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Method 2.7 (Inverse iteration). This method is highly useful in practice. It is similar to the power method
2.2, except that, instead ofx

(k+1) being a multiple ofAx
(k), we make the choice

(A − λ̂I)x(k+1) = scalar multiple ofx(k), k = 0, 1, . . . , (2.1)

where λ̂ is a scalar that may depend onk. Therefore the calculation ofx(k+1) from x
(k) requires the

solution of ann × n system of linear equations whose matrix isA − λ̂I. Further, ifλ̂ is a constant and if
A − λ̂I is nonsingular, we deduce from (2.1) thatx

(k+1) is a multiple of(A − λ̂I)−k−1
x

(0).

We again letx(0) =
∑n

j=1 θjwj , as in the proof of Theorem 2.3, assuming thatwj , j = 1, 2, . . . , n, are
linearly independent eigenvectors ofA that satisfyAwj = λjwj . Therefore we note that the eigenvalue
equation implies(A − λ̂I)wj = (λj − λ̂)wj , which in turn implies(A − λ̂I)−1

wj = (λj − λ̂)−1
wj . It

follows thatx(k+1) is a multiple of

(A − λ̂I)−k−1
x

(0) =
n

∑

j=1

θj(A − λ̂I)−k−1
wj =

n
∑

j=1

θj(λj − λ̂)−k−1
wj .

Thus, if thelth number in the set{|λj − λ̂| : j = 1, 2, . . . , n} is smaller than the rest and ifθl is nonzero,
thenx

(k+1) tends to be a multiple ofwl ask → ∞. We see that the speed of convergence can be excellent
if λ̂ is very close toλl. Further, it can be made even faster by adjustingλ̂ during the calculation. Typical
details are given in the following implementation.

Algorithm 2.8 (Typical implementation of inverse iteration)

0. Setλ̂ to an estimate of an eigenvalue ofA. Either prescribex(0) 6= 0 or let it be chosen automatically
in 3. Let 0 < ε ¿ 1 and setk = 0.

1. Calculate (with pivoting if necessary) the LU factorization of A − λ̂I.

2. Stop if U is singular because then̂λ is an eigenvalue ofA, while its eigenvector is any vector in the
null space ofU : it can be found easily,U being upper triangular.

3. If k = 0 and unlessx(0) has been prescribed, definex
(1) by Ux

(1) = ei, whereei is the ith
coordinate vector, and wherei is defined by the property that|Ui,i| is the smallest modulus of a diagonal
element ofU . Further, we setx(0) = Lei, in order to satisfy(A − λ̂I)x(1) = x

(0).
Fork ≥ 1 x

(k+1) is calculated by solving(A − λ̂I)x(k+1) = LUx
(k+1) = x

(k), which is straightforward
using the LU factorization from1.

4. Setη to the number that minimizesf(η) = ‖x(k) − ηx
(k+1)‖.

5. Stop if f(η) ≤ ε‖x(k+1)‖. Sincef(η) = ‖(A − λ̂I)−1[A − (η + λ̂)I]x(k)‖, we let λ̂ + η be the
calculated eigenvalue ofA andx

(k+1)/‖x(k+1)‖ be its eigenvector.

6. Otherwise, replacex(k+1) by x
(k+1)/‖x(k+1)‖, increasek by one, and either return to3 without

changinĝλ or to1 after replacinĝλ by λ̂ + η.

Remark 2.9 (Further on inverse iteration). Algorithm 2.8 is very efficient if A is anupper Hessenberg
matrix: every element ofA under the first subdiagonal is zero (i.e.Ai,j = 0, j ≤ i− 2). In this case the LU
factorization in1 requires justO

(

n2
)

or O(n) whenA is nonsymmetric or symmetric, respectively. Thus

the replacement of̂λ by λ̂ + η in 6 need not be expensive, so fast convergence can often be achieved easily.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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There are standard ways of givingA this convenient form which will be considered later. This and our next
topic,deflation,depend on the following basic result.

Theorem 2.10 Let A andS ben × n matrices,S being nonsingular. Thenw is an eigenvector ofA with
eigenvalueλ if and only ifSw is an eigenvector ofSAS−1 with the same eigenvalue.

