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Method 2.7 (Inverse iteration). This method is highly useful in praeti It is similar to the power method
2.2, except that, instead ef**+1) being a multiple ofAz(*), we make the choice

(A — A)z* YD = scalar multiple ofe™™,  k=0,1,..., (2.1)

where ) is a scalar that may depend @n Therefore the calculation at*t1) from x(*) requires the
solution of ann x n system of linear equations whose matrixdis- A\I. Further, if) is a constant and if
A — M is nonsingular, we deduce from (2.1) thet 1) is a multiple of(A — A\I)~#~ 1),

We again letz(®) = >j—10jw;, as in the proof of Theorem 2.3, assuming thgt j = 1,2,...,n, are
linearly independent eigenvectors dfthat satisfyAw; = A;w;. Therefore we note that the eigenvalue
equation impliegA — Al)w; = (\; — A)w;, which in turn implies(4A — AT)'w; = (\; — \) " 'w;,. It
follows thatz*+1) is a multiple of

(A=)~ Zo (A=AD)*lw; =360, — )71
j=1

Thus, if thelth number in the sef|\; — Al :j=1,2,...,n}is smaller than the rest anddf is nonzero,
thenz(*+1 tends to be a multiple ab; ask — oo. We see that the speed of convergence can be excellent
if \ is very close to\;. Further, it can be made even faster by adjusfirduring the calculation. Typical
details are given in the following implementation.

Algorithm 2.8 (Typical implementation of inverse iteration)

0. Set) to an estimate of an eigenvalue4f Either prescribe:(?) 0 or let it be chosen automatically
in 3. Let0 < ¢ <« 1 and set = 0.

1. Calculate (with pivoting if necessary) the LU factorizatiof A — \I.

2. Stop if U is singular because thehis an eigenvalue ofl, while its eigenvector is any vector in the
null space ofU: it can be found easily/ being upper triangular.

3. If £ = 0 and unlesse(”) has been prescribed, defing!) by Uz() = e;, wheree; is theith
coordinate vector, and whetés defined by the property théll/; ;| is the smallest modulus of a diagonal
element of/. Further, we set(®) = Le;, in order to satisff A — Az = z(©),

Fork > 1 1 is calculated by solvingA — A\I)z*+1) = LUz*+1 = () which is straightforward
using the LU factorization from.

4. Setn to the number that minimizeg(n) = ||z*) — nz*+1)|.

5. Stop if f(1) < elle®* V). Sincef(n) = ||[(A — M)~ [A — (n + A)I]=®)||, we let\ + 1 be the
calculated eigenvalue of andx*+1) /||z(*+1) || be its eigenvector.

6. Otherwise, replace**") by (*+1)/||z(*+1)| increasek by one, and either return ® without
changlngA or to 1 after replacmgx by A+ 7.

Remark 2.9 (Further on inverse iteration). Algorithm 2.8 is very effiot if A is anupper Hessenberg
matrix: every element ofd under the first subdiagonal is zero (i4,; = 0, j < i —2). In this case the LU
factorization inl requires justO(n?) or O(n) when A is nonsymmetric or symmetric, respectively. Thus

the replacement of by A+ 7 in 6 need not be expensive, so fast convergence can often beedeasily.

1please email all corrections and suggestions to these mofes ser | es@lant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / www. dant p. cam ac. uk/ user/ na/ Part ||/ Handouts. htm .
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There are standard ways of giviagthis convenient form which will be considered later. Thisl@ur next
topic, deflation,depend on the following basic result.

Theorem 2.10 Let A and S ben x n matrices,S being nonsingular. Theq is an eigenvector ofi with
eigenvalue) if and only if Sw is an eigenvector af AS ! with the same eigenvalue.

Proof
Aw = dw & ASTHSw) = \w & (SAS™H(Sw) = A(Sw).
O

Definition 2.11 (Deflation). Suppose that we have found one solution of thersiector equatiodw =
Aw, whereA is againn x n. Thendeflationis the task of constructing am — 1) x (n — 1) matrix, B
say, whose eigenvalues are the other eigenvalues @pecifically, we apply a similarity transformation
S to A such that the first column f AS—1! is \ times the first coordinate vector, because it follows from
the characteristic equation for eigenvalues and from Tdrad2.10 that we can IgB be the bottom right
(n—1) x (n — 1) submatrix ofSAS~1.

We write the condition ors as(SAS~!)e; = \e;. Therefore the last part of the proof of Theorem 2.10
shows that it is sufficient it has the propertyw = ce;, wherec is any nonzero scalar.

Technique 2.1 Algorithm for deflation for symmetriel). Suppose thatl is symmetric andv € R™\ {0},

A € R are given so thalw = \w. We seek a nonsingular matri such thatSw = ce; and such that
SAS~1is also symmetric. The last condition holdsSifis orthogonal, since thesi—' = ST. It is suitable

to pick aHouseholder reflectiorwhich means tha$ has the forn? — 2uu ' /||u||?, whereu € R™ \ {0}.
Specifically, we recall from th®3 Numerical Analysiscourse that Householder reflections are orthogonal
and that, for any nonzer@ € R", a real vectomr can be found with the property

.
(1-2%) w = £|wlle;. (2.2)
[
Thus, we letu; = w; fori = 2,3,...,n and choose; so thau " w = ||ul|?. Since
T T
<I—2&2>w:w—2u u;u:w—u,
] [

it follows that (2.2) holds for components= 2,3, ..., n. Finally, we compute:; so that2u ' w = |jul|?
is true. Since for ouw it is true thatu"w = ||w||? + (viw; — w?) and||u|? = |w|? + u? — w?, we
deduce that? — 2uyw; + wi = |wl|?, henceu; = w; + ||w]|| and (2.2) is obeyed also for= 1.

Since the bottom — 1 components oft andw coincide, the calculation af requires onlyO(n) computer
operations. Further, the calculation §#4.5—! can be done in onlyo(n2) operations, taking advantage
of the formS = I — 2uu' /|lu|?, even if all the elements oft are nonzero. After deflation, we may
find an eigenvectonp say, of SAS—!. Then the corresponding eigenvectorAfgiven in Theorem 2.10,
is S~y = S, because Householder matrices, like all symmetric orthagmatrices, ar@nvolutions:
S? =1.

Technique 2.13(Algorithm for deflation whem is nonsymmetric). There is a faster algorithm for deflation
in the nonsymmetric case (of course, it applies also to symermeatrices). Letw;, i = 1,2, ..., n, be the
components of the eigenvectarand assume; # 0 (which can be achieved by reordering the variables if
necessary). Further, we I§tbe then x n matrix whose elements agree with those ofithen unit matrix,
except that the off-diagonal part of the first columnSolhas the elementS;; = —w;/w1,i = 2,3,...,n.
Then S is nonsingular and has the propelSyv = wse;, S0 it is suitable for our purpose. Moreover,
the elements o' also agree with those of the x n unit matrix, except thatS—'), 1 = +w; /w1,

i =2,3,...,n. These forms of5 and.S—! allow the calculation o65A4S5~!, and henceB, to be done in
only O(n?) operations. Further, because the kast 1 columns ofSAS~! and of SA are the samef3 is
just the bottom rightn — 1) x (n — 1) submatrix ofSA. Therefore, for every integar< i < n — 1 we
form theith row of B in the following way: subtract; /w; times the first row ofd from the (i + 1)th row

of A, and ignore the first component of the resultant row vector.

12



