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Method 1.11(The steepest descent method). This method makes the choiced(k) = −g(k) for everyk that
requires a search direction in the procedure of the previoussection. It can be proved that, if the number of
iterations is infinite, then the sequencex(k), k = 0, 1, 2, . . ., converges to the solution of the systemAx = b

as required, but usually the speed of convergence is unacceptably slow. Fortunately, the use ofconjugate
directions provides an extension of the steepest descent method that performs very well for reasons that will
be explained in the sequel.

Definition 1.12 (Conjugate directions). The vectorsu,v ∈ R
n areconjugate with respect to the positive-

definite matrixA if they are nonzero and satisfyu>Av = 0.

The importance of conjugacy to Approach 1.10 depends on the identityg(k+1) = g(k) + ω(k)Ad(k), which
is derived fromx(k+1) = x(k) + ω(k)d(k) and fromg(k) = ∇F (x(k)) = Ax(k) − b:

Ax(k+1) = Ax(k) + ω(k)Ad(k) ⇒ (Ax(k+1) − b) = (Ax(k) − b) + ω(k)Ad(k)

⇒ ∇F (x(k+1)) = ∇F (x(k)) + ω(k)Ad(k) ⇒ g(k+1) = g(k) + ω(k)Ad(k).

Hence, ifd(k) is conjugate to any vectord that satisfiesd>g(k) = 0, thend>g(k+1) = 0 also holds. Thus

the following algorithm providesd(j)>g(k+1) = 0, j = 0, 1, 2, . . . , k, for everyk ∈ Z+.

Algorithm 1.13 (The conjugate gradient method). This algorithm is of the form given in the second
paragraph of Approach 1.10, where(a) x(0) is arbitrary,(b) termination occurs if‖g(k)‖ is acceptably
small, (c) every search direction satisfies the descent condition, and(d) the parameterω(k) in the formula

x(k+1) = x(k) + ω(k)d(k) equals−d(k)>g(k)/d(k)>Ad(k). The search directions are the vectors

d(0) = −g(0) and d(k) = −g(k) + β(k)d(k−1), k = 1, 2, 3, . . . , (1.6)

whereβ(k) is determined by theconjugacy condition d(k)>Ad(k−1) = 0, which yields

β(k) =
g(k)>Ad(k−1)

d(k−1)>Ad(k−1)
, k = 1, 2, 3, . . . . (1.7)

These directions obey the descent condition. Indeed,g(k+1) = g(k) + ω(k)Ad(k) and the value ofω(k)

give the important orthogonality propertyd(k)>g(k+1) = 0, so we haved(k−1)>g(k) = 0, k = 1, 2, 3, . . ..

It follows from (1.6) that the search direction of every iteration satisfiesd(k)>g(k) = −‖g(k)‖2 < 0,
regardless of the values of the parameters (1.7).

Theorem 1.14 (Properties of Algorithm 1.13). For every integer k ≥ 1 until ‖g(k)‖ is acceptably small, the
conjugate gradient method enjoys the following properties.
(1) The linear space spanned by the gradients g(j), j = 0, 1, . . . , k − 1, is the same as the linear space
spanned by the search directions d(j), j = 0, 1, . . . , k − 1;

(2) The conjugacy conditions d(k−1)>Ad(j) = 0, j = 0, 1, . . . , k − 2, hold for k ≥ 2;

(3) The gradients satisfy the orthogonality conditions g(j)>g(k) = 0, j = 0, 1, . . . , k − 1.

Proof We use induction onk ≥ 1, the assertions being easy to verify fork = 1: Indeed,(1) follows

from d(0) = −g(0), (2) is vacuous, and(3) follows fromd(0) = −g(0) andd(k)>g(k+1) = 0 whenk = 0.
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Therefore, assuming that the assertions are true for somek ≥ 1, we ask if they remain true whenk is
increased by one.

