method). We nawpdify and reformulate
Algorithm 1.13. Specifically, we lex(?) be the zero vector and we writer*) instead ofg(*), where
r*) is theresidual b — Az(*). Furthermore, becauggé®) — g(*~1) is a multiple ofAd*~ Y, we write the
parameter (1.7) as

.
" (@W —g™Y) g™’

a0 " (g — g1y g®TIR]

(k) _ g

which depends on the orthogonality 9f*) to g*~1) and d*=, proved above, and on the property
T
dF= " gk=1) — _||g(k=1)||12 Thus Algorithm 1.13 takes the following form.

1. Setz® = 0,7 = b, k = 0 andd® = 7;

2. Stop if||r(®)|| is acceptably small;

3. 1f k> 1, setd® = r®) 4 g*) g1 whereg®) = ||r®)||2/||rk-1)|2;

4. Calculate the matrix vector produat®) = Ad® andw(® = ||+ [|2/d® 4 ®);
5. Apply the formulaex*+1) = 2®) 4+ w#) d® andrt+1) = p(*) — H*)y k),

6. Increase: by one, and then go back

The total work is usually dominated by the number of iteragianultiplied by the time it takes to compute
v® = Ad™® . It follows from Corollary 1.15 that the conjugate gradiatgorithm is highly suitable when
most of the elements oA are zero, i.e. when is sparse.



