
Mathematical Tripos Part II
Lent 2005

Professor A. Iserles

Numerical Analysis – Lecture 41

Definition 1.17 (Krylov subspace). LetA be ann × n matrix,v ∈ R
n \ {0} andm ∈ N. The linear space

Km(A,v) = Span{Ajv : j = 0, 1, . . . ,m − 1} is said to be aKrylov subspace of R
n.

Lemma 1.18 (Properties of Krylov subspaces). Let δm be the dimension of the Krylov subspace Km(A,v).
The sequence {δm}m=1,2,... increases monotonically. Moreover, there exists k ∈ N with the following
property: for every m = 1, 2, . . . , k it is true that δm = m, while δm = k for m ≥ k.

Supposing further that v =
∑k̃

i=1 ciwi, where w1,w2, . . . ,wk̃ are eigenvectors of A corresponding to
distinct eigenvalues and c1, c2, . . . , ck̃ 6= 0, it is true that k = k̃.

Proof Clearly,Km(A,v) ⊆ Km+1(A,v), thereforeδm ≤ δm+1, m ∈ N. Moreover,δm ≤ n because
Km(A,v) ⊆ R

n. We further note thatδ1 = 1, sinceK1(A,v) = Span{v} andv 6= 0, andδm ≤ m,
because eachKm(A,v) is spanned bym vectors.

We setk as thegreatest integer such thatδk = k. Thereforeδm < m for m ≥ k + 1. In particular,
δk+1 ≤ k. But k = δk ≤ δk+1, thereforeδk+1 = δk andKk+1(A,v) = Kk(A,v). This implies that
Akv ∈ Kk(A,v): there existθ0, θ1, . . . , θk−1 such thatAkv =

∑k−1
j=0 θjA

jv. Consequently,

Ak+sv =
k−1
∑

j=0

θjA
j+sv, s = 0, 1, 2, . . . . (1.8)

It follows from (1.8) that ifAsv, As+1v, . . . As+k−1v ∈ Kk(A,v), then alsoAs+kv ∈ Kk(A,v). Since
the above is true fors = 0, it follows by induction thatAjv ∈ Kk(A,v) for all j ∈ Z+, consequently
Km(A,v) = Kk(A,v) (andδm = δk) for m ≥ k.

Suppose now thatv =
∑k̃

i=1 ciwi, where thewis are eigenvectors ofA with the corresponding distinct

eigenvaluesλi. ThenAjv =
∑k̃

i=1 ciλ
j
iwi, j ∈ Z+, and we deduce that

Kk(A,v) ⊆ Span{w1,w2, . . . ,wk̃}.

Since eigenvectors are linearly independent, we deducek ≤ k̃.

Assume next thatk < k̃. We have already proved thatδk̃ = δk, therefore the vectorsAjv, j = 0, 1, . . . , k̃−

1, are linearly dependent. In other words, there existα0, α1, . . . , αk̃−1, not all zero, so that
∑k̃−1

j=1 αjA
jv =

0. Therefore

0 =
k̃−1
∑

j=0

αjA
jv =

k̃−1
∑

j=0

αjA
j

k̃
∑

i=1

ciwi =
k̃−1
∑

j=0

αj

k̃
∑

i=1

ciλ
j
iwi =

k̃
∑

i=1

ci





k̃−1
∑

j=0

αjλ
j
i



 wi.

Since the eigenvectors are linearly independent andc1, c2, . . . , ck̃ 6= 0, we deduce from the above that

k̃−1
∑

j=0

αjλ
j
i = 0, i = 1, 2, . . . , k̃.

