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Revision 2.14(Givens transformations). The notationΩ(i,j) denotes ann × n matrix whose elements are
those of the identity matrix, except that
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whereα, β ∈ R, α2 + β2 > 0.
• We can chooseα, β so that any prescribed element in theith or jth row ofΩ(i,j)A is zero.
• The rows ofΩ(i,j)A are the same as the rows ofA, except that theith andjth rows of the product are
linear combinations of theith andjth rows ofA.

• Ω(i,j) is an orthogonal matrix, thus̃A = Ω(i,j)AΩ(i,j)> inherits the eigenvalues ofA.
• The only difference betweeñA andΩ(i,j)A is that theith andjth columns ofÃ are linear combinations
of theith andjth columns ofΩ(i,j)A.
• If A is symmetric, then so is̃A.

Method 2.15 (Transformation to an upper Hessenberg form). The following technique replacesA by
SAS−1, whereS is a product of Givens rotations, chosen so thatA becomesupper Hessenberg.

0. Given ann × n matrixA, n ≥ 3, setp = 1, q = 3.

1. Choose the Givens rotationΩ(p+1,q) such that the(q, p)th element ofΩ(p+1,q)A is zero. OverwriteA

by Ω(p+1,q)AΩ(p+1,q)>.

2. If q < n, then increaseq by 1 and go to Step1. If q = n andp < n − 2, increasep by 1, reset
q = p + 2 go to Step1. Otherwise terminate.

Since every element that we have set to zero remains zero, thefinal outcome is indeed an upper Hessenberg
matrix. If A is symmetric then so will be the outcome of the calculation, hence it will be tridiagonal. In
general, the cost of this procedure isO

(

n3
)

.

Note that we can transformA to upper Hessenberg usingHouseholder reflections,rather than Givens rota-
tions. In that case we deal with a column at a time, seekingu ∈ R

n s.t.Q = I − 2uu>/‖u‖2 and thekth
column ofQA is consistent with the upper Hessenberg form (cf. Example 12).

Algorithm 2.16 (The QR algorithm). The “plain vanilla” version of the QR algorithm is as follows. Set
A0 = A. Fork = 0, 1, . . . calculate the QR factorizationAk = QkRk (hereQk is n × n orthogonal and
Rk is n × n upper triangular) and setAk+1 = RkQk.

The eigenvalues ofAk+1 are the same as the eigenvalues ofAk, since

Ak+1 = RkQk = Q−1
k (QkRk)Qk = Q−1

k AkQk, (2.3)

a similarity transformation. Moreover,Q−1
k = Q>

k , therefore ifAk is symmetric then so isAk+1.

Suppose that for somek ≥ 0

Ak+1 =

[

B C
D E

]

,

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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whereB,E are square andD ≈ O. Because of (2.3), we candeflateAk+1 and calculate the eigenvalues of
B andE separately (again, with QR, except that there is nothing to calculate for1 × 1 and2 × 2 blocks).
As it turns out, this state of affairs occurs surprisingly often.

Technique 2.17(The QR iteration for upper Hessenberg matrices). In this case the factorizationAk =
QkRk is calculated as follows. LetH = Ak. For i = 1, 2, . . . , n − 1, replaceH by Ω(i,i+1)H, where
Ω(i,i+1) is the Givens rotation that renders the(i + 1, i) element of the newH matrix zero. Thus the
productΩ(n−1,n)Ω(n−2,n−1) · · ·Ω(1,2)Ak = Ĥ, say, is upper triangular. This means thatRk = Ĥ, Qk =

Ω(1,2)>Ω(2,3)> · · ·Ω(n−1,n)> and the QR iteration setsAk+1 = RkQk = ĤΩ(1,2)>Ω(2,3)> · · ·Ω(n−1,n)>.
It follows thatAk+1 is also upper Hessenberg, because, forj = 1, 2, . . . , n − 2, thejth column ofAk+1

is a linear combination of the firstj + 1 columns ofĤ. Thus a strong advantage of applying Method 2.15
initially is that, in every iteration,Qk in Algorithm 2.16 is a product of justn − 1 Givens rotations. Hence
each iteration of the QR algorithm requires justO

(

n2
)

operations.

Technique 2.18(The QR iteration for symmetric matrices). Again we begin byusing Method 2.15, in order
that Algorithm 2.16 commences from a symmetric tridiagonalmatrix. Then Technique 2.17 is applied as
before, except that we take advantage of some helpful features. Firstly, not just the upper Hessenberg
structure, also symmetry is retained, so eachAk+1 is both symmetric and tridiagonal.It follows that,
whenever a Givens rotation combines either two adjacent rows or two adjacent columns of a matrix, the
total number of nonzero elements in the new combination of rows or columns is at most five. Thus there is
a bound on the work of each rotation that is independent ofn. Hence each QR iteration requires justO(n)
operations!

Notation 2.19To analyse the matricesAk that occur in the QR algorithm 2.16, we introduce

Q̄k = Q0Q1 · · ·Qk, R̄k = RkRk−1 · · ·R0, k = 0, 1, . . . . (2.4)

Note thatQ̄k is orthogonal and̄Rk upper triangular.

Lemma 2.20 (Fundamental properties of̄Qk and R̄k). Ak+1 is related to the original matrixA by the
similarity transformationAk+1 = Q̄>

k AQ̄k. Further,Q̄kR̄k is the QR factorization ofAk+1.

Proof We prove the first assertion by induction. (2.3) implies thatA1 = Q>

0 A0Q0 = Q̄>

0 AQ̄0. Assuming
Ak = Q̄>

k−1AQ̄k−1, equations (2.3) and (2.4) imply that

Ak+1 = Q>

k AkQk = Q>

k (Q̄>

k−1AQ̄k−1)Qk = Q̄>

k AQ̄k,

as claimed.
The second assertion is true fork = 0, sinceQ̄0R̄0 = Q0R0 = A0 = A. Again, we use induction,
assumingQ̄k−1R̄k−1 = Ak. Thus, using the definition (2.4) and the first statement of the lemma, we
deduce that

Q̄kR̄k = (Q̄k−1Qk)(RkR̄k−1) = Q̄k−1AkR̄k−1 = Q̄k−1(Q̄
>

k−1AQ̄k−1)R̄k−1

= AQ̄k−1R̄k−1 = A · Ak = Ak+1

and the lemma is true. 2

Property 2.21 (Relation between QR and the power method). We consider the first column of the matrix
equationQ̄k−1R̄k−1 = Ak, when we assume that the eigenvalues ofA have different magnitudes, say
0 ≤ |λ1| < |λ2| < · · · < |λn|. Let e1 =

∑n

j=1 ψjwj be the expansion of the first coordinate vector
in terms of the normalized eigenvectors ofA, and letl ∈ {1, 2, . . . , n} be the greatest integer such that
ψl 6= 0. ThenAke1 is a multiple of

∑l

j=1 ψj(λj/λl)
kwj , so the first column ofAk tends to be a multiple

of wl for k À 1. Let q̄k be the first column of̄Qk−1. BecausēRk−1 is upper triangular, the first column
of Ak = Q̄k−1R̄k−1 is a multiple ofq̄k. Thereforēqk tends to be a multiple ofwl. Further, because both
q̄k and andwl have unit length, we deduce thatq̄k = ±wl + hk, wherehk tends to zero ask → ∞, and
where the± alternative may depend onk.
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