Numerical Analysis – Lecture 10¹

Definition 3.10 (*Multistep methods*) It is often useful to use past solution values in computing a new value. Thus, assuming that $y_n, y_{n+1}, \ldots, y_{n+s-1}$ are available, where $s \ge 1$, we say that

$$\sum_{l=0}^{s} \rho_l \boldsymbol{y}_{n+l} = h \sum_{l=0}^{s} \sigma_l \boldsymbol{f}(t_{n+l}, \boldsymbol{y}_{n+l}), \qquad n = 0, 1, \dots,$$
(3.4)

where $\rho_s = 1$, is an *s*-step method. If $\sigma_s = 0$, the method is *explicit*, otherwise it is *implicit*. If $s \ge 2$, we need to obtain extra *starting values* $\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{s-1}$ by different time-stepping method. Let $\rho(w) = \sum_{l=0}^{s} \rho_l w^l$, $\sigma(w) = \sum_{l=0}^{s} \sigma_l w^l$.

Theorem 3.11 The multistep method (3.4) is of order $p \ge 1$ iff

$$\rho(\mathbf{e}^z) - z\sigma(\mathbf{e}^z) = \mathcal{O}(z^{p+1}), \qquad z \to 0.$$
(3.5)

Proof Substituting the exact solution and expanding into Taylor series about t_n ,

$$\sum_{l=0}^{s} \rho_{l} \boldsymbol{y}(t_{n+l}) - h \sum_{l=0}^{s} \sigma_{l} \boldsymbol{y}'(t_{n+l}) = \sum_{l=0}^{s} \rho_{l} \sum_{k=0}^{\infty} \frac{1}{k!} \boldsymbol{y}^{(k)}(t_{n}) l^{k} h^{k} - h \sum_{l=0}^{s} \sigma_{l} \sum_{k=0}^{\infty} \frac{1}{k!} \boldsymbol{y}^{(k+1)}(t_{n}) l^{k} h^{k}$$
$$= \left(\sum_{l=0}^{s} \rho_{l}\right) \boldsymbol{y}(t_{n}) + \sum_{k=1}^{\infty} \frac{1}{k!} \left(\sum_{l=0}^{s} l^{k} \rho_{l} - k \sum_{l=0}^{s} l^{k-1} \sigma_{l}\right) h^{k} \boldsymbol{y}^{(k)}(t_{n}).$$

Thus, to obtain $\mathcal{O}(h^{p+1})$ regardless of the choice of y, it is necessary and sufficient that

$$\sum_{l=0}^{s} \rho_l = 0, \qquad \sum_{l=0}^{s} l^k \rho_l = k \sum_{l=0}^{s} l^{k-1} \sigma_l, \qquad k = 1, 2, \dots, p.$$
(3.6)

On the other hand, expanding again into Taylor series,

$$\rho(\mathbf{e}^{z}) - z\sigma(\mathbf{e}^{z}) = \sum_{l=0}^{s} \rho_{l} \mathbf{e}^{lz} - z \sum_{l=0}^{s} \sigma_{l} \mathbf{e}^{lz} = \sum_{l=0}^{s} \rho_{l} \left(\sum_{k=0}^{\infty} \frac{1}{k!} l^{k} z^{k} \right) - z \sum_{l=0}^{s} \sigma_{l} \left(\sum_{k=0}^{\infty} \frac{1}{k!} l^{k} z^{k} \right)$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum_{l=0}^{s} l^{k} \rho_{l} \right) z^{k} - \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \left(\sum_{l=0}^{s} l^{k-1} \sigma_{l} \right) z^{k}$$
$$= \left(\sum_{l=0}^{s} \rho_{l} \right) + \sum_{k=1}^{\infty} \frac{1}{k!} \left(\sum_{l=0}^{s} l^{k} \rho_{l} - k \sum_{l=0}^{s} l^{k-1} \sigma_{l} \right) z^{k}.$$

The theorem follows from (3.6).

Example 3.12 The 2-step Adams-Bashforth method is

$$\boldsymbol{y}_{n+2} - \boldsymbol{y}_{n+1} = h[\frac{3}{2}\boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1}) - \frac{1}{2}\boldsymbol{f}(t_n, \boldsymbol{y}_n)].$$
(3.7)

Therefore $\rho(w)=w^2-w,$ $\sigma(w)=\frac{3}{2}w-\frac{1}{2}$ and

$$\underline{\rho(\mathbf{e}^z) - z\sigma(\mathbf{e}^z) = [1 + 2z + 2z^2 + \frac{4}{3}z^3] - [1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3] - \frac{3}{2}z[1 + z + \frac{1}{2}z^2] + \frac{1}{2}z + \mathcal{O}(z^4) = \frac{5}{12}z^3 + \mathcal{O}(z^4) . }$$

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

Hence the method is of order 2.

