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Theorem 2.22 (The first column ofl;11). Let the conditions of Property 2.21 be satisfied and sug ploet
the QR algorithm calculates the sequerdcg, : £ = 0,1,2,...}. Then, ask — oo, the first column of
A1 tends to)eq, renderingAyg suitable for deflation.

Proof In the notation of Lemma 2.20, the first columnaf 1 is Q] AQye;. Further, using Property 2.21,
we deduce that

Appier = Q/:Alel = QZA{];C_H = Q,IA(:I:wl +hpqr).
SinceAw; = \;w;, we conclude that

Apgrer = 2NQLw; + Q) Ahpyy = NQy (@yyy — higr) + Q Ahpyy
= Ne1+ QL (A= NI)hyiq,

sinceQ) g, = e follows from orthogonality of), . The theorem follows fronk;,., — 0. 0

Remark 2.23(Relation between QR and inverse iteration). In practice,statement of Theorem 2.22 is
hardly ever important, because usuallyas> oo, the off-diagonal elements in the bottom row 4§,
tend to zeramuch fasterthan the off-diagonal elements in the first column. The redsdhat, besides
the connection with the power method in Property 2.21, thed@®rithm also enjoys a close relation
with inverse iteration(Method 2.7). Indeed, assuming thatis nonsingular, we can write the equation
AF = Qp_1Ry—1 inthe formA~* = R.' Q] ,. Consider the bottom row of this equation: we obtain
e, A7F = (e} R;')Q]_,. However,Ry_; is upper triangulare> R, ', is upper triangulae> e R, ',

is a multiple ofe,) . We deduce that the bottom row Qf_,, whick we denote by, , is a multiple of the
bottom row ofA—%.

Let (again) \i| < [A2| < --- < |\,|and lete, = 3", p;v; be the expansion af, in the basis ofeft
eigenvectorsf 4, i.e.v; A = \;v/ . Letr be the least integer so that # 0. Thenp,. is a scalar multiple
of

n n n k
_ _ - - Ar
T = Y] A= el =t el + 3 o (3) | @9)
j=r j=r j=r+1 /
Thereforep, tends to a multiple ob,’: letting ||v..|| = 1, we havep, = +wv,. + g, whereg, — 0.

Theorem 2.24 (The bottom row ofd;, 1) Suppose that the conditions of Remark 2.23 are satisfieen, Th
ask — oo, the bottom row of4; , ; tends to),.e, .

Proof It follows from Lemma 2.20, Remark 2.23, the eigenvalue éiqnas,’ A = \,v,| and orthogonality
of Qy, that
ep Api1 =€, QF AQy = pr1 AQr = (£v, +g11)AQk = £\, Q) + g1 1 AQy
= )\T(pZ-Fl - 9£+1)Qk + 9;—+1AQk - ArleQk = AreI.
The proof is complete. |

Technique 2.25Single shifts). If\,| is tiny then usually the rightmost sum in (2.5) tends to zepdly as
k increases, so the convergence result of Theorem 2.24 caehd for small values of. The theorem also
shows that A )., becomes a good estimateXf. Thesingle shift techniqueombines these remarks in the
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following way. The matrix4y is replaced byA;, — siI, wheres;, = (Ax)n » IS OUr guess of,., before the
QR factorization. This reduces the magnitude ofittteeigenvalue ofd;, substantially, which accelerates
convergence because of the relationship to inverse iberafi he eigenvalues aR,Q; now differ from
these ofA4;, by a shift—sg, sinceRyQy, is similar to A, — s, 1. We therefore set;. 1 = RpQr + sil.

Torecap @i Ry, = A — siI, wheresy, = (Ax)n n, therefore
Ap1 = ReQr + 51 = (QL Q) RiQp + s1.1 = QF (A — 51, 1)Qy, + sl = Q) ArQr, (2.6)

similarly to the original QR iteration.

QR with single shiftsis the method of choice when A hasreal eigenvalues. However, in the presence of
complex conjugate pairs of eigenvalues we require the tqakrofdouble shifts.

Lemma 2.26 (Double shifts). Suppose that Technique 2.25 is appliecktwWirom A, to A1 with shiftsy
and fromAkH to Ak+2 with Shift8k+1. LetA, — sl = QkRk and Ak+1 — Sk+1I = Q}g+1Rk+1. Then
(Ag — sk+11)(Ax — si1) has the QR factorizatio(QrQr+1) (Rik+1 Rk )-

Proof We have

(QrQrs1)(Ris1Ri) = Qr(Aps1 — sie1l) R = Qu(Qf AvQr — sk11) R = (Ar — sp11) Qi Ric
= (Ar — sp41 1) (A — sid)

and the proof is complete. |

Corollary 2.27 Let A;, be upper Hessenbergly , is calculated fromA,, in the way that is the subject of
Lemma 2.26. Ther,,, is also upper Hessenberg ant}, ., = Q[ A,Q., whereQ, is an orthogonal
matrix whose first column is a multiple of the first columi&f — si11)(Ax — sgI).

Proof ReplacingAy by A —siI in Technique 2.17, it follows thatl;,, is upper Hessenberg. Then,
increasing: by one, we find thatl; » is also upper Hessenberg.

Using the notation of (2.6), we writd;_, » as the product

Apyz = Qi1 Ak Qi1 = Q1 Qp AkQiQri1 = Q) ArQ.,

whereQ, = QrQr+1. SinceRy11 Ry, is upper triangular, Lemma 2.26 implies that the first colwhg)..
is a multiple of the first column of A — sg+11)(Ax — si1). ad

Method 2.28 (Double shifts). Corollary 2.27 suggests the followingaalthm for generatingd,, > from
the upper Hessenberg matedy, and the shifts; ands; 1, without forming the intermediate matrik; ;.
We retain the notation of Lemma 2.26.

1. Calculate the first column dfAy, — si411) (A — sil), sayv;
2. Let ), be an orthogonal matrix whose first columntis /||v||;
3. Form the matrixB;, = Q] A, Q,;

4. Apply Method 2.15 to transforns,, into an upper Hessenberg matri, . o which, being similar to
By, is also similar ta4y,.

It can be shown that only the first three components wfay be nonzero and we can f&f = Q(1:3Q(1:2),
whereQ(*7) are Given rotations such th@t'*Q(1:2)y = +|v||e;. Hence the matrix

By, = Q130012 4,002 g0 "
is upper Hessenberg, except thaY,); 1 and(By)4,1 might be nonzero. Therefore in Method 2.15 we may
restrictg to {p+1, p+2} foreveryp = 1,2,...,n—2 and the total cost of is O (n?) for general matrices.

The main advantage of Method 2.28 (which is formally eq@xato two steps of Technique 2.25) is that it
can be applied ineal arithmeticwhensy; = 55, € C.
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