Numerical Analysis – Lecture 3¹

Method 1.11 (The steepest descent method). This method makes the choice $d^{(k)} = -q^{(k)}$ for every k that requires a search direction in the procedure of the previous section. It can be proved that, if the number of iterations is infinite, then the sequence $x^{(k)}$, $k = 0, 1, 2, \dots$, converges to the solution of the system Ax = bas required, but usually the speed of convergence is unacceptably slow. Fortunately, the use of *conjugate directions* provides an extension of the steepest descent method that performs very well for reasons that will be explained in the sequel.

Definition 1.12 (Conjugate directions). The vectors $u, v \in \mathbb{R}^n$ are *conjugate* with respect to the positivedefinite matrix A if they are nonzero and satisfy $\boldsymbol{u}^{\top} A \boldsymbol{v} = 0$.

The importance of conjugacy to Approach 1.10 depends on the identity $\boldsymbol{g}^{(k+1)} = \boldsymbol{g}^{(k)} + \omega^{(k)} A \boldsymbol{d}^{(k)}$, which is derived from $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \omega^{(k)} \boldsymbol{d}^{(k)}$ and from $\boldsymbol{g}^{(k)} = \nabla F(\boldsymbol{x}^{(k)}) = A \boldsymbol{x}^{(k)} - \boldsymbol{b}$:

$$\begin{aligned} A\boldsymbol{x}^{(k+1)} &= A\boldsymbol{x}^{(k)} + \omega^{(k)}A\boldsymbol{d}^{(k)} \implies \qquad (A\boldsymbol{x}^{(k+1)} - \boldsymbol{b}) = (A\boldsymbol{x}^{(k)} - \boldsymbol{b}) + \omega^{(k)}A\boldsymbol{d}^{(k)} \\ \Rightarrow \nabla F(\boldsymbol{x}^{(k+1)}) &= \nabla F(\boldsymbol{x}^{(k)}) + \omega^{(k)}A\boldsymbol{d}^{(k)} \implies \qquad \boldsymbol{g}^{(k+1)} = \boldsymbol{g}^{(k)} + \omega^{(k)}A\boldsymbol{d}^{(k)}. \end{aligned}$$

Hence, if $d^{(k)}$ is conjugate to any vector d that satisfies $d^{\top}g^{(k)} = 0$, then $d^{\top}g^{(k+1)} = 0$ also holds. Thus the following algorithm provides $d^{(j)^{\top}} g^{(k+1)} = 0, j = 0, 1, 2, \dots, k$, for every $k \in \mathbb{Z}_+$.

Algorithm 1.13 (The conjugate gradient method). This algorithm is of the form given in the second paragraph of Approach 1.10, where (a) $x^{(0)}$ is arbitrary, (b) termination occurs if $\|g^{(k)}\|$ is acceptably small, (c) every search direction satisfies the descent condition, and (d) the parameter $\omega^{(k)}$ in the formula $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega^{(k)} \mathbf{d}^{(k)}$ equals $-\mathbf{d}^{(k)\top} \mathbf{q}^{(k)} / \mathbf{d}^{(k)\top} A \mathbf{d}^{(k)}$. The search directions are the vectors

$$d^{(0)} = -g^{(0)}$$
 and $d^{(k)} = -g^{(k)} + \beta^{(k)}d^{(k-1)}, \quad k = 1, 2, 3, \dots,$ (1.6)

where $\beta^{(k)}$ is determined by the *conjugacy condition* $d^{(k)\top}Ad^{(k-1)} = 0$, which yields

$$\beta^{(k)} = \frac{\boldsymbol{g^{(k)}}^{\top} A \boldsymbol{d}^{(k-1)}}{\boldsymbol{d}^{(k-1)}^{\top} A \boldsymbol{d}^{(k-1)}}, \qquad k = 1, 2, 3, \dots$$
(1.7)

These directions obey the descent condition. Indeed, $g^{(k+1)} = g^{(k)} + \omega^{(k)} A d^{(k)}$ and the value of $\omega^{(k)}$ give the important orthogonality property $\boldsymbol{d}^{(k)^{\top}}\boldsymbol{g}^{(k+1)} = 0$, so we have $\boldsymbol{d}^{(k-1)^{\top}}\boldsymbol{g}^{(k)} = 0, k = 1, 2, 3, \dots$ It follows from (1.6) that the search direction of every iteration satisfies $d^{(k)^{\top}}g^{(k)} = -\|g^{(k)}\|^2 < 0$, regardless of the values of the parameters (1.7).