Example 3.13 (Absence of convergence) Consider the 2-step method

$$\boldsymbol{y}_{n+2} - 3\boldsymbol{y}_{n+1} + 2\boldsymbol{y}_n = \frac{1}{12}h[13\boldsymbol{f}(t_{n+2}, \boldsymbol{y}_{n+2}) - 20\boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1}) - 5\boldsymbol{f}(t_n, \boldsymbol{y}_n)].$$
(3.8)

Now $\rho(w) = w^2 - 3w + 2$, $\sigma(w) = \frac{1}{12}(13w^2 - 20w - 5)$ and it is easy to verify that the method is of order 2. Let us apply it, however, to the trivial ODE y' = 0, y(0) = 1. Hence a single step reads $y_{n+2} - 3y_{n+1} + 2y_n = 0$ and the general solution of this recursion is $y_n = c_1 + c_2 2^n$, $n = 0, 1, \ldots$, where c_1, c_2 are arbitrary constants, which are determined by $y_0 = 1$ and our value of y_1 . In general, $c_2 \neq 0$. Suppose that $h \to 0$ and $nh \to t > 0$. Then $n \to \infty$, thus $|y_n| \to \infty$ and we cannot recover the exact solution $y(t) \equiv 1$. (This remains true even if we force $c_2 = 0$ by our choice of y_1 , because of the presence of roundoff errors.)

We deduce that *the method* (3.8) *does not converge!* As a more general point, it is important to realise that many 'plausible' multistep methods may not be convergent and we need a theoretical tool to allow us to check for this feature.

Definition 3.14 We say that a polynomial obeys the *root condition* if all its zeros reside in $|w| \le 1$ and all zeros of unit modulus are simple.

Theorem 3.15 (The Dahlquist equivalence theorem) The multistep method (3.4) is convergent iff it is of order $p \ge 1$ and the polynomial ρ obeys the root condition.²

Examples 3.12 & 3.13 revisited For the Adams–Bashforth method (3.7) we have $\rho(w) = (w - 1)w$ and the root condition is obeyed. However, for (3.8) we obtain $\rho(w) = (w - 1)(w - 2)$, the root condition fails and we deduce that there is no convergence.

Technique 3.16 A useful procedure to generate multistep methods which are convergent and of high order is as follows. According to (3.5), order $p \ge 1$ implies $\rho(1) = 0$. Choose an arbitrary *s*-degree polynomial ρ that obeys the root condition and such that $\rho(1) = 0$. To maximize order, we let σ be the *s*-degree (alternatively, (s - 1)-degree for explicit methods) polynomial arising from the truncation of the Taylor expansion of

$$\frac{\rho(w)}{\log w}$$

about the point w = 1. Thus, for example, for an *implicit method*,

$$\sigma(w) = \frac{\rho(w)}{\log w} + \mathcal{O}(|w-1|^{s+1}) \qquad \Rightarrow \qquad \rho(e^z) - z\sigma(e^z) = \mathcal{O}(z^{s+2})$$

and (3.5) implies order at least s + 1.

Example 3.17 The choice $\rho(w) = w^{s-1}(w-1)$ corresponds to *Adams methods:* Adams–Bashforth methods if $\sigma_s = 0$, whence the order is s, otherwise order-(s+1) (but implicit) Adams–Moulton methods. For example, letting s = 2 and $\xi = w - 1$, we obtain the 3rd-order Adams–Moulton method by expanding

$$\begin{aligned} \frac{w(w-1)}{\log w} &= \frac{\xi+\xi^2}{\log(1+\xi)} = \frac{\xi+\xi^2}{\xi-\frac{1}{2}\xi^2+\frac{1}{3}\xi^3-\dots} = \frac{1+\xi}{1-\frac{1}{2}\xi+\frac{1}{3}\xi^2-\dots} \\ &= (1+\xi)[1+(\frac{1}{2}\xi-\frac{1}{3}\xi^2)+(\frac{1}{2}\xi-\frac{1}{3}\xi^2)^2+\mathcal{O}(\xi^3)] = 1+\frac{3}{2}\xi+\frac{5}{12}\xi^2+\mathcal{O}(\xi^3) \\ &= 1+\frac{3}{2}(w-1)+\frac{5}{12}(w-1)^2+\mathcal{O}(|w-1|^3) = -\frac{1}{12}+\frac{2}{3}w+\frac{5}{12}w^2+\mathcal{O}(|w-1|^3) \,.\end{aligned}$$

Therefore the 2-step, 3rd-order Adams-Moulton method is

$$\boldsymbol{y}_{n+2} - \boldsymbol{y}_{n+1} = h[-\frac{1}{12}\boldsymbol{f}(t_n, \boldsymbol{y}_n) + \frac{2}{3}\boldsymbol{f}(t_{n+1}, \boldsymbol{y}_{n+1}) + \frac{5}{12}\boldsymbol{f}(t_{n+2}, \boldsymbol{y}_{n+2})].$$

 $^{{}^{2}}$ If ρ obeys the root condition, the method (3.4) is sometimes said to be *zero-stable*: we will not use this terminology.