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Numerical Analysis — Lecture 12

Methods 3.25A generaly-stageRunge—Kutta method

v v
k=f tn+clh7yn+hZal_jkj where Zalvj:cl, 1=1,2,...,v,
=1 =1

yn-i—l =Yn + hz blkl'
=1

Obviously,a; ; = 0 for all I < j yields the standardxplicit RK. Otherwise, an RK method is said to be
implicit.
Example 3.26Consider the 2-stage method

kl = f (tnayn + %h(kl - k2)) )

kz = f (ta + 3h,y, + 15h(3k1 + 5k2)) ,

Ypt1 = Yn + ih(kl + 3k2)

In order to analyse the order of this method, we restrict tt@néion to scalar, autonomuous equations of
the formy’ = f(y).? For brevity, we use the convention that all functions arduatad aty = y,, e.g.

fy = df(yn)/dy. Thus,

ki = [+ hiy(kr — ko) + 3587 fyy (k1 — k2)® + O(R?)

ky = f+ 5hfy(3ki + 5ka) + 5ish® fyy (3k1 + 5k2)? + O(R?) .
We havek;, ks = f + O(h) and substitution in the above equations yields= f + O(hQ), ko =
[+ 2hf,f + O(h?). Substituting again, we obtain

ki=f—gh?f)f+0O(h%),

ke = [+ 3hfyf + 1 (S f + 3 fuuf?) +O(RY)

= Ynq1=y+hf+ %hzfyf + éh3(f5f + fyyfz) + O(h4) :

Buty = f=vy" = f,f =" = f2f + fyyf* and we deduce from Taylor's theorem that the method is at
least of order 3. (Itis easy to verify that it isn’t of orderfdt example applying it to the equatigh = \y.)

Phenomenon 3.2Tonsider the linear system

0 1

y = Ay where A= { 1
10

—100 1 }

The exact solution is a linear combinationeof/1° ande=19%*: the first decays gently, whereas the second
becomes practically zero almost at once. Suppose that we #@ ODE with thdorward Eulermethod.

As will be shown soon, the requirement that,, .., y,, = 0 (for fixed h > 0) leads to an unacceptable
restriction on the size of.

With greater generality, let us solgg = Ay, for generalV x N constant matrix4, with Euler's method.
Theny, ., = (I+hA)y,, thereforey,, = (I +hA)"y,. Letthe eigenvalues of be )\, ..., Ay, with cor-
responding linearly-independent eigenvectorsvs, ..., vy. Let D = diagA andV = [vy,vs,...,vN],

1please email all corrections and suggestions to these motes ser | es@ant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / ww. dant p. cam ac. uk/ user/na/ Part |1/ Handouts. htni.
2This procedure might lead to loss of generality for methodsdéo> 5.
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whenced = VDV 1. We assume furtherth&e \; < 0,1 = 1,..., N. In that case it is easy to prove that
lim; o y(t) = 0, e.g. by representing the exact solution of the ODE expliei

1
_ A tA tA _ k Ak _ tDy,—1
y(t) = ey, where e _E _k!tA =Ve" VT
k=0

However,y, = V(I + hD)"V~ly,, where A = VDV ~! and the matrixD is diagonal, therefore
lim, ..y, = O for all initial valuesy, iff |1 + h\| < 1,1 = 1,...,N. In our example we thus
require|1 — 15h/, |1 — 100h| < 1, henceh < 5.

It is important to realise that this restriction, necesdaryecovery of correct asymptotic behaviour, has
nothingto do with local accuracy, since, for large the genuine ‘unstable’ component is exceedingly
small. Its purpose is solely to prevent this component freading to an unbounded growth in the numerical
solution.

Definition 3.28 We say that the ODRy = f(t,y) is stiff if (for some methods) we need to depréss
to maintainstability well beyond requirements of accuracy. An important exaropktiff systems occurs
when an equation is linedRe A\; < 0,1 =1,2,..., N, and the quotienthax |\ |/ min |\ | is large: a ratio
of 10?° is not unusual in real-life problems!

Stiff equations, mostly nonlinear, occur throughout agatibns, whenever we have two (or more) different
timescales in the ODE. A typical example are equationsh&mical kineticswhere each timescale is
determined by the speed of reaction between two compounast speeds can differ by many orders of
magnitude.

Definition 3.29 Suppose that a numerical method, applied'te- Ay, y(0) = 1, with constant:, produces
the solution sequendgy,, },,cz+. We call the set

D={hAeC: lim y, =0}

the linear stability domainof the method. Noting that the set afe C for which y(t) =% 0 is the left
half-planeC™ = {z € C : Rez < 0}, we say that the method #s-stableif C™ C D.

Example 3.30We have already seen that for Euler’s methad— 0 iff |1 + k)| < 1, thereforeD
{z € C : |1+ z| < 1}. Moreover, solvingy’ = Ay with the trapezoidal rule,we obtainy,,; =
[(1+ 1rA)/(1 — 3hA)]y, thus, by inductiony,, = [(1 + $hA)/(1 — $hA)]"yo. Therefore

1+%z
lf%z

ze€D & ‘ <1 & Rez <0

and we deduce thd? = C~. Hence, the method is A-stable.
It can be proved by similar means that fiackward Euleit is true thatD = {z € C : |1 —z| > 1}, hence
that the method is also A-stable.

Note that A-stability does not mean ttaaty step size will do! We need to choosesmall enough to ensure
the right accuracy, but we don’t want to depress it much &urth prevent instability.

Discussion 3.31A-stability analysis of multistep methods is consideratvigre complicated. However,
according to thesecond Dahlquist barrieno multistep method of order > 3 may be A-stable. Note that
thep = 2 barrier for A-stability is attained by the trapezoidal rule

The Dahlquist barrier implies that, in our quest for higbeder methods with good stability properties, we
need to pursue one of the following strategies:

e either relax the definition of A-stability
¢ or consider other methods in place of multistep.
The two courses of action will be considered in the next lectu
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