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Numerical Analysis — Lecture 11

Method 3.18For reasons that will be made clear in the sequel, we wishrisiders-step,s-order methods
s.t.o(w) = o,w?® for someo, € R\ {0}. In other words,

Zplyn—H = ho'sf(tn-‘rsa yn,+s)7 n= 07 15 s
=0

Such methods are calldhckward differentiation formulae (BDF)

Lemma 3.19 The explicit form of the-step BDF method is

s S -1
pw) =0, 3 Ju w1, where o, = (Z }) - (39
=1

=1

Proof Setv = w™!, therefore the order conditignw) = o,w* logw + O(Jw — 1]*T') becomes
Zplv“'—l = —o,logv+ O(Jv — 15, v — 1.
=0

Butlogv = log(1 + (v — 1)) = 312, (=1)!" (v — 1)!/1, consequently

S S _ l
Zps,lvl =05 Z ( ll) (v— 1)l~
1=0

=1

Brief manipulation and a restoration of= v~! yield

S S (_1)l
;Pzwl =0s Z ] w1 — w)!

=1

and we picks, so thatp, = 1, collecting powers ofv® on the right of the last displayed equation. O

Example 3.20Let s = 2. Substitution in (3.9) yieldg, = % and simple algebra results {w) =
w? — 3w + %. Hence the 2-step BDF is

Ynta — %yn+1 + %yn = %hf(tn+27yn+2)‘

Remark 3.21We cannot take it for granted that BDF methods are converdeist possible to prove that
they are convergent iff < 6. Theymust notbe used outside this range!

Revision 3.22WWe may approximate

h v
| rwdt =y vsen)
0 1=1

where the weight$; are chosen in accordance with an explicit formula from PRrtThis quadrature
formulais exact for all polynomials of degree— 1 and, provided thaf[,_, (z — ¢;) is orthogonal w.r.t.
the weight functionu(x) = 1,0 < = < 1, the formula is exact for all polynomials of degrze — 1.

1please email all corrections and suggestions to these mofes ser | es@lant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / www. dant p. cam ac. uk/ user/ na/ Part ||/ Handouts. htm .
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Methods 3.23Suppose that we wish to solve the ‘ODE’ = f(t¢), y(0) = yo. The exact solution is

Y(tni1) = y(tn) + j;t:'“ f(¢)dt and we can approximate it by quadrature. In general, we rolbtes
time-stepping scheme

yn+1:yn+hzblf(tn+clh) n=0,1,....
=1

Hereh = t,,41 — t,, (the pointst,, need not be equispaced). Can we generalize this to genuifs ODhe
formy’ = f(t,y)? Formally,

Yltn) = y(ta) + / " pt g,

n

and this can be ‘approximated’ by

Yir = Yn + 0 Y0 (b + il y(tn + cih)). (3.10)
=1

except that, of course, the vectay&,, + ¢;h) are unknown!Runge—Kutta methodse a means of imple-
menting (3.10) by replacing unknown valuesgpby suitable linear combinations. The general form of a
v-stage explicit Runge—Kutta method (RK)

kl = f(tnvyn)v
k2 - f(tn + C2h7yn + hCle)7
ks = f(tn + csh,y, + h(az 1k + a3 2k2)), as,1 + az2 = c3,

Jj=1

v—1 v—1
k?u = f (tn + C,/h,yn =+ hz Cl,/7jkj) s Z Qy,j = Cy,
j=1

yn+1 =Yn + hzblkl
=1

The choice of th&kK coefficients; ; is motivated at the first instance by order considerations.
Example 3.24Setv = 2. We havek; = f(t,,y,,) and, Taylor-expanding abo(t,, y,,),

k? = f(tn + Cthyn + C2hf(tn7yn))

- f(tna yn) + hCQ 8t + ay

f(tn,y,)| +O(R?).

But

Y = af(att,y) n afézy)f(t’y)'

Therefore, substituting the exact solutign = y(¢,), we obtaink; = vy'(t,) andks = y'(t,) +
heay” (tn) + O(R?). Consequently, thiocal error is

y' = f(t,y) =

Y(tnt1) — Yny1 = [y(tn) + hy/(ﬁn) + %thH(tn) + O(h3>]
— [y (tn) + h(br + b)Y (tn) + hbacoy” (tn) + O(B?)].

We deduce that the RK method is of order 2;if+ b, = 1 andbycy = % It is easy to demonstrate that no
such method may be of order 3 (e.g. by applying it ta)’ = \y).
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