Numerical Analysis – Lecture 8¹

Theorem 2.22 (The first column of A_{k+1}). Let the conditions of Property 2.21 be satisfied and suppose that the QR algorithm calculates the sequence $\{A_k : k = 0, 1, 2, ...\}$. Then, as $k \to \infty$, the first column of A_{k+1} tends to $\lambda_l e_1$, rendering A_{k+1} suitable for deflation.

Proof In the notation of Lemma 2.20, the first column of A_{k+1} is $\bar{Q}_k^{\top} A \bar{Q}_k e_1$. Further, using Property 2.21, we deduce that

$$A_{k+1}\boldsymbol{e}_1 = \bar{Q}_k^\top A \bar{Q}_k \boldsymbol{e}_1 = \bar{Q}_k^\top A \bar{\boldsymbol{q}}_{k+1} = \bar{Q}_k^\top A (\pm \boldsymbol{w}_l + \boldsymbol{h}_{k+1}).$$

Since $A\boldsymbol{w}_l = \lambda_l \boldsymbol{w}_l$, we conclude that

$$A_{k+1}\boldsymbol{e}_{1} = \pm \lambda_{l}\bar{Q}_{k}^{\top}\boldsymbol{w}_{l} + \bar{Q}_{k}^{\top}A\boldsymbol{h}_{k+1} = \lambda_{l}\bar{Q}_{k}^{\top}(\bar{\boldsymbol{q}}_{k+1} - \boldsymbol{h}_{k+1}) + \bar{Q}_{k}^{\top}A\boldsymbol{h}_{k+1}$$
$$= \lambda_{l}\boldsymbol{e}_{1} + \bar{Q}_{k}^{\top}(A - \lambda_{l}I)\boldsymbol{h}_{k+1},$$

since $\bar{Q}_k^{\top} \bar{q}_{k+1} = e_1$ follows from orthogonality of \bar{Q}_k^{\top} . The theorem follows from $h_{k+1} \to 0$.

Remark 2.23 (Relation between QR and inverse iteration). In practice, the statement of Theorem 2.22 is hardly ever important, because usually, as $k \to \infty$, the off-diagonal elements in the bottom row of A_{k+1} tend to zero *much faster* than the off-diagonal elements in the first column. The reason is that, besides the connection with the power method in Property 2.21, the QR algorithm also enjoys a close relation with *inverse iteration* (Method 2.7). Indeed, assuming that A is nonsingular, we can write the equation $A^k = \bar{Q}_{k-1}\bar{R}_{k-1}$ in the form $A^{-k} = \bar{R}_{k-1}^{-1}\bar{Q}_{k-1}^{\top}$. Consider the bottom row of this equation: we obtain $e_n^{\top}A^{-k} = (e_n^{\top}\bar{R}_{k-1}^{-1})\bar{Q}_{k-1}^{\top}$. However, \bar{R}_{k-1} is upper triangular $\Rightarrow \bar{R}_{k-1}^{-1}$ is upper triangular $\Rightarrow e_n^{\top}\bar{R}_{k-1}^{-1}$ is a multiple of e_n^{\top} . We deduce that the bottom row of \bar{Q}_{k-1}^{\top} , whick we denote by p_k^{\top} , is a multiple of the bottom row of A^{-k} .

Let (again) $|\lambda_1| < |\lambda_2| < \cdots < |\lambda_n|$ and let $\boldsymbol{e}_n^\top = \sum_{j=1}^n \varphi_j \boldsymbol{v}_j^\top$ be the expansion of \boldsymbol{e}_n^\top in the basis of *left* eigenvectors of A, i.e. $\boldsymbol{v}_j^\top A = \lambda_j \boldsymbol{v}_j^\top$. Let r be the least integer so that $\varphi_r \neq 0$. Then \boldsymbol{p}_k^\top is a scalar multiple of

