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2 Eigenvalues and eigenvectors

Remarks 2.1(Introduction to matrix eigenvalue calculations). LetA be a realn×n matrix. The eigenvalue
equation isAw = λw, whereλ is a scalar, which may be complex ifA is not symmetric. There exists
a nonzero vectorw ∈ R

n satisfying this equation if and only ifdet(A − λI) = 0. The functionp(λ) =
det(A − λI), λ ∈ C, is a polynomial of degreen, but calculating the eigenvalues by finding the roots ofp
is a disaster area because of loss of accuracy due to roundingerrors.
If the polynomial has some multiple roots and ifA is not symmetric, then the number of linearly independent
eigenvectors may be fewer thann, but there are alwaysn mutually orthogonal real eigenvectors in the
symmetric case. We assume in all cases, however, that the eigenvalue equationsAwj = λjwj , j =
1, 2, . . . , n, are satisfied by eigenvectorswj , j = 1, 2, . . . , n, that are linearly independent, which can be
achieved by making an arbitrarily small change toA if necessary.

Method 2.2 (The power method). The iterative algorithms that will be studied for the calculation of eigen-
values and eigenvectors are all closely related to the powermethod, which has the following basic form for
generating a single eigenvalue and eigenvector ofA.

We pick a nonzero vectorx(0) in R
n. Then, fork = 0, 1, 2, . . ., we letx(k+1) be a nonzero multiple of

Ax
(k), typically

x
(k+1) = Ax

(k)/‖Ax
(k)‖, k = 0, 1, 2, . . . .

Note thatx(k) ∈ Kk+1(A,x(0)).
If x

(k) were an eigenvector ofA, thenx
(k+1) would be a multiple ofx(k). Therefore the calculation is

terminated if this condition is achieved up to sufficient accuracy. Herewith the details of an implementation
of the procedure.

0. Pickx
(0) ∈ R

n satisfying‖x(0)‖ = 1. Let ε be a small positive tolerance. Setk = 0.

1. Calculatex̃(k+1) = Ax
(k) and find the real numberλ that minimizesf(λ) = ‖x̃(k+1) − λx

(k)‖.

2. Acceptλ as an eigenvalue and̃x(k+1) as the corresponding eigenvector iff(λ) ≤ ε.

3. Otherwise, letx(k+1) = x̃
(k+1)/‖x̃(k+1)‖, increasek by one and go back to1.

A useful starting point in the analysis of this algorithm is to expressx(0) as a linear combination of the
eigenvectors ofA.

Theorem 2.3 (Termination of the power method). If A has n eigenvalues of different magnitude then the
implementation in the previous paragraph terminates.

Proof Let the eigenvalue equations beAwj = λjwj , j = 1, 2, . . . , n, where|λ1| < |λ2| < · · · < |λn|.
We expressx(0) in the formx

(0) =
∑n

j=1 θjwj , and letm be the largest integer in{1, . . . , n} such that

θm 6= 0. Thenx
(k) is a multiple ofAk

x
(0) =

∑m

j=1 θjλ
k
j wj . Hence, after1 of the implementation, the

formulax
(k) = Ak

x
(0)/‖Ak

x
(0)‖ provides

‖x̃(k+1) − λx
(k)‖ = min

η
‖x̃(k+1) − ηx

(k)‖ ≤ ‖x̃(k+1) − λmx
(k)‖ = ‖Ax

(k) − λmx
(k)‖

=
‖
∑m

j=1 θjλ
k+1
j wj − λm

∑m

j=1 θjλ
k
j wj‖

‖
∑m

j=1 θjλk
j wj‖

=
‖
∑m−1

j=1 θj(λj − λm)(λj/λm)k
wj‖

‖
∑m

j=1 θj(λj/λm)k
wj‖

.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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We see that, ask → ∞, the numerator and denominator of the right hand side tend to0 and‖θmwm‖,
respectively, which implies‖x̃(k+1) − λx

(k)‖ → 0. Therefore termination occurs. 2

Discussion 2.4(Deficiencies of the power method). The power method may perform adequately ifθn 6=0
and|λn−1| < |λn|, where we are using the notation of Theorem 2.3, but often it is unacceptably slow. The
difficulty of θn = 0 is that computer rounding errors can introduce a small nonzero component ofwn into
the sequencex(k), k = 0, 1, 2, . . ., and thenwn may be found eventually, but one has to wait for the small
component to grow. Moreover,|λn−1| = |λn| is not uncommon whenA is real and nonsymmetric, because
the spectral radius ofA may be due to a complex conjugate pair of eigenvalues. The technique of the next
paragraph is designed for that case. Then the use ofshifts will be studied, because they can be highly useful,
particularly in the more efficient methods for eigenvalue calculations that will be considered later.

