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Numerical Analysis — Lecture 5

2 Eigenvalues and eigenvectors

Remarks 2.1(Introduction to matrix eigenvalue calculations). l4&be a reah x n matrix. The eigenvalue
equation isAw = Aw, where) is a scalar, which may be complexAf is not symmetric. There exists
a nonzero vectow € R" satisfying this equation if and only iffet(A — AI) = 0. The functionp(\) =
det(A — \I), A € C, is a polynomial of degree, but calculating the eigenvalues by finding the rootg of
is a disaster area because of loss of accuracy due to rouaong.

If the polynomial has some multiple roots andlifs not symmetric, then the number of linearly independent
eigenvectors may be fewer than but there are always mutually orthogonal real eigenvectors in the
symmetric case. We assume in all cases, however, that teeveige equationslw; = A\jw;, j =
1,2,...,n, are satisfied by eigenvectous;, j = 1,2,...,n, that are linearly independent, which can be
achieved by making an arbitrarily small changedtdf necessary.

Method 2.2 (The power method). The iterative algorithms that will bedétd for the calculation of eigen-
values and eigenvectors are all closely related to the pove#nod, which has the following basic form for
generating a single eigenvalue and eigenvectof.of

We pick a nonzero vectae(?) in R™. Then, fork = 0,1,2,..., we letz(**1) be a nonzero multiple of
Az®) | typically

) = Azx® /| A2®|,  k=0,1,2,....
Note thatz(®) € Kp, 1 (A, ().
If =(*) were an eigenvector of, thenz(*+1) would be a multiple of:(*). Therefore the calculation is
terminated if this condition is achieved up to sufficientwecy. Herewith the details of an implementation
of the procedure.

0. Pickx(®) € R" satisfying||z(?)|| = 1. Lete be a small positive tolerance. Set= 0.

1. Calculatez**1) = Az(*) and find the real numberthat minimizesf(\) = [|z** — xaz®)].

2. Accept) as an eigenvalue arigf“™!) as the corresponding eigenvectofif\) < e.

3. Otherwise, letc®+1) = z(*+1) /)| (**1)|| ‘increase: by one and go back tb.
A useful starting point in the analysis of this algorithm dsexpresse(?) as a linear combination of the
eigenvectors ofl.
Theorem 2.3 (Termination of the power method). If A has n eigenvalues of different magnitude then the
implementation in the previous paragraph terminates.
Proof Let the eigenvalue equations Bev; = \jw;, j = 1,2,...,n, where|\;| < || < -+ < |A,|.
We express:() in the forma(®) = 37", 6;w;, and letm be the largest integer ifil, ..., n} such that
Om # 0. Thenz*) is a multiple of A*2(©) = 37 | 6; kw;. Hence, afted of the implementation, the
formulaxz®) = A*2©) /|| A*2©)|| provides

80+ — A2 = min 20+ — gz ®) | < ) — A2 = 42 ~ A,z
n
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We see that, a8 — oo, the numerator and denominator of the right hand side teridand ||0,,,w,, ||,
respectively, which impliegz** — xz(*)|| — 0. Therefore termination occurs. o

Discussion 2.4Deficiencies of the power method). The power method mayparaidequately i8,, # 0
and|\,_1| < |A\.|, where we are using the notation of Theorem 2.3, but oftenuhiacceptably slow. The
difficulty of #,, = 0 is that computer rounding errors can introduce a small nrengemponent ofv,, into

the sequence®, k = 0,1, 2, ..., and therw,, may be found eventually, but one has to wait for the small
component to grow. Moreover\,,_;| = |A,,| is not uyncommon whed is real and nonsymmetric, because
the spectral radius od may be due to a complex conjugate pair of eigenvalues. Tiwmigee of the next
paragraph is designed for that case. Then the ustfté will be studied, because they can be highly useful,
particularly in the more efficient methods for eigenvalukegiations that will be considered later.

Algorithm 2.5 (Pairs of eigenvalues). Let Method 2.2 be applied when thersialues ofA are in in-
creasing order of magnitude and satigly, »| < [A,_1| = || @andX,_1 # \,. We assume:(®) =
>, 0;w;, where both,, _, andd,, are nonzero. Then, ds— oo, the vectorse®) | z(k+1) andg(k+2)
tend to be linearly dependent, because they tend to lie imtbhalimensional space spanneddpy,_, and
w,,. This is true even if\,,_; and\,, have nonzero imaginary parts bt € R” (and hence the entire
calculation can be carried out in real atithmetic, an impatradvantage).

Thetwo-stage power method is a development of Method 2.2 for this situation, typicaiaile being given
in the following implementation.

0. Pickz(®) e R" satisfying||z© || = 1. Let0 < ¢ < 1. Setk = 0 andz") = Az,
1. Calculatez**? = 42**+Y anda, 3 that minimizef (o, 8) = |2*? + az®**+Y + gz ®)||.

2. If f(a,B) < &, solve)? + aX+ B = 0 and let its roots be\, and\_. They are accepted as
eigenvalues ofi, estimating their eigenvectors a8+t — \_z® andzV) — Az, respectively.

3. Otherwise, scale® = 2V /|29 ||, i = k + 1, k + 2, increase: by one and return ta.
Step?2 is justified by the eigenvalue equation

0=az"? 4oz 4 ga® = g*+2) _ (A, + 2 )&* ) LA Az,

Hence, for exampled (2“1 — X a®)) = g+ — X g+ = x_(@*+) -\ 2®) andz*+ —
A,z is an eigenvector correspondingXa.

Technique 2.6(The power method with shifts). This technique is based eretamentary remark that the
eigenvectors ofA — s, s € R, are also eigenvectors of. Specifically, thepower method with shifts is
Method 2.2, except thdtand?2 of the implementation are replaced by

1. Chooses™®) € R and letz**) = (A — s*) 1)2(®), Find A minimizing () = [|&*+Y — Az®)||.
2. Accept) + s(¥) as an eigenvalue arel® as an eigenvector jf(\) < e.
The reason for the new st&gds thatf(\) = 0 implies thatz*) satisfiesdz*) = (X + s(F))z*),

It follows from the expansion(® = 3", 0w, introduced already, that**) is a multiple of

k
H(A—s(l (0)—29 [HA — s )] w;.
=0 j=1 1=0
Therefore, if we are seeking the eigenveaigy andd,, # 0, then it is suitable to employ shifts that render
[Ty — D)/ (O, — s(l))‘,j =1,2,...,n—1, very small. Occasionally some good choices are clear.

For example, if it is known thatl hasn — 1 real eigenvalues in the intervglo0, 101] and that\,, exceeds
101, then a shift 0§*) = 100.5 for everyk would be very useful. Another possibility is that the diéface
betweenz**1) and the required eigenvector may be dominated by just orez etgenvector, and then the
shift should be an estimate of the eigenvalue of this ottgareiector.
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