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Definition 1.17 (Krylov subspace). Lel be ann x n matrix,v € R" \ {0} andm € N. The linear space
Km(A,v) = Span{4/v : j =0,1,...,m — 1} is said to be &rylov subspace of R".

Lemma 1.18 (Properties of Krylov subspaces). Let ¢,,, be the dimension of the Krylov subspace K,,, (A, v).
The sequence {4, }m=1,2,... increases monotonically. Moreover, there exists k& € N with the following
property: for everym = 1,2,..., kitistruethat 6,, = m, whileé,, = k for m > k.

Supposing further that v = Zle c;w;, where wi, wo, ..., wj, are eigenvectors of A corresponding to
distinct eigenvaluesand ¢, ¢, . . ., ¢z, # 0, itistruethat k = k.

Proof Clearly, K,,(4,v) C K,11(A4,v), therefored,,, < d,,41, m € N. Moreover,d,, < n because
Kmn(A,v) C R". We further note that; = 1, sincek;(A,v) = Span{v} andv # 0, andd,, < m,
because eacki,, (A, v) is spanned byn vectors.

We setk as thegreatest integer such that, = k. Therefored,, < m for m > k + 1. In particular,
Ok+1 < k. Butk = 6, < dgy1, thereforedy 1 = 0 andKpy1(A,v) = Ki(A4,v). This implies that
Ak € K (A, v): there existy, 01, . .., 0x_1 such thatd*v = Zf;é 6; AJv. Consequently,

k—1
Abtiy =N "0, A, s=0,1,2,.... (1.8)
j=0

It follows from (1.8) that if A%v, As*lv, ... AsTF~1y € Ky (A, v), then alsod*T*v € Ky (A, v). Since
the above is true fos = 0, it follows by induction thatd’v € K (A, v) for all j € Z,, consequently
K (A, v) = Kp(A,v) (andd,, = ;) form > k.

Suppose now that = Zle c;w;, where thew;s are eigenvectors of with the corresponding distinct
eigenvalues\;. ThenAJv = Zle c,;)\fwi,j € Z4, and we deduce that

Ki(A,v) C Span{w;, ws, ..., w;}.
Since eigenvectors are linearly independent, we de#lucek.

Assume next that < k. We have already proved th&t = dy, therefore the vectorg/v, j = 0,1, ..., k—

1, are linearly dependent. In other words, there existvy, . .., oj_,, notall zero, so thazfgll oAy =
0. Therefore

k-1 k-1 k k-1 k k k—1
0= E OéjAJ’U = E OéjAj E C;w; = E Q E cl)\fwz = E C; E Oéj)\g w;.
j=0 7=0 i=1 7=0 i=1 i=1 7=0

Since the eigenvectors are linearly independentaneb, . . ., c; # 0, we deduce from the above that

gj_l . ~

N =0, i=12... .k

j=0
Consider the polynomial(z) = Zf;é a;jz?, z € C. Clearly,p # 0 andp is of degree at most — 1. Yet,
we have just proved tha{\;) = 0 for distinct values\, Ao, ..., A;. Thisis a contradiction and we deduce
that the assumptioh < k is false. Thereforé = k: the proof is complete. |
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Application 1.19 (The Krylov subspace of the conjugate gradient method). fifsetwo iterations of the
Standard Form 1.16 of the conjugate gradient method set

r® = p,
P =0 — @A = (1 — w© A)b,
r® =0 — ;MW AdD = O — ;WA 4 D) = [(T — DAY — w@A) — w30 Alb.

Hencer(™ ¢ K,,41(A,b) for m = 0,1,2. Further, Assertior(1) of Theorem 1.14 implies that also
d™ € Km4i1(A,b), m = 0,1,2. We continue by induction. Suppose thdt”, d™ € K,,41(A,b)
for m < j. SincerUth) = ) — o, AdY), it thus follows thatrU+1) e K;.4(A,b) (and, by the
above assertiofil), alsodV*tY ¢ Kjt+2(A,b)). We recall from assertio(B) of Theorem 1.14 that the
residualsr() are orthogonal to each other. Thus, the number of nonzeiduads (and hence the number
of iterations) is bounded above by the dimensioCof A, b).

A useful expression for this dimension is given in Lemma 11h8eed, we find thahe number of iterations

is at most the number of distinct eigenvalues of A. Further, ifb is expressed as a linear combination of
eigenvectors ofd with distinct eigenvalues, then the number of iterationsagnded above by the number
of nonzero terms in the linear combination.

Technique 1.20(Preconditioning). Often this technique reduces greatitork of the conjugate gradient
method. We change variables= P~'x, whereP is a nonsingulan x n matrix. Thus, instead ol = b,
we are solving the linear system" APz = P"b. Note that symmetry and positive definitenessiafmply
thatPT AP is also symmetric and positive definite. Therefore, we cauyagonjugate gradients to the new
equations. This results in the solutian hencex = Pz. This procedure is called thaeconditioned
conjugate gradient method and P is called thegoreconditioner.

The condition number x(A) of a symmetric, positive-definite matri is the ratio between the magnitude
of its largest and the least eigenvalue. The main idea isdo Biso thatx(P " AP) is much smaller than
Kk(A).

According to Application 1.19, the number of iterations bistmethod is at most the dimension of the
Krylov subspaceC,,(PT AP, P'b). Since(PTAP)P" = PT(APPT)/,j € Z,, andP is nonsingular,
we deduce thay € K,,,(APPT,b) iff PTy € K,,(PTAP,P"b). Therefore, the number of iterations
is bounded by the dimension &f,,,(APP T, b). [Actually it is useful to pick the matrixs = (PPT)~!
instead ofP, because one can reformulate the preconditioned conjggadient method for solvingx =

b so thatP is not required explicitly oncé' is available.]

The simplest useful choice & is diag A, because making the diagonal elementsisf-! equal to one
often causes the eigenvaluesif AP to be close to one. A more popular choice is to express S + E,
whereS is symmetric, positive definite]ose to A, (so thatE is ‘small’) andcan be Cholesky-factorized
easily. (For example,S might be a band matrix with small bandwidth.) In that case wamence with
the Cholesky factorization &§. The main expense in each step of the method is the computsti® 'y
for somey € R” but note that computing 'y is the same as solving a linear system with the mafix
which is cheap (e.g., once the Cholesky factorization has semputed).

For moderate: the Standard Form 1.16 usually provides an acceptably smialk of||r(")|| in far fewer
thann iterations and there is no need to precondition. Howeverdoy largen it is a very good practice
to precondition: the outcome is an exceedingly powerfubatgm.

There exist many other very effective iterative algorithersding themselves to a Krylov subspace inter-
pretation (GMRes, OrthoMin, ...), outside the scope of tioisrse.