Algorithm 2.5 (Pairs of eigenvalues). Let Method 2.2 be applied when the eigenvalues ofA are in in-
creasing order of magnitude and satisfy|λn−2| < |λn−1| = |λn| andλn−1 6= λn. We assumex(0) =
∑n

j=1 θjwj , where bothθn−1 andθn are nonzero. Then, ask → ∞, the vectorsx(k), x
(k+1) andx

(k+2)

tend to be linearly dependent, because they tend to lie in thetwo-dimensional space spanned bywn−1 and
wn. This is true even ifλn−1 andλn have nonzero imaginary parts butx

(0) ∈ R
n (and hence the entire

calculation can be carried out in real atithmetic, an important advantage).

The two-stage power method is a development of Method 2.2 for this situation, typical details being given
in the following implementation.

0. Pickx
(0) ∈ R

n satisfying‖x(0)‖ = 1. Let 0 < ε ¿ 1. Setk = 0 andx̃
(1) = Ax

(0).

1. Calculatex̃(k+2) = Ax̃
(k+1) andα, β that minimizef(α, β) = ‖x̃(k+2) + αx̃

(k+1) + βx
(k)‖.

2. If f(α, β) ≤ ε, solveλ2 + αλ + β = 0 and let its roots beλ+ andλ
−

. They are accepted as
eigenvalues ofA, estimating their eigenvectors asx̃

(k+1) − λ
−

x
(k) andx̃

(k+1) − λ+x
(k), respectively.

3. Otherwise, scalex(i) = x̃
(i)/‖x̃(i)‖, i = k + 1, k + 2, increasek by one and return to1.

Step2 is justified by the eigenvalue equation

0 = x̃
(k+2) + αx̃

(k+1) + βx
(k) = x̃

(k+2) − (λ+ + λ
−

)x̃(k+1) + λ+λ
−

x
(k).

Hence, for example,A(x̃(k+1) − λ+x
(k)) = x̃

(k+2) − λ+x̃
(k+1) = λ

−
(x̃(k+1) − λ+x

(k)) andx̃
(k+1) −

λ+x
(k) is an eigenvector corresponding toλ

−
.

Technique 2.6(The power method with shifts). This technique is based on the elementary remark that the
eigenvectors ofA − sI, s ∈ R, are also eigenvectors ofA. Specifically, thepower method with shifts is
Method 2.2, except that1 and2 of the implementation are replaced by

1. Chooses(k) ∈ R and letx̃(k+1) = (A − s(k)I)x(k). Findλ minimizingf(λ) = ‖x̃(k+1) − λx
(k)‖.

2. Acceptλ + s(k) as an eigenvalue and̃x(k) as an eigenvector iff(λ) ≤ ε.

The reason for the new step2 is thatf(λ) = 0 implies thatx(k) satisfiesAx
(k) = (λ + s(k))x(k).

It follows from the expansionx(0) =
∑n

j=1 θjwj , introduced already, thatx(k+1) is a multiple of

k
∏

l=0

(A − s(l)I)x(0) =
n

∑

j=1

θj

[

k
∏

l=0

(λj − s(l))

]

wj .

Therefore, if we are seeking the eigenvectorwn andθn 6= 0, then it is suitable to employ shifts that render
∣

∣

∣

∏k

l=0(λj − s(l))/(λn − s(l))
∣

∣

∣
, j = 1, 2, . . . , n− 1, very small. Occasionally some good choices are clear.

For example, if it is known thatA hasn − 1 real eigenvalues in the interval[100, 101] and thatλn exceeds
101, then a shift ofs(k) = 100.5 for everyk would be very useful. Another possibility is that the difference
betweeñx(k+1) and the required eigenvector may be dominated by just one other eigenvector, and then the
shift should be an estimate of the eigenvalue of this other eigenvector.
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