Theorem 1.14 (Properties of Algorithm 1.13). For every integer $k \ge 1$ until $\|g^{(k)}\|$ is acceptably small, the conjugate gradient method enjoys the following properties.

(1) The linear space spanned by the gradients $g^{(j)}$, j = 0, 1, ..., k - 1, is the same as the linear space spanned by the search directions $\mathbf{d}^{(j)}$, j = 0, 1, ..., k - 1; (2) The conjugacy conditions $\mathbf{d}^{(k-1)^{\top}} A \mathbf{d}^{(j)} = 0$, j = 0, 1, ..., k - 2, hold for $k \ge 2$;

(3) The gradients satisfy the orthogonality conditions $g^{(j)\top}g^{(k)} = 0, j = 0, 1, ..., k-1$.

Proof We use induction on $k \ge 1$, the assertions being easy to verify for k = 1: Indeed, (1) follows from $d^{(0)} = -q^{(0)}$, (2) is vacuous, and (3) follows from $d^{(0)} = -q^{(0)}$ and $d^{(k)^{\top}}q^{(k+1)} = 0$ when k = 0.

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

Therefore, assuming that the assertions are true for some $k \ge 1$, we ask if they remain true when k is increased by one.

The definition (1.6) of $d^{(k)}$ and (1) of the inductive hypothesis imply that any vector in span of $\{g^{(j)} : j = 0, 1, ..., k\}$ is also in span of $\{d^{(j)} : j = 0, 1, ..., k\}$ and vice versa. Thus (1) is preserved when k is increased.

Turning to assertion (2), the value of $\beta^{(k)}$ gives $\boldsymbol{d}^{(k)^{\top}} A \boldsymbol{d}^{(k-1)} = 0$, so $\boldsymbol{d}^{(k)^{\top}} A \boldsymbol{d}^{(j)} = 0$ is required for $j \in \{0, 1, \dots, k-2\}$ when $k \geq 2$. Therefore, in view of the definition (1.6) of $\boldsymbol{d}^{(k)}$ and (2) of the inductive hypothesis, it is sufficient to establish $\boldsymbol{g}^{(k)^{\top}} A \boldsymbol{d}^{(j)} = 0$, $j = 0, 1, \dots, k-2$. Now, the formula $\boldsymbol{x}^{(j+1)} = \boldsymbol{x}^{(j)} + \omega^{(j)} \boldsymbol{d}^{(j)}$ and equation (1.4) yield $\boldsymbol{g}^{(j+1)} - \boldsymbol{g}^{(j)} = \omega^{(j)} A \boldsymbol{d}^{(j)}$, and we have noted $\omega^{(j)} > 0$. Therefore we require the conditions $\boldsymbol{g}^{(k)^{\top}} (\boldsymbol{g}^{(j+1)} - \boldsymbol{g}^{(j)}) = 0$, $j = 0, 1, \dots, k-2$. They are a consequence of assertion (3) of the inductive argument.

