Numerical Analysis – Lecture 11¹

Method 3.18 For reasons that will be made clear in the sequel, we wish to consider *s*-step, *s*-order methods s.t. $\sigma(w) = \sigma_s w^s$ for some $\sigma_s \in \mathbb{R} \setminus \{0\}$. In other words,

$$\sum_{l=0}^{s} \rho_l \boldsymbol{y}_{n+l} = h \sigma_s \boldsymbol{f}(t_{n+s}, \boldsymbol{y}_{n+s}), \qquad n = 0, 1, \dots$$

Such methods are called backward differentiation formulae (BDF).

Lemma 3.19 The explicit form of the s-step BDF method is

$$\rho(w) = \sigma_s \sum_{l=1}^{s} \frac{1}{l} w^{s-l} (w-1)^l, \quad \text{where} \quad \sigma_s = \left(\sum_{l=1}^{s} \frac{1}{l}\right)^{-1}.$$
(3.9)

Proof Set $v = w^{-1}$, therefore the order condition $\rho(w) = \sigma_s w^s \log w + \mathcal{O}(|w-1|^{s+1})$ becomes

$$\sum_{l=0}^{s} \rho_l v^{s-l} = -\sigma_s \log v + \mathcal{O}(|v-1|^{s+1}), \qquad v \to 1$$

But $\log v = \log(1 + (v - 1)) = \sum_{l=1}^{\infty} (-1)^{l-1} (v - 1)^l / l$, consequently

$$\sum_{l=0}^{s} \rho_{s-l} v^{l} = \sigma_{s} \sum_{l=1}^{s} \frac{(-1)^{l}}{l} (v-1)^{l}.$$

Brief manipulation and a restoration of $w = v^{-1}$ yield

$$\sum_{l=0}^{s} \rho_l w^l = \sigma_s \sum_{l=1}^{s} \frac{(-1)^l}{l} w^{s-l} (1-w)^l$$

and we pick σ_s so that $\rho_s = 1$, collecting powers of w^s on the right of the last displayed equation. **Example 3.20** Let s = 2. Substitution in (3.9) yields $\sigma_2 = \frac{2}{3}$ and simple algebra results in $\rho(w) = w^2 - \frac{4}{3}w + \frac{1}{3}$. Hence the 2-step BDF is

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2}).$$

Remark 3.21 We cannot take it for granted that BDF methods are convergent. It is possible to prove that they are convergent iff $s \le 6$. They *must not* be used outside this range!

Revision 3.22 We may approximate

$$\int_0^h f(t) \mathrm{d}t \approx h \sum_{l=1}^{\nu} b_l f(c_l h).$$

where the weights b_l are chosen in accordance with an explicit formula from Part IB. This *quadrature* formula is exact for all polynomials of degree $\nu - 1$ and, provided that $\prod_{k=1}^{\nu} (x - c_k)$ is orthogonal w.r.t. the weight function $w(x) \equiv 1, 0 \le x \le 1$, the formula is exact for all polynomials of degree $2\nu - 1$.

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

Methods 3.23 Suppose that we wish to solve the 'ODE' y' = f(t), $y(0) = y_0$. The exact solution is $y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t) dt$ and we can approximate it by quadrature. In general, we obtain the time-stepping scheme

$$y_{n+1} = y_n + h \sum_{l=1}^{\nu} b_l f(t_n + c_l h)$$
 $n = 0, 1, \dots$

Here $h = t_{n+1} - t_n$ (the points t_n need not be equispaced). Can we generalize this to genuine ODEs of the form y' = f(t, y)? Formally,

$$\boldsymbol{y}(t_{n+1}) = \boldsymbol{y}(t_n) + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{y}(t)) dt,$$

and this can be 'approximated' by

$$\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h \sum_{l=1}^{\nu} b_l \boldsymbol{f}(t_n + c_l h, \boldsymbol{y}(t_n + c_l h)).$$
(3.10)

except that, of course, the vectors $y(t_n + c_l h)$ are unknown! *Runge–Kutta methods* are a means of implementing (3.10) by replacing unknown values of y by suitable linear combinations. The general form of a ν -stage explicit Runge–Kutta method (RK) is

$$\begin{aligned} \mathbf{k}_{1} &= \mathbf{f}(t_{n}, \mathbf{y}_{n}), \\ \mathbf{k}_{2} &= \mathbf{f}(t_{n} + c_{2}h, \mathbf{y}_{n} + hc_{2}\mathbf{k}_{1}), \\ \mathbf{k}_{3} &= \mathbf{f}(t_{n} + c_{3}h, \mathbf{y}_{n} + h(a_{3,1}\mathbf{k}_{1} + a_{3,2}\mathbf{k}_{2})), \qquad a_{3,1} + a_{3,2} = c_{3}, \\ &\vdots \\ \mathbf{k}_{\nu} &= \mathbf{f}\left(t_{n} + c_{\nu}h, \mathbf{y}_{n} + h\sum_{j=1}^{\nu-1} a_{\nu,j}\mathbf{k}_{j}\right), \qquad \sum_{j=1}^{\nu-1} a_{\nu,j} = c_{\nu}, \\ \mathbf{y}_{n+1} &= \mathbf{y}_{n} + h\sum_{l=1}^{\nu} b_{l}\mathbf{k}_{l}. \end{aligned}$$

The choice of the *RK coefficients* $a_{l,j}$ is motivated at the first instance by order considerations.

Example 3.24 Set $\nu = 2$. We have $k_1 = f(t_n, y_n)$ and, Taylor-expanding about (t_n, y_n) ,

$$egin{aligned} &m{k}_2 = m{f}(t_n + c_2 h, m{y}_n + c_2 h m{f}(t_n, m{y}_n)) \ &= m{f}(t_n, m{y}_n) + hc_2 \left[rac{\partial m{f}(t_n, m{y}_n)}{\partial t} + rac{\partial m{f}(t_n, m{y}_n)}{\partial m{y}} m{f}(t_n, m{y}_n)
ight] + \mathcal{O}ig(h^2ig) \,. \end{aligned}$$

But

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}) \qquad \Rightarrow \qquad \mathbf{y}'' = \frac{\partial \mathbf{f}(t, \mathbf{y})}{\partial t} + \frac{\partial \mathbf{f}(t, \mathbf{y})}{\partial \mathbf{y}} \mathbf{f}(t, \mathbf{y})$$

Therefore, substituting the exact solution $y_n = y(t_n)$, we obtain $k_1 = y'(t_n)$ and $k_2 = y'(t_n) + hc_2y''(t_n) + O(h^2)$. Consequently, the *local* error is

$$y(t_{n+1}) - y_{n+1} = [y(t_n) + hy'(t_n) + \frac{1}{2}h^2y''(t_n) + \mathcal{O}(h^3)] - [y(t_n) + h(b_1 + b_2)y'(t_n) + h^2b_2c_2y''(t_n) + \mathcal{O}(h^3)]$$

We deduce that the RK method is of order 2 if $b_1 + b_2 = 1$ and $b_2c_2 = \frac{1}{2}$. It is easy to demonstrate that no such method may be of order ≥ 3 (e.g. by applying it to $y' = \lambda y$).