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Definition 3.10 (Multistep methods)It is often useful to use past solution values in computing a new value.
Thus, assuming thatyn,yn+1, . . . ,yn+s−1 are available, wheres ≥ 1, we say that

s
∑

l=0

ρlyn+l = h

s
∑

l=0

σlf(tn+l,yn+l), n = 0, 1, . . . , (3.4)

whereρs = 1, is ans-step method. Ifσs = 0, the method isexplicit,otherwise it isimplicit.
If s ≥ 2, we need to obtain extrastarting valuesy1, . . . ,ys−1 by different time-stepping method.
Let ρ(w) =

∑s

l=0 ρlw
l, σ(w) =

∑s

l=0 σlw
l.

Theorem 3.11 The multistep method (3.4) is of orderp ≥ 1 iff

ρ(ez) − zσ(ez) = O
(

zp+1
)

, z → 0. (3.5)

Proof Substituting the exact solution and expanding into Taylor series abouttn,
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ρly(tn+l) − h

s
∑

l=0

σly
′(tn+l) =

s
∑
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ρl

∞
∑
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1

k!
y(k)(tn)lkhk − h
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l=0

σl

∞
∑
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1

k!
y(k+1)(tn)lkhk

=

(

s
∑

l=0

ρl

)

y(tn) +

∞
∑

k=1

1

k!

(

s
∑

l=0

lkρl − k

s
∑

l=0

lk−1σl

)

hky(k)(tn).

Thus, to obtainO
(

hp+1
)

regardless of the choice ofy, it is necessary and sufficient that

s
∑

l=0

ρl = 0,

s
∑

l=0

lkρl = k

s
∑

l=0

lk−1σl, k = 1, 2, . . . , p. (3.6)

On the other hand, expanding again into Taylor series,

ρ(ez) − zσ(ez) =
s
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ρle
lz − z
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∞
∑

k=0

1

k!
lkzk

)

− z
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∞
∑

k=0

1

k!
lkzk

)

=
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=
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∞
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zk.

The theorem follows from (3.6). 2

Example 3.12The 2-stepAdams–Bashforth methodis

yn+2 − yn+1 = h[32f(tn+1,yn+1) −
1
2f(tn,yn)]. (3.7)

Thereforeρ(w) = w2 − w, σ(w) = 3
2w − 1

2 and

ρ(ez)−zσ(ez) = [1+2z+2z2+ 4
3z3]−[1+z+ 1

2z2+ 1
6z3]− 3

2z[1+z+ 1
2z2]+ 1

2z+O
(

z4
)

= 5
12z3+O

(

z4
)

.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

19



Hence the method is of order 2.

Example 3.13(Absence of convergence)Consider the 2-step method

yn+2 − 3yn+1 + 2yn = 1
12h[13f(tn+2,yn+2) − 20f(tn+1,yn+1) − 5f(tn,yn)]. (3.8)

Now ρ(w) = w2 − 3w + 2, σ(w) = 1
12 (13w2 − 20w − 5) and it is easy to verify that the method is

of order 2. Let us apply it, however, to the trivial ODEy′ = 0, y(0) = 1. Hence a single step reads
yn+2 − 3yn+1 + 2yn = 0 and the general solution of this recursion isyn = c1 + c22

n, n = 0, 1, . . ., where
c1, c2 are arbitrary constants, which are determined byy0 = 1 and our value ofy1. In general,c2 6= 0.
Suppose thath → 0 andnh → t > 0. Thenn → ∞, thus|yn| → ∞ andwe cannot recover the exact
solutiony(t) ≡ 1. (This remains true even if we forcec2 = 0 by our choice ofy1, because of the presence
of roundoff errors.)
We deduce thatthe method (3.8) does not converge!As a more general point, it is important to realise that
many ‘plausible’ multistep methods may not be convergent and we need a theoretical tool to allow us to
check for this feature.

Definition 3.14We say that a polynomial obeys theroot conditionif all its zeros reside in|w| ≤ 1 and all
zeros of unit modulus are simple.

Theorem 3.15 (The Dahlquist equivalence theorem) The multistep method (3.4) is convergent iff it is of
orderp ≥ 1 and the polynomialρ obeys the root condition.2

Examples 3.12 & 3.13 revisitedFor the Adams–Bashforth method (3.7) we haveρ(w) = (w − 1)w and
the root condition is obeyed. However, for (3.8) we obtainρ(w) = (w − 1)(w − 2), the root condition fails
and we deduce that there is no convergence.

Technique 3.16A useful procedure to generate multistep methods which are convergent and of high order
is as follows. According to (3.5), orderp ≥ 1 impliesρ(1) = 0. Choose an arbitrarys-degree polynomial
ρ that obeys the root condition and such thatρ(1) = 0. To maximize order, we letσ be thes-degree
(alternatively,(s − 1)-degree for explicit methods) polynomial arising from the truncation of the Taylor
expansion of

ρ(w)

log w

about the pointw = 1. Thus, for example, for animplicit method,

σ(w) =
ρ(w)

log w
+ O

(

|w − 1|s+1
)

⇒ ρ(ez) − zσ(ez) = O
(

zs+2
)

and (3.5) implies order at leasts + 1.

Example 3.17The choiceρ(w) = ws−1(w − 1) corresponds toAdams methods:Adams–Bashforth meth-
ods ifσs = 0, whence the order iss, otherwise order-(s + 1) (but implicit) Adams–Moulton methods. For
example, lettings = 2 andξ = w − 1, we obtain the 3rd-order Adams–Moulton method by expanding

w(w − 1)

log w
=

ξ + ξ2

log(1 + ξ)
=

ξ + ξ2

ξ − 1
2ξ2 + 1

3ξ3 − · · ·
=

1 + ξ

1 − 1
2ξ + 1

3ξ2 − · · ·

= (1 + ξ)[1 + (1
2ξ − 1

3ξ2) + (1
2ξ − 1

3ξ2)2 + O
(

ξ3
)

] = 1 + 3
2ξ + 5

12ξ2 + O
(

ξ3
)

= 1 + 3
2 (w − 1) + 5

12 (w − 1)2 + O
(

|w − 1|3
)

= − 1
12 + 2

3w + 5
12w2 + O

(

|w − 1|3
)

.

Therefore the 2-step, 3rd-order Adams–Moulton method is

yn+2 − yn+1 = h[− 1
12f(tn,yn) + 2

3f(tn+1,yn+1) + 5
12f(tn+2,yn+2)].

2If ρ obeys the root condition, the method (3.4) is sometimes said to bezero-stable:we will not use this terminology.
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