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Theorem 2.22 (The first column ofAk+1). Let the conditions of Property 2.21 be satisfied and suppose that
the QR algorithm calculates the sequence{Ak : k = 0, 1, 2, . . .}. Then, ask → ∞, the first column of
Ak+1 tends toλle1, renderingAk+1 suitable for deflation.

Proof In the notation of Lemma 2.20, the first column ofAk+1 is Q̄>

k AQ̄ke1. Further, using Property 2.21,
we deduce that

Ak+1e1 = Q̄>

k AQ̄ke1 = Q̄>

k Aq̄k+1 = Q̄>

k A(±wl + hk+1).

SinceAwl = λlwl, we conclude that

Ak+1e1 = ±λlQ̄
>

k wl + Q̄>

k Ahk+1 = λlQ̄
>

k (q̄k+1 − hk+1) + Q̄>

k Ahk+1

= λle1 + Q̄>

k (A − λlI)hk+1,

sinceQ̄>

k q̄k+1 = e1 follows from orthogonality ofQ̄>

k . The theorem follows fromhk+1 → 0. 2

Remark 2.23 (Relation between QR and inverse iteration). In practice, the statement of Theorem 2.22 is
hardly ever important, because usually, ask → ∞, the off-diagonal elements in the bottom row ofAk+1

tend to zeromuch fasterthan the off-diagonal elements in the first column. The reason is that, besides
the connection with the power method in Property 2.21, the QRalgorithm also enjoys a close relation
with inverse iteration(Method 2.7). Indeed, assuming thatA is nonsingular, we can write the equation
Ak = Q̄k−1R̄k−1 in the formA−k = R̄−1

k−1Q̄
>

k−1. Consider the bottom row of this equation: we obtain
e>

n A−k = (e>

n R̄−1
k−1)Q̄

>

k−1. However,R̄k−1 is upper triangular⇒ R̄−1
k−1 is upper triangular⇒ e>

n R̄−1
k−1

is a multiple ofe>

n . We deduce that the bottom row of̄Q>

k−1, whick we denote byp>

k , is a multiple of the
bottom row ofA−k.

Let (again)|λ1| < |λ2| < · · · < |λn| and lete>

n =
∑n

j=1 ϕjv
>

j be the expansion ofe>

n in the basis ofleft

eigenvectorsof A, i.e.v>

j A = λjv
>

j . Let r be the least integer so thatϕr 6= 0. Thenp>

k is a scalar multiple
of

e>

n A−k =

n
∑

j=r

ϕjv
>

j A−k =

n
∑

j=r

ϕjλ
−k
j v>

j = λ−k
r



ϕrv
>

r +

n
∑

j=r+1

ϕj

(

λr

λj

)k

v>

j



 . (2.5)

Therefore,p>

k tends to a multiple ofv>

r : letting‖vr‖ = 1, we havepk = ±vr + gk, wheregk → 0.

Theorem 2.24 (The bottom row ofAk+1) Suppose that the conditions of Remark 2.23 are satisfied. Then,
ask → ∞, the bottom row ofAk+1 tends toλre

>

n .

Proof It follows from Lemma 2.20, Remark 2.23, the eigenvalue equation v>

r A = λrv
>

r and orthogonality
of Q̄k that

e>

n Ak+1 = e>

n Q̄>

k AQ̄k = p>

k+1AQ̄k = (±v>

r + g>

k+1)AQ̄k = ±λrv
>

r Q̄k + g>

k+1AQ̄k

= λr(p
>

k+1 − g>

k+1)Q̄k + g>

k+1AQ̄k → λrp
>

k+1Q̄k = λre
>

n .

The proof is complete. 2

Technique 2.25(Single shifts). If|λr| is tiny then usually the rightmost sum in (2.5) tends to zero rapidly as
k increases, so the convergence result of Theorem 2.24 can be useful for small values ofk. The theorem also
shows that(Ak)n,n becomes a good estimate ofλr. Thesingle shift techniquecombines these remarks in the

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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following way. The matrixAk is replaced byAk − skI, wheresk = (Ak)n,n is our guess ofλr, before the
QR factorization. This reduces the magnitude of therth eigenvalue ofAk substantially, which accelerates
convergence because of the relationship to inverse iteration. The eigenvalues ofRkQk now differ from
these ofAk by a shift−sk, sinceRkQk is similar toAk − skI. We therefore setAk+1 = RkQk + skI.

