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Numerical Analysis — Lecture 1G

Definition 3.10 (Multistep methoddl}t is often useful to use past solution values in computing\a nalue.

Thus, assuming that,,, y,,, 1, ..., ¥,_, are available, where > 1, we say that
S S
Zplyn-H :hzglf(tn+l7yn+l)a TL:(),L..., (34)
=0 =0

wherep; = 1, is ans-step method. I&; = 0, the method igxplicit, otherwise it ismplicit.
If s > 2, we need to obtain extistarting valuesy,, ..., y,_; by different time-stepping method.
Letp(w) = Y"1, !, o(w) = Y owl.

Theorem 3.11 The multistep method (3.4) is of ordee> 1 iff
p(e*) — zo(e®) = O(zT1), z— 0. (3.5)

Proof Substituting the exact solution and expanding into Tayéwies about,,,

Zply(tnﬂ) - hzazy’(tnﬂ) = Zpl Z %y(k lkhk hZU; Z y(kJrl) lkhk
1=0

1=0 I=0 k=0 =0 k=0
S o0 1 S S _
= (Z pz) y(tn) + (Z Fpr—kY 1 101) hry® ().
1=0 k=1~ \I=0 1=0

Thus, to 0btair(9(hp+1) regardless of the choice gf it is necessary and sufficient that

=0 Y Fp=kY "o, k=12,...p (3.6)
=0 =0 =0

On the other hand, expanding again into Taylor series,
S oo 1 S (oo} 1
p(e®) — zo(e Zple —zZale Zpl (Z Elk2k> —zZal (Z Hlkzk>
=0 k=0 =0 k=0
_ 1 k EN 1 ~ k1 k
_ZH<lel>Z _Z(kl)!<zl o]z
k=0 1=0 k=1 1=0
S o0 1 S S
= (Z Pl) + Z y (Z lkpl . kz lklal> P
1=0 k=1"" \i=0 1=0

The theorem follows from (3.6). |

Example 3.12The 2-stepAdams—Bashforth methasl

yn+2 - y7n+1 = h[%f( n+17yn+1) .f( nvyn)]' (37)

Thereforep(w) = w? — w, o(w) = 3w — 1 and

p(e*)—zo(e?) = [1+22+22> +3 2P)—[1+z+12+1 z] 3 l42+32°+2240(2") = 2224+0(2) .

1please email all corrections and suggestions to these mofes ser | es@lant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / www. dant p. cam ac. uk/ user/ na/ Part ||/ Handouts. htm .
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Hence the method is of order 2.

Example 3.13(Absence of convergendépnsider the 2-step method

Ynt2 — 3Ypt1 + 2y, = ﬁh“?’f(tnﬂa Ynro) = 20f (tns1, Y1) — 5F (tns y,))- (3.8)

Now p(w) = w? — 3w + 2, o(w) = 75(13w? — 20w — 5) and it is easy to verify that the method is
of order 2. Let us apply it, however, to the trivial ODE = 0, y(0) = 1. Hence a single step reads
Yni2 — 3Ynt1 + 2y, = 0 and the general solution of this recursionyjs= ¢; + c22",n =0,1, ..., where

c1, co are arbitrary constants, which are determinedypy= 1 and our value ofj;. In generalcs # 0.
Suppose that — 0 andnh — t > 0. Thenn — oo, thus|y,| — oo andwe cannot recover the exact
solutiony(t) = 1. (This remains true even if we foreg = 0 by our choice ofy;, because of the presence
of roundoff errors.)

We deduce thahe method (3.8) does not convergied a more general point, it is important to realise that
many ‘plausible’ multistep methods may not be convergedt\aa need a theoretical tool to allow us to
check for this feature.

Definition 3.14 We say that a polynomial obeys theot conditionif all its zeros reside inw| < 1 and all
zeros of unit modulus are simple.

Theorem 3.15 (The Dahlquist equivalence theorem) The multistep method (3.4) is convergent iff it is of
orderp > 1 and the polynomiab obeys the root conditiofi.

Examples 3.12 & 3.13 revisited~or the Adams—Bashforth method (3.7) we haye) = (w — 1)w and
the root condition is obeyed. However, for (3.8) we obfaim) = (w — 1)(w — 2), the root condition fails
and we deduce that there is no convergence.

Technique 3.16A useful procedure to generate multistep methods which@meergent and of high order
is as follows. According to (3.5), order> 1 impliesp(1) = 0. Choose an arbitrary-degree polynomial
p that obeys the root condition and such thét) = 0. To maximize order, we let be thes-degree
(alternatively,(s — 1)-degree for explicit methods) polynomial arising from thencation of the Taylor
expansion of

p(w)

log w

about the pointv = 1. Thus, for example, for aimmplicit method,

o(w) = {;ng; +O(jw—1]") = p(e*) — zo(e*) = O(2°1?)

and (3.5) implies order at least+ 1.

Example 3.17The choicep(w) = w*~!(w — 1) corresponds téddams methodsAdams—Bashforth meth-
ods ifo, = 0, whence the order is, otherwise ordefs + 1) (but implicit) Adams—Moulton methods. For
example, lettingg = 2 and¢ = w — 1, we obtain the 3rd-order Adams—Moulton method by expanding

ww—-1)  £4+& £+ _ 14¢

logw  log(1+¢) ¢-Lte+ied— 1-leplez— o
=14+ (RE- 1)+ (36— 1)+ 0(f)) =1+ 3¢+ L&+ 0(&%)
=1+4+3(w-1D+Zw-1°+0(w—-1P) =-% + 2w+ S’ + O(|lw—1%).

Therefore the 2-step, 3rd-order Adams—Moulton method is

yn—&-Q - yn+1 = h[_%f(tnayn) + %f(tn-l-lvyn-i-l) + %f(tn+27y7b+2)}'

2If p obeys the root condition, the method (3.4) is sometimes said zefn-stablewe will not use this terminology.
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