Numerical Analysis – Lecture 6¹

Method 2.7 (Inverse iteration). This method is highly useful in practice. It is similar to the power method 2.2, except that, instead of $x^{(k+1)}$ being a multiple of $Ax^{(k)}$, we make the choice

$$(A - \hat{\lambda}I)\boldsymbol{x}^{(k+1)} = \text{ scalar multiple of } \boldsymbol{x}^{(k)}, \qquad k = 0, 1, \dots,$$
(2.1)

where $\hat{\lambda}$ is a scalar that may depend on k. Therefore the calculation of $\boldsymbol{x}^{(k+1)}$ from $\boldsymbol{x}^{(k)}$ requires the solution of an $n \times n$ system of linear equations whose matrix is $A - \hat{\lambda}I$. Further, if $\hat{\lambda}$ is a constant and if $A - \hat{\lambda}I$ is nonsingular, we deduce from (2.1) that $\boldsymbol{x}^{(k+1)}$ is a multiple of $(A - \hat{\lambda}I)^{-k-1}\boldsymbol{x}^{(0)}$.

We again let $\boldsymbol{x}^{(0)} = \sum_{j=1}^{n} \theta_j \boldsymbol{w}_j$, as in the proof of Theorem 2.3, assuming that \boldsymbol{w}_j , j = 1, 2, ..., n, are linearly independent eigenvectors of A that satisfy $A\boldsymbol{w}_j = \lambda_j \boldsymbol{w}_j$. Therefore we note that the eigenvalue equation implies $(A - \hat{\lambda}I)\boldsymbol{w}_j = (\lambda_j - \hat{\lambda})\boldsymbol{w}_j$, which in turn implies $(A - \hat{\lambda}I)^{-1}\boldsymbol{w}_j = (\lambda_j - \hat{\lambda})^{-1}\boldsymbol{w}_j$. It follows that $\boldsymbol{x}^{(k+1)}$ is a multiple of

$$(A - \hat{\lambda}I)^{-k-1} \boldsymbol{x}^{(0)} = \sum_{j=1}^{n} \theta_j (A - \hat{\lambda}I)^{-k-1} \boldsymbol{w}_j = \sum_{j=1}^{n} \theta_j (\lambda_j - \hat{\lambda})^{-k-1} \boldsymbol{w}_j.$$

Thus, if the *l*th number in the set $\{|\lambda_j - \hat{\lambda}| : j = 1, 2, ..., n\}$ is smaller than the rest and if θ_l is nonzero, then $\boldsymbol{x}^{(k+1)}$ tends to be a multiple of \boldsymbol{w}_l as $k \to \infty$. We see that the speed of convergence can be excellent if $\hat{\lambda}$ is very close to λ_l . Further, it can be made even faster by adjusting $\hat{\lambda}$ during the calculation. Typical details are given in the following implementation.

Algorithm 2.8 (Typical implementation of inverse iteration)

0. Set $\hat{\lambda}$ to an estimate of an eigenvalue of A. Either prescribe $\mathbf{x}^{(0)} \neq \mathbf{0}$ or let it be chosen automatically in **3**. Let $0 < \varepsilon \ll 1$ and set k = 0.

1. Calculate (with pivoting if necessary) the LU factorization of $A - \hat{\lambda}I$.

2. Stop if U is singular because then $\hat{\lambda}$ is an eigenvalue of A, while its eigenvector is any vector in the null space of U: it can be found easily, U being upper triangular.

3. If k = 0 and unless $\boldsymbol{x}^{(0)}$ has been prescribed, define $\boldsymbol{x}^{(1)}$ by $U\boldsymbol{x}^{(1)} = \boldsymbol{e}_i$, where \boldsymbol{e}_i is the *i*th coordinate vector, and where *i* is defined by the property that $|U_{i,i}|$ is the smallest modulus of a diagonal element of *U*. Further, we set $\boldsymbol{x}^{(0)} = L\boldsymbol{e}_i$, in order to satisfy $(A - \lambda I)\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)}$.

For $k \ge 1 \mathbf{x}^{(k+1)}$ is calculated by solving $(A - \hat{\lambda}I)\mathbf{x}^{(k+1)} = LU\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}$, which is straightforward using the LU factorization from **1**.

4. Set η to the number that minimizes $f(\eta) = \| \boldsymbol{x}^{(k)} - \eta \boldsymbol{x}^{(k+1)} \|$.

5. Stop if $f(\eta) \leq \varepsilon \| \boldsymbol{x}^{(k+1)} \|$. Since $f(\eta) = \| (A - \hat{\lambda}I)^{-1} [A - (\eta + \hat{\lambda})I] \boldsymbol{x}^{(k)} \|$, we let $\hat{\lambda} + \eta$ be the calculated eigenvalue of A and $\boldsymbol{x}^{(k+1)} / \| \boldsymbol{x}^{(k+1)} \|$ be its eigenvector.

6. Otherwise, replace $x^{(k+1)}$ by $x^{(k+1)}/||x^{(k+1)}||$, increase k by one, and either return to 3 without changing $\hat{\lambda}$ or to 1 after replacing $\hat{\lambda}$ by $\hat{\lambda} + \eta$.

Remark 2.9 (Further on inverse iteration). Algorithm 2.8 is very efficient if A is an *upper Hessenberg* matrix: every element of A under the first subdiagonal is zero (i.e. $A_{i,j} = 0, j \le i-2$). In this case the LU factorization in **1** requires just $\mathcal{O}(n^2)$ or $\mathcal{O}(n)$ when A is nonsymmetric or symmetric, respectively. Thus the replacement of $\hat{\lambda}$ by $\hat{\lambda} + \eta$ in **6** need not be expensive, so fast convergence can often be achieved easily.