Consider the polynomialp(z) =
∑k̃−1

j=0 αjz
j , z ∈ C. Clearly,p 6≡ 0 andp is of degree at most̃k − 1. Yet,

we have just proved thatp(λi) = 0 for distinct valuesλ1, λ2, . . . , λk̃. This is a contradiction and we deduce
that the assumptionk < k̃ is false. Thereforek = k̃: the proof is complete. 2

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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Application 1.19 (The Krylov subspace of the conjugate gradient method). Thefirst two iterations of the
Standard Form 1.16 of the conjugate gradient method set

r(0) = b,

r(1) = r(0) − ω(0)Ad(0) = (I − ω(0)A)b,

r(2) = r(1) − ω(1)Ad(1) = r(1) − ω(1)A(r(1) + β(1)b) = [(I − ω(1)A)(I − ω(0)A) − ω(1)β(1)A]b.

Hencer(m) ∈ Km+1(A, b) for m = 0, 1, 2. Further, Assertion(1) of Theorem 1.14 implies that also
d(m) ∈ Km+1(A, b), m = 0, 1, 2. We continue by induction. Suppose thatr(m),d(m) ∈ Km+1(A, b)

for m ≤ j. Sincer(j+1) = r(j) − ω(j)Ad(j), it thus follows thatr(j+1) ∈ Kj+2(A, b) (and, by the
above assertion(1), alsod(j+1) ∈ Kj+2(A, b)). We recall from assertion(3) of Theorem 1.14 that the
residualsr(j) are orthogonal to each other. Thus, the number of nonzero residuals (and hence the number
of iterations) is bounded above by the dimension ofKn(A, b).

A useful expression for this dimension is given in Lemma 1.18. Indeed, we find thatthe number of iterations
is at most the number of distinct eigenvalues of A. Further, ifb is expressed as a linear combination of
eigenvectors ofA with distinct eigenvalues, then the number of iterations isbounded above by the number
of nonzero terms in the linear combination.

Technique 1.20(Preconditioning). Often this technique reduces greatly the work of the conjugate gradient
method. We change variables,x̃ = P−1x, whereP is a nonsingularn×n matrix. Thus, instead ofAx = b,
we are solving the linear systemP>AP x̃ = P>b. Note that symmetry and positive definiteness ofA imply
thatP>AP is also symmetric and positive definite. Therefore, we can apply conjugate gradients to the new
equations. This results in the solutioñx, hencex = P x̃. This procedure is called thepreconditioned
conjugate gradient method andP is called thepreconditioner.

Thecondition number κ(A) of a symmetric, positive-definite matrixA is the ratio between the magnitude
of its largest and the least eigenvalue. The main idea is to pick P so thatκ(P>AP ) is much smaller than
κ(A).

According to Application 1.19, the number of iterations of this method is at most the dimension of the
Krylov subspaceKn(P>AP,P>b). Since(P>AP )jP> = P>(APP>)j , j ∈ Z+, andP is nonsingular,
we deduce thaty ∈ Km(APP>, b) iff P>y ∈ Km(P>AP,P>b). Therefore, the number of iterations
is bounded by the dimension ofKm(APP>, b). [Actually it is useful to pick the matrixS = (PP>)−1

instead ofP , because one can reformulate the preconditioned conjugategradient method for solvingAx =
b so thatP is not required explicitly onceS is available.]

The simplest useful choice ofS is diag A, because making the diagonal elements ofAS−1 equal to one
often causes the eigenvalues ofP>AP to be close to one. A more popular choice is to expressA = S +E,
whereS is symmetric, positive definite,close to A, (so thatE is ‘small’) andcan be Cholesky-factorized
easily. (For example,S might be a band matrix with small bandwidth.) In that case we commence with
the Cholesky factorization ofS. The main expense in each step of the method is the computation of S−1y

for somey ∈ R
n but note that computingS−1y is the same as solving a linear system with the matrixS,

which is cheap (e.g., once the Cholesky factorization has been computed).

For moderaten the Standard Form 1.16 usually provides an acceptably smallvalue of‖r(m)‖ in far fewer
thann iterations and there is no need to precondition. However, for very largen it is a very good practice
to precondition: the outcome is an exceedingly powerful algorithm.

There exist many other very effective iterative algorithmslending themselves to a Krylov subspace inter-
pretation (GMRes, OrthoMin, . . . ), outside the scope of thiscourse.
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