Proof
Aw = λw ⇔ AS−1(Sw) = λw ⇔ (SAS−1)(Sw) = λ(Sw).

2

Definition 2.11 (Deflation). Suppose that we have found one solution of the eigenvector equationAw =
λw, whereA is againn × n. Thendeflationis the task of constructing an(n − 1)× (n − 1) matrix, B
say, whose eigenvalues are the other eigenvalues ofA. Specifically, we apply a similarity transformation
S to A such that the first column ofSAS−1 is λ times the first coordinate vector, because it follows from
the characteristic equation for eigenvalues and from Theorem 2.10 that we can letB be the bottom right
(n − 1) × (n − 1) submatrix ofSAS−1.

We write the condition onS as(SAS−1)e1 = λe1. Therefore the last part of the proof of Theorem 2.10
shows that it is sufficient ifS has the propertySw = ce1, wherec is any nonzero scalar.

Technique 2.12(Algorithm for deflation for symmetricA). Suppose thatA is symmetric andw ∈ R
n\{0},

λ ∈ R are given so thatAw = λw. We seek a nonsingular matrixS such thatSw = ce1 and such that
SAS−1 is also symmetric. The last condition holds ifS is orthogonal, since thenS−1 = S>. It is suitable
to pick aHouseholder reflection,which means thatS has the formI − 2uu

>/‖u‖2, whereu ∈ R
n \ {0}.

Specifically, we recall from theD3 Numerical Analysiscourse that Householder reflections are orthogonal
and that, for any nonzerow ∈ R

n, a real vectoru can be found with the property
(

I − 2
uu

>

‖u‖2

)

w = ±‖w‖e1. (2.2)

Thus, we letui = wi for i = 2, 3, . . . , n and chooseu1 so that2u
>

w = ‖u‖2. Since
(

I − 2
uu

>

‖u‖2

)

w = w − 2
u
>

w

‖u‖2
u = w − u,

it follows that (2.2) holds for componentsi = 2, 3, . . . , n. Finally, we computeu1 so that2u
>

w = ‖u‖2

is true. Since for ouru it is true thatu>
w = ‖w‖2 + (u1w1 − w2

1) and‖u‖2 = ‖w‖2 + u2
1 − w2

1, we
deduce thatu2

1 − 2u1w1 + w2
1 = ‖w‖2, henceu1 = w1 ± ‖w‖ and (2.2) is obeyed also fori = 1.

Since the bottomn−1 components ofu andw coincide, the calculation ofu requires onlyO(n) computer
operations. Further, the calculation ofSAS−1 can be done in onlyO

(

n2
)

operations, taking advantage
of the formS = I − 2uu

>/‖u‖2, even if all the elements ofA are nonzero. After deflation, we may
find an eigenvector,̂w say, ofSAS−1. Then the corresponding eigenvector ofA, given in Theorem 2.10,
is S−1

ŵ = Sŵ, because Householder matrices, like all symmetric orthogonal matrices, areinvolutions:
S2 = I.

Technique 2.13(Algorithm for deflation whenA is nonsymmetric). There is a faster algorithm for deflation
in the nonsymmetric case (of course, it applies also to symmetric matrices). Letwi, i = 1, 2, . . . , n, be the
components of the eigenvectorw and assumew1 6= 0 (which can be achieved by reordering the variables if
necessary). Further, we letS be then×n matrix whose elements agree with those of then×n unit matrix,
except that the off-diagonal part of the first column ofS has the elementsSi1 = −wi/w1, i = 2, 3, . . . , n.
ThenS is nonsingular and has the propertySw = w1e1, so it is suitable for our purpose. Moreover,
the elements ofS−1 also agree with those of then × n unit matrix, except that(S−1)i,1 = +wi/w1,
i = 2, 3, . . . , n. These forms ofS andS−1 allow the calculation ofSAS−1, and henceB, to be done in
only O

(

n2
)

operations. Further, because the lastn − 1 columns ofSAS−1 and ofSA are the same,B is
just the bottom right(n − 1) × (n − 1) submatrix ofSA. Therefore, for every integer1 ≤ i ≤ n − 1 we
form theith row ofB in the following way: subtractwi/w1 times the first row ofA from the(i + 1)th row
of A, and ignore the first component of the resultant row vector.
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