It remains to justify $\mathbf{g}^{(j)^{\top}} \mathbf{g}^{(k+1)} = 0$, j = 0, 1, ..., k, which is equivalent to $\mathbf{d}^{(j)^{\top}} \mathbf{g}^{(k+1)} = 0$, j = 0, 1, ..., k, because (1) is preserved when k is increased. The case j = k is covered by $\mathbf{d}^{(k)^{\top}} \mathbf{g}^{(k+1)} = 0$. Moreover, the old assertions (1) and (3) give $\mathbf{d}^{(j)^{\top}} \mathbf{g}^{(k)} = 0$, j = 0, 1, ..., k - 1. Therefore it is sufficient to show $\mathbf{d}^{(j)^{\top}} (\mathbf{g}^{(k+1)} - \mathbf{g}^{(k)}) = 0$, j = 0, 1, ..., k - 1, which is equivalent to $\mathbf{d}^{(j)^{\top}} A \mathbf{d}^{(k)} = 0$, j = 0, 1, ..., k - 1, because of $\mathbf{g}^{(k+1)} - \mathbf{g}^{(k)} = \omega^{(k)} A \mathbf{d}^{(k)}$ and $\omega^{(k)} > 0$. It follows from the symmetry of A and the new assertion (2) that the proof is complete.

Corollary 1.15 (A termination property). If Algorithm 1.13 is applied in exact arithmetic, then, for any $x^{(0)} \in \mathbb{R}^n$, termination occurs after at most n iterations.

Proof Assertion (3) of Theorem 1.14 states that $g^{(k)}$, k = 0, 1, 2, ..., is a sequence of mutually orthogonal vectors. Therefore at most n of them can be nonzero, so $||g^{(k)}||$ is acceptably small for some iteration number $k \le n$.

Standard Form 1.16 (Reformulation of the conjugate gradient method). We now simplify and reformulate Algorithm 1.13. Specifically, we let $x^{(0)}$ be the zero vector and we write $-r^{(k)}$ instead of $g^{(k)}$, where $r^{(k)}$ is the *residual* $b - Ax^{(k)}$. Furthermore, because $g^{(k)} - g^{(k-1)}$ is a multiple of $Ad^{(k-1)}$, we write the parameter (1.7) as

$$\beta^{(k)} = \frac{\boldsymbol{g^{(k)}}^{\top} (\boldsymbol{g^{(k)}} - \boldsymbol{g^{(k-1)}})}{\boldsymbol{d^{(k-1)}}^{\top} (\boldsymbol{g^{(k)}} - \boldsymbol{g^{(k-1)}})} = \frac{\|\boldsymbol{g^{(k)}}\|^2}{\|\boldsymbol{g^{(k-1)}}\|^2}$$

which depends on the orthogonality of $g^{(k)}$ to $g^{(k-1)}$ and $d^{(k-1)}$, proved above, and on the property $d^{(k-1)}^{\top}g^{(k-1)} = -||g^{(k-1)}||^2$. Thus Algorithm 1.13 takes the following form.

- **1.** Set $x^{(0)} = 0$, $r^{(0)} = b$, k = 0 and $d^{(0)} = r^{(0)}$;
- **2.** Stop if $||\mathbf{r}^{(k)}||$ is acceptably small;
- **3.** If $k \ge 1$, set $\boldsymbol{d}^{(k)} = \boldsymbol{r}^{(k)} + \beta^{(k)} \boldsymbol{d}^{(k-1)}$, where $\beta^{(k)} = \|\boldsymbol{r}^{(k)}\|^2 / \|\boldsymbol{r}^{(k-1)}\|^2$;
- 4. Calculate the matrix vector product $\boldsymbol{v}^{(k)} = A\boldsymbol{d}^{(k)}$ and $\omega^{(k)} = \|\boldsymbol{r}^{(k)}\|^2 / {\boldsymbol{d}^{(k)}}^\top \boldsymbol{v}^{(k)}$;
- 5. Apply the formulae $x^{(k+1)} = x^{(k)} + \omega^{(k)} d^{(k)}$ and $r^{(k+1)} = r^{(k)} \omega^{(k)} v^{(k)}$;
- 6. Increase k by one, and then go back to 2.

The total work is usually dominated by the number of iterations, multiplied by the time it takes to compute $v^{(k)} = Ad^{(k)}$. It follows from Corollary 1.15 that the conjugate gradient algorithm is highly suitable when most of the elements of A are zero, i.e. when A is *sparse*.