$$\boldsymbol{e}_{n}^{\top}\boldsymbol{A}^{-k} = \sum_{j=r}^{n}\varphi_{j}\boldsymbol{v}_{j}^{\top}\boldsymbol{A}^{-k} = \sum_{j=r}^{n}\varphi_{j}\lambda_{j}^{-k}\boldsymbol{v}_{j}^{\top} = \lambda_{r}^{-k} \left[\varphi_{r}\boldsymbol{v}_{r}^{\top} + \sum_{j=r+1}^{n}\varphi_{j}\left(\frac{\lambda_{r}}{\lambda_{j}}\right)^{k}\boldsymbol{v}_{j}^{\top}\right].$$
 (2.5)

Therefore, \boldsymbol{p}_k^{\top} tends to a multiple of \boldsymbol{v}_r^{\top} : letting $\|\boldsymbol{v}_r\| = 1$, we have $\boldsymbol{p}_k = \pm \boldsymbol{v}_r + \boldsymbol{g}_k$, where $\boldsymbol{g}_k \to \boldsymbol{0}$.

Theorem 2.24 (The bottom row of A_{k+1}) Suppose that the conditions of Remark 2.23 are satisfied. Then, as $k \to \infty$, the bottom row of A_{k+1} tends to $\lambda_r e_n^{\top}$.

Proof It follows from Lemma 2.20, Remark 2.23, the eigenvalue equation $\boldsymbol{v}_r^{\top} A = \lambda_r \boldsymbol{v}_r^{\top}$ and orthogonality of \bar{Q}_k that

$$\boldsymbol{e}_{n}^{\top}A_{k+1} = \boldsymbol{e}_{n}^{\top}\bar{Q}_{k}^{\top}A\bar{Q}_{k} = \boldsymbol{p}_{k+1}^{\top}A\bar{Q}_{k} = (\pm\boldsymbol{v}_{r}^{\top} + \boldsymbol{g}_{k+1}^{\top})A\bar{Q}_{k} = \pm\lambda_{r}\boldsymbol{v}_{r}^{\top}\bar{Q}_{k} + \boldsymbol{g}_{k+1}^{\top}A\bar{Q}_{k}$$
$$= \lambda_{r}(\boldsymbol{p}_{k+1}^{\top} - \boldsymbol{g}_{k+1}^{\top})\bar{Q}_{k} + \boldsymbol{g}_{k+1}^{\top}A\bar{Q}_{k} \rightarrow \lambda_{r}\boldsymbol{p}_{k+1}^{\top}\bar{Q}_{k} = \lambda_{r}\boldsymbol{e}_{n}^{\top}.$$

The proof is complete.

Technique 2.25 (Single shifts). If $|\lambda_r|$ is tiny then usually the rightmost sum in (2.5) tends to zero rapidly as k increases, so the convergence result of Theorem 2.24 can be useful for small values of k. The theorem also shows that $(A_k)_{n,n}$ becomes a good estimate of λ_r . The *single shift technique* combines these remarks in the

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

following way. The matrix A_k is replaced by $A_k - s_k I$, where $s_k = (A_k)_{n,n}$ is our guess of λ_r , before the QR factorization. This reduces the magnitude of the *r*th eigenvalue of A_k substantially, which accelerates convergence because of the relationship to inverse iteration. The eigenvalues of $R_k Q_k$ now differ from these of A_k by a shift $-s_k$, since $R_k Q_k$ is similar to $A_k - s_k I$. We therefore set $A_{k+1} = R_k Q_k + s_k I$.

To recap, $Q_k R_k = A_k - s_k I$, where $s_k = (A_k)_{n,n}$, therefore

$$A_{k+1} = R_k Q_k + s_k I = (Q_k^{\top} Q_k) R_k Q_k + s_k I = Q_k^{\top} (A_k - s_k I) Q_k + s_k I = Q_k^{\top} A_k Q_k,$$
(2.6)

similarly to the original QR iteration.

QR with single shifts is the method of choice when A has real eigenvalues. However, in the presence of complex conjugate pairs of eigenvalues we require the technique of *double shifts*.

