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Numerical Analysis — Lecture 7

Revision 2.14(Givens transformations). The notatitt*/) denotes am x n matrix whose elements are
those of the identity matrix, except that
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wherea, § € R, o + 3% > 0.

e We can choose, /3 so that any prescribed element in titke or jth row of (7 A is zero.

e The rows ofQ2("7) A are the same as the rows 4f except that théth andjth rows of the product are
linear combinations of th&h and;th rows of A.

e Q09 is an orthogonal matrix, thud = Q1) AQ() | inherits the eigenvalues of.

e The only difference betweea and(“7) A is that theith and;jth columns ofA are linear combinations
of theith and;th columns of2(:7) A.

e If Ais symmetric, then so id.

Method 2.15 (Transformation to an upper Hessenberg form). The follgatechnique replaced by
SAS~t, whereS is a product of Givens rotations, chosen so thdtecomesipper Hessenberg.

0. Given ann x n matrix A,n > 3, setp = 1, ¢ = 3.

1. Choose the Givens rotatigd(P+1:9) such that théq, p)th element of2(P+1:9) A is zero. Overwrited
by Q+1.0) gQr+1.a) T

2. If ¢ < n, then increase by 1 and go to Stef. If ¢ = n andp < n — 2, increasep by 1, reset
g = p+ 2 goto Stepl. Otherwise terminate.

Since every element that we have set to zero remains zerfingheutcome is indeed an upper Hessenberg
matrix. If A is symmetric then so will be the outcome of theatdhtion, hence it will be tridiagonal. In
general, the cost of this procedurei¢n?).

Note that we can transform to upper Hessenberg usiktpuseholder reflectionsather than Givens rota-
tions. In that case we deal with a column at a time, seekirgR"™ s.t.QQ = I — 2uu' /|u/|? and thekth
column ofQ A is consistent with the upper Hessenberg form (cf. Examp)e 12

Algorithm 2.16 (The QR algorithm). The “plain vanilla” version of the QR atghm is as follows. Set
Ag = A. Fork = 0,1,... calculate the QR factorizatiod, = QR (here@y isn x n orthogonal and
Ry isn x n upper triangular) and sety 1 = RiQy.

The eigenvalues ofi;, ., are the same as the eigenvaluesigf since

Apg1 = ReQp = Q1 (QrRi) Qi = Qy " ArQu, (2.3)
a similarity transformation. Moreove@,;1 = Q} , therefore ifA is symmetric then so id 1.
Suppose that for some> 0
A — B C
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whereB, F are square anfd ~ O. Because of (2.3), we cateflateA; and calculate the eigenvalues of
B and E separately (again, with QR, except that there is nothingatoutate forl x 1 and2 x 2 blocks).
As it turns out, this state of affairs occurs surprisinglieof

Technique 2.17(The QR iteration for upper Hessenberg matrices). In thée dhe factorizatiom, =
QiR is calculated as follows. Lell = A;. Fori = 1,2,...,n — 1, replaceH by Q(:itD H where
QU#+1) is the Givens rotation that renders the+ 1,7) element of the newd matrix zero. Thus the
productQ(r—1mQn—2n-1) ... 12 A, — F, say, is upper triangular. This means that = H, Q;, =
Q12 e qe-1m T andthe QRiteration sethy 1 = RxQx = HQ(1L2 Q@ T o1 T

It follows that Ax is also upper Hessenberg, becausefer 1,2,...,n — 2, thejth column of A,

is a linear combination of the firgt+ 1 columns ofH. Thus a strong advantage of applying Method 2.15
initially is that, in every iteration@), in Algorithm 2.16 is a product of just — 1 Givens rotations. Hence
each iteration of the QR algorithm requires jﬂ?S(tnz) operations.

Technique 2.18The QR iteration for symmetric matrices). Again we begirusing Method 2.15, in order
that Algorithm 2.16 commences from a symmetric tridiaganatrix. Then Technique 2.17 is applied as
before, except that we take advantage of some helpful festuFirstly, not just the upper Hessenberg
structure, also symmetry is retained, so eagh ; is both symmetric and tridiagonallt follows that,
whenever a Givens rotation combines either two adjacens mwwo adjacent columns of a matrix, the
total number of nonzero elements in the new combinationwsrar columns is at most five. Thus there is
a bound on the work of each rotation that is independent dfence each QR iteration requires jd3{n)
operations!

Notation 2.19To analyse the matrice$;, that occur in the QR algorithm 2.16, we introduce
Qr = QoQ1 - Qr, Ry, = RiRi—1- - Ry, k=0,1,.... (2.4)

Note thatQ;, is orthogonal andz;, upper triangular.

Lemma 2.20 (Fundamental propgrtiesﬁc(@k and Rk). Ap+1 is related to the original matrixA by the
similarity transformationA;.; = Q/ AQx. Further, Q. Ry, is the QR factorization ofi***.

Proof We prove the first assertion by induction. (2.3) implies that= Q4 AoQo = Qf AQo. Assuming
A = Q] |, AQ_1, equations (2.3) and (2.4) imply that

A1 = QL AQr = QL (Q)_1AQk—1)Qk = Q. AQ,

as claimed.
The second assertion is true for= 0, sinceQoRy = QuoRy = Ay = A. Again, we use induction,
assuming@r_1Rr—1 = A*. Thus, using the definition (2.4) and the first statement eflémma, we
deduce that

QrRr = (Qr—1Qk)(RpRi—1) = Qr-1AxRi—1 = Qk*l(Q;rflAQkil)Rkil

and the lemma is true. O

Property 2.21 (Relation between QR and the power method). We considerrgteclumn of the matrix
equationQ,_ R,_1 = A*, when we assume that the eigenvaluesddfiave different magnitudes, say
0 < [Mi] < A2 <o < |An|- Lete; = Y27, 9w, be the expansion of the first coordinate vector
in terms of the normalized eigenvectors 4f and letl € {1,2,...,n} be the greatest integer such that
Y # 0. ThenAFe; is a multiple 0f2§:1 ¥i(A;/N\)*w;, so the first column ofi* tends to be a multiple
of w; for k > 1. Let g, be the first column of),_;. BecauseaR;,_; is upper triangular, the first column
of A*¥ = Q_1Ry_, is a multiple ofg,. Thereforeg, tends to be a multiple afy;. Further, because both
g,, and andw; have unit length, we deduce thgt = +w,; + hy, whereh, tends to zero a8 — oo, and
where thet alternative may depend dn
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