The definition (1.6) ofd(k) and(1) of the inductive hypothesis imply that any vector in span of{g(j) : j =

0, 1, . . . , k} is also in span of{d(j) : j = 0, 1, . . . , k} andvice versa. Thus(1) is preserved whenk is
increased.

Turning to assertion(2), the value ofβ(k) givesd(k)>Ad(k−1) = 0, sod(k)>Ad(j) = 0 is required for
j ∈ {0, 1, . . . , k − 2} when k ≥ 2. Therefore, in view of the definition (1.6) ofd(k) and (2) of the

inductive hypothesis, it is sufficient to establishg(k)>Ad(j) = 0, j = 0, 1, . . . , k − 2. Now, the formula
x(j+1) = x(j) +ω(j)d(j) and equation (1.4) yieldg(j+1)−g(j) = ω(j)Ad(j), and we have notedω(j) > 0.

Therefore we require the conditionsg(k)>(g(j+1)−g(j)) = 0, j = 0, 1, . . . , k−2. They are a consequence
of assertion(3) of the inductive argument.

It remains to justifyg(j)>g(k+1) = 0, j = 0, 1, . . . , k, which is equivalent tod(j)>g(k+1) = 0, j =

0, 1, . . . , k, because(1) is preserved whenk is increased. The casej = k is covered byd(k)>g(k+1) = 0.

Moreover, the old assertions(1) and(3) give d(j)>g(k) = 0, j = 0, 1, . . . , k − 1. Therefore it is sufficient

to showd(j)>(g(k+1) − g(k)) = 0, j = 0, 1, . . . , k − 1, which is equivalent tod(j)>Ad(k) = 0, j =

0, 1, . . . , k − 1, because ofg(k+1) − g(k) = ω(k)Ad(k) andω(k) > 0. It follows from the symmetry ofA
and the new assertion(2) that the proof is complete. 2

Corollary 1.15 (A termination property). If Algorithm 1.13 is applied in exact arithmetic, then, for any
x(0) ∈ R

n, termination occurs after at most n iterations.

Proof Assertion(3) of Theorem 1.14 states thatg(k), k = 0, 1, 2, . . ., is a sequence of mutually orthogonal
vectors. Therefore at mostn of them can be nonzero, so‖g(k)‖ is acceptably small for some iteration
numberk ≤ n. 2

Standard Form 1.16(Reformulation of the conjugate gradient method). We now simplify and reformulate
Algorithm 1.13. Specifically, we letx(0) be the zero vector and we write−r(k) instead ofg(k), where
r(k) is theresidual b − Ax(k). Furthermore, becauseg(k) − g(k−1) is a multiple ofAd(k−1), we write the
parameter (1.7) as

β(k) =
g(k)>(g(k) − g(k−1))

d(k−1)>(g(k) − g(k−1))
=

‖g(k)‖2

‖g(k−1)‖2
,

which depends on the orthogonality ofg(k) to g(k−1) and d(k−1), proved above, and on the property

d(k−1)>g(k−1) = −‖g(k−1)‖2. Thus Algorithm 1.13 takes the following form.

1. Setx(0) = 0, r(0) = b, k = 0 andd(0) = r(0);

2. Stop if‖r(k)‖ is acceptably small;

3. If k ≥ 1, setd(k) = r(k) + β(k)d(k−1), whereβ(k) = ‖r(k)‖2/‖r(k−1)‖2;

4. Calculate the matrix vector productv(k) = Ad(k) andω(k) = ‖r(k)‖2/d(k)>v(k);

5. Apply the formulaex(k+1) = x(k) + ω(k)d(k) andr(k+1) = r(k) − ω(k)v(k);

6. Increasek by one, and then go back to2.

The total work is usually dominated by the number of iterations, multiplied by the time it takes to compute
v(k) = Ad(k). It follows from Corollary 1.15 that the conjugate gradientalgorithm is highly suitable when
most of the elements ofA are zero, i.e. whenA is sparse.
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