To recap,QkRk = Ak − skI, wheresk = (Ak)n,n, therefore

Ak+1 = RkQk + skI = (Q>

k Qk)RkQk + skI = Q>

k (Ak − skI)Qk + skI = Q>

k AkQk, (2.6)

similarly to the original QR iteration.

QR with single shifts is the method of choice when A has real eigenvalues. However, in the presence of
complex conjugate pairs of eigenvalues we require the technique ofdouble shifts.

Lemma 2.26 (Double shifts). Suppose that Technique 2.25 is applied twice: fromAk to Ak+1 with shiftsk

and fromAk+1 to Ak+2 with shiftsk+1. LetAk − skI = QkRk andAk+1 − sk+1I = Qk+1Rk+1. Then
(Ak − sk+1I)(Ak − skI) has the QR factorization(QkQk+1)(Rk+1Rk).

Proof We have

(QkQk+1)(Rk+1Rk) = Qk(Ak+1 − sk+1I)Rk = Qk(Q>

k AkQk − sk+1I)Rk = (Ak − sk+1I)QkRk

= (Ak − sk+1I)(Ak − skI)

and the proof is complete. 2

Corollary 2.27 Let Ak be upper Hessenberg.Ak+2 is calculated fromAk in the way that is the subject of
Lemma 2.26. ThenAk+2 is also upper Hessenberg andAk+2 = Q>

∗
AkQ∗, whereQ∗ is an orthogonal

matrix whose first column is a multiple of the first column of(Ak − sk+1I)(Ak − skI).

Proof ReplacingAk by Ak − skI in Technique 2.17, it follows thatAk+1 is upper Hessenberg. Then,
increasingk by one, we find thatAk+2 is also upper Hessenberg.

Using the notation of (2.6), we writeAk+2 as the product

Ak+2 = Q>

k+1Ak+1Qk+1 = Q>

k+1Q
>

k AkQkQk+1 = Q>

∗
AkQ∗,

whereQ∗ = QkQk+1. SinceRk+1Rk is upper triangular, Lemma 2.26 implies that the first columnof Q∗

is a multiple of the first column of(Ak − sk+1I)(Ak − skI). 2

Method 2.28(Double shifts). Corollary 2.27 suggests the following algorithm for generatingAk+2 from
the upper Hessenberg matrixAk and the shiftssk andsk+1, without forming the intermediate matrixAk+1.
We retain the notation of Lemma 2.26.

1. Calculate the first column of(Ak − sk+1I)(Ak − skI), sayv;

2. Let Ω∗ be an orthogonal matrix whose first column is±v/‖v‖;

3. Form the matrixBk = Ω>

∗
AkΩ∗;

4. Apply Method 2.15 to transformBk into an upper Hessenberg matrixAk+2 which, being similar to
Bk, is also similar toAk.

It can be shown that only the first three components ofv may be nonzero and we can letΩ>

∗
= Ω(1,3)Ω(1,2),

whereΩ(i,j) are Given rotations such thatΩ(1,3)Ω(1,2)v = ±‖v‖e1. Hence the matrix

Bk = Ω(1,3)Ω(1,2)AkΩ(1,2)>Ω(1,3)>

is upper Hessenberg, except that(Bk)3,1 and(Bk)4,1 might be nonzero. Therefore in Method 2.15 we may
restrictq to {p+1, p+2} for everyp = 1, 2, . . . , n−2 and the total cost of4 isO

(

n2
)

for general matrices.
The main advantage of Method 2.28 (which is formally equivalent to two steps of Technique 2.25) is that it
can be applied inreal arithmeticwhensk+1 = s̄k ∈ C.

16


