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Method 3.18For reasons that will be made clear in the sequel, we wish to considers-step,s-order methods
s.t.σ(w) = σsw

s for someσs ∈ R \ {0}. In other words,

s
∑

l=0

ρlyn+l = hσsf(tn+s,yn+s), n = 0, 1, . . . .

Such methods are calledbackward differentiation formulae (BDF).

Lemma 3.19 The explicit form of thes-step BDF method is

ρ(w) = σs

s
∑

l=1

1

l
ws−l(w − 1)l, where σs =

(

s
∑

l=1

1

l

)

−1

. (3.9)

Proof Setv = w−1, therefore the order conditionρ(w) = σsw
s log w + O

(

|w − 1|s+1
)

becomes

s
∑

l=0

ρlv
s−l = −σs log v + O

(

|v − 1|s+1
)

, v → 1.

But log v = log(1 + (v − 1)) =
∑

∞

l=1
(−1)l−1(v − 1)l/l, consequently

s
∑

l=0

ρs−lv
l = σs

s
∑

l=1

(−1)l

l
(v − 1)l.

Brief manipulation and a restoration ofw = v−1 yield

s
∑

l=0

ρlw
l = σs

s
∑

l=1

(−1)l

l
ws−l(1 − w)l

and we pickσs so thatρs = 1, collecting powers ofws on the right of the last displayed equation. 2

Example 3.20Let s = 2. Substitution in (3.9) yieldsσ2 = 2

3
and simple algebra results inρ(w) =

w2 − 4

3
w + 1

3
. Hence the 2-step BDF is

yn+2 −
4

3
yn+1 + 1

3
yn = 2

3
hf(tn+2,yn+2).

Remark 3.21We cannot take it for granted that BDF methods are convergent. It is possible to prove that
they are convergent iffs ≤ 6. Theymust notbe used outside this range!

Revision 3.22We may approximate

∫ h

0

f(t)dt ≈ h

ν
∑

l=1

blf(clh),

where the weightsbl are chosen in accordance with an explicit formula from Part IB. This quadrature
formula is exact for all polynomials of degreeν − 1 and, provided that

∏ν

k=1
(x − ck) is orthogonal w.r.t.

the weight functionw(x) ≡ 1, 0 ≤ x ≤ 1, the formula is exact for all polynomials of degree2ν − 1.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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Methods 3.23Suppose that we wish to solve the ‘ODE’y′ = f(t), y(0) = y0. The exact solution is
y(tn+1) = y(tn) +

∫ tn+1

tn

f(t)dt and we can approximate it by quadrature. In general, we obtain the
time-stepping scheme

yn+1 = yn + h

ν
∑

l=1

blf(tn + clh) n = 0, 1, . . . .

Hereh = tn+1 − tn (the pointstn need not be equispaced). Can we generalize this to genuine ODEs of the
form y′ = f(t,y)? Formally,

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt,

and this can be ‘approximated’ by

yn+1 = yn + h

ν
∑

l=1

blf(tn + clh,y(tn + clh)). (3.10)

except that, of course, the vectorsy(tn + clh) are unknown!Runge–Kutta methodsare a means of imple-
menting (3.10) by replacing unknown values ofy by suitable linear combinations. The general form of a
ν-stage explicit Runge–Kutta method (RK)is

k1 = f(tn,yn),

k2 = f(tn + c2h,yn + hc2k1),

k3 = f(tn + c3h,yn + h(a3,1k1 + a3,2k2)), a3,1 + a3,2 = c3,

...

kν = f



tn + cνh,yn + h

ν−1
∑

j=1

aν,jkj



 ,

ν−1
∑

j=1

aν,j = cν ,

yn+1 = yn + h

ν
∑

l=1

blkl.

The choice of theRK coefficientsal,j is motivated at the first instance by order considerations.

Example 3.24Setν = 2. We havek1 = f(tn,yn) and, Taylor-expanding about(tn,yn),

k2 = f(tn + c2h,yn + c2hf(tn,yn))

= f(tn,yn) + hc2

[

∂f(tn,yn)

∂t
+

∂f(tn,yn)

∂y
f(tn,yn)

]

+ O
(

h2
)

.

But

y′ = f(t,y) ⇒ y′′ =
∂f(t,y)

∂t
+

∂f(t,y)

∂y
f(t,y).

Therefore, substituting the exact solutionyn = y(tn), we obtaink1 = y′(tn) and k2 = y′(tn) +
hc2y

′′(tn) + O
(

h2
)

. Consequently, thelocal error is

y(tn+1) − yn+1 = [y(tn) + hy′(tn) + 1

2
h2y′′(tn) + O

(

h3
)

]

− [y(tn) + h(b1 + b2)y
′(tn) + h2b2c2y

′′(tn) + O
(

h3
)

].

We deduce that the RK method is of order 2 ifb1 + b2 = 1 andb2c2 = 1

2
. It is easy to demonstrate that no

such method may be of order≥ 3 (e.g. by applying it toy′ = λy).
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