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

There are standard ways of giving A this convenient form which will be considered later. This and our next topic, *deflation*, depend on the following basic result.

Theorem 2.10 Let A and S be $n \times n$ matrices, S being nonsingular. Then w is an eigenvector of A with eigenvalue λ if and only if Sw is an eigenvector of SAS^{-1} with the same eigenvalue.

Proof

$$A\boldsymbol{w} = \lambda \boldsymbol{w} \qquad \Leftrightarrow \qquad AS^{-1}(S\boldsymbol{w}) = \lambda \boldsymbol{w} \qquad \Leftrightarrow \qquad (SAS^{-1})(S\boldsymbol{w}) = \lambda(S\boldsymbol{w}).$$

Definition 2.11 (Deflation). Suppose that we have found one solution of the eigenvector equation $Aw = \lambda w$, where A is again $n \times n$. Then *deflation* is the task of constructing an $(n-1) \times (n-1)$ matrix, B say, whose eigenvalues are the other eigenvalues of A. Specifically, we apply a similarity transformation S to A such that the first column of SAS^{-1} is λ times the first coordinate vector, because it follows from the characteristic equation for eigenvalues and from Theorem 2.10 that we can let B be the bottom right $(n-1) \times (n-1)$ submatrix of SAS^{-1} .

We write the condition on S as $(SAS^{-1})e_1 = \lambda e_1$. Therefore the last part of the proof of Theorem 2.10 shows that it is sufficient if S has the property $Sw = ce_1$, where c is any nonzero scalar.

Technique 2.12 (Algorithm for deflation for symmetric A). Suppose that A is symmetric and $w \in \mathbb{R}^n \setminus \{0\}$, $\lambda \in \mathbb{R}$ are given so that $Aw = \lambda w$. We seek a nonsingular matrix S such that $Sw = ce_1$ and such that SAS^{-1} is also symmetric. The last condition holds if S is orthogonal, since then $S^{-1} = S^{\top}$. It is suitable to pick a *Householder reflection*, which means that S has the form $I - 2uu^{\top}/||u||^2$, where $u \in \mathbb{R}^n \setminus \{0\}$. Specifically, we recall from the **D3 Numerical Analysis** course that Householder reflections are orthogonal and that, for any nonzero $w \in \mathbb{R}^n$, a real vector u can be found with the property

$$\left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right)\boldsymbol{w} = \pm \|\boldsymbol{w}\|\boldsymbol{e}_1.$$
(2.2)

Thus, we let $u_i = w_i$ for i = 2, 3, ..., n and choose u_1 so that $2u^{\top}w = ||u||^2$. Since

$$\left(I-2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^{2}}\right)\boldsymbol{w}=\boldsymbol{w}-2\frac{\boldsymbol{u}^{\top}\boldsymbol{w}}{\|\boldsymbol{u}\|^{2}}\boldsymbol{u}=\boldsymbol{w}-\boldsymbol{u},$$

it follows that (2.2) holds for components i = 2, 3, ..., n. Finally, we compute u_1 so that $2\mathbf{u}^\top \mathbf{w} = ||\mathbf{u}||^2$ is true. Since for our \mathbf{u} it is true that $\mathbf{u}^\top \mathbf{w} = ||\mathbf{w}||^2 + (u_1w_1 - w_1^2)$ and $||\mathbf{u}||^2 = ||\mathbf{w}||^2 + u_1^2 - w_1^2$, we deduce that $u_1^2 - 2u_1w_1 + w_1^2 = ||\mathbf{w}||^2$, hence $u_1 = w_1 \pm ||\mathbf{w}||$ and (2.2) is obeyed also for i = 1.

Since the bottom n-1 components of u and w coincide, the calculation of u requires only $\mathcal{O}(n)$ computer operations. Further, the calculation of SAS^{-1} can be done in only $\mathcal{O}(n^2)$ operations, taking advantage of the form $S = I - 2uu^{\top} / ||u||^2$, even if all the elements of A are nonzero. After deflation, we may find an eigenvector, \hat{w} say, of SAS^{-1} . Then the corresponding eigenvector of A, given in Theorem 2.10, is $S^{-1}\hat{w} = S\hat{w}$, because Householder matrices, like all symmetric orthogonal matrices, are *involutions*: $S^2 = I$.

Technique 2.13 (Algorithm for deflation when A is nonsymmetric). There is a faster algorithm for deflation in the nonsymmetric case (of course, it applies also to symmetric matrices). Let w_i , i = 1, 2, ..., n, be the components of the eigenvector w and assume $w_1 \neq 0$ (which can be achieved by reordering the variables if necessary). Further, we let S be the $n \times n$ matrix whose elements agree with those of the $n \times n$ unit matrix, except that the off-diagonal part of the first column of S has the elements $S_{i1} = -w_i/w_1$, i = 2, 3, ..., n. Then S is nonsingular and has the property $Sw = w_1e_1$, so it is suitable for our purpose. Moreover, the elements of S^{-1} also agree with those of the $n \times n$ unit matrix, except that $(S^{-1})_{i,1} = +w_i/w_1$, i = 2, 3, ..., n. These forms of S and S^{-1} allow the calculation of SAS^{-1} , and hence B, to be done in only $\mathcal{O}(n^2)$ operations. Further, because the last n - 1 columns of SAS^{-1} and of SA are the same, B is just the bottom right $(n - 1) \times (n - 1)$ submatrix of SA. Therefore, for every integer $1 \le i \le n - 1$ we form the *i*th row of B in the following way: subtract w_i/w_1 times the first row of A from the (i + 1)th row of A, and ignore the first component of the resultant row vector.