Lemma 2.26 (Double shifts). Suppose that Technique 2.25 is applied twice: from A_k to A_{k+1} with shift s_k and from A_{k+1} to A_{k+2} with shift s_{k+1} . Let $A_k - s_kI = Q_kR_k$ and $A_{k+1} - s_{k+1}I = Q_{k+1}R_{k+1}$. Then $(A_k - s_{k+1}I)(A_k - s_kI)$ has the QR factorization $(Q_kQ_{k+1})(R_{k+1}R_k)$.

Proof We have

$$(Q_k Q_{k+1})(R_{k+1} R_k) = Q_k (A_{k+1} - s_{k+1} I) R_k = Q_k (Q_k^{\top} A_k Q_k - s_{k+1} I) R_k = (A_k - s_{k+1} I) Q_k R_k$$

= $(A_k - s_{k+1} I) (A_k - s_k I)$

and the proof is complete.

Corollary 2.27 Let A_k be upper Hessenberg. A_{k+2} is calculated from A_k in the way that is the subject of Lemma 2.26. Then A_{k+2} is also upper Hessenberg and $A_{k+2} = Q_*^{\top} A_k Q_*$, where Q_* is an orthogonal matrix whose first column is a multiple of the first column of $(A_k - s_{k+1}I)(A_k - s_kI)$.

Proof Replacing A_k by $A_k - s_k I$ in Technique 2.17, it follows that A_{k+1} is upper Hessenberg. Then, increasing k by one, we find that A_{k+2} is also upper Hessenberg.

Using the notation of (2.6), we write A_{k+2} as the product

$$A_{k+2} = Q_{k+1}^{\top} A_{k+1} Q_{k+1} = Q_{k+1}^{\top} Q_k^{\top} A_k Q_k Q_{k+1} = Q_*^{\top} A_k Q_*,$$

where $Q_* = Q_k Q_{k+1}$. Since $R_{k+1}R_k$ is upper triangular, Lemma 2.26 implies that the first column of Q_* is a multiple of the first column of $(A_k - s_{k+1}I)(A_k - s_kI)$.

Method 2.28 (Double shifts). Corollary 2.27 suggests the following algorithm for generating A_{k+2} from the upper Hessenberg matrix A_k and the shifts s_k and s_{k+1} , without forming the intermediate matrix A_{k+1} . We retain the notation of Lemma 2.26.

- **1.** Calculate the first column of $(A_k s_{k+1}I)(A_k s_kI)$, say v;
- **2.** Let Ω_* be an orthogonal matrix whose first column is $\pm v/||v||$;
- **3.** Form the matrix $B_k = \Omega_*^\top A_k \Omega_*$;

4. Apply Method 2.15 to transform B_k into an upper Hessenberg matrix A_{k+2} which, being similar to B_k , is also similar to A_k .

It can be shown that only the first three components of v may be nonzero and we can let $\Omega_*^{\top} = \Omega^{(1,3)}\Omega^{(1,2)}$, where $\Omega^{(i,j)}$ are Given rotations such that $\Omega^{(1,3)}\Omega^{(1,2)}v = \pm ||v||e_1$. Hence the matrix

$$B_k = \Omega^{(1,3)} \Omega^{(1,2)} A_k \Omega^{(1,2)^{\top}} \Omega^{(1,3)^{\top}}$$

is upper Hessenberg, except that $(B_k)_{3,1}$ and $(B_k)_{4,1}$ might be nonzero. Therefore in Method 2.15 we may restrict q to $\{p+1, p+2\}$ for every p = 1, 2, ..., n-2 and the total cost of **4** is $\mathcal{O}(n^2)$ for general matrices. The main advantage of Method 2.28 (which is formally equivalent to two steps of Technique 2.25) is that it can be applied in *real arithmetic* when $s_{k+1} = \bar{s}_k \in \mathbb{C}$.