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Methods 3.25A generalν-stageRunge–Kutta methodis
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ν
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Obviously,al,j = 0 for all l ≤ j yields the standardexplicit RK. Otherwise, an RK method is said to be
implicit.

Example 3.26Consider the 2-stage method
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yn+1 = yn + 1

4
h(k1 + 3k2).

In order to analyse the order of this method, we restrict our attention to scalar, autonomuous equations of
the formy′ = f(y).2 For brevity, we use the convention that all functions are evaluated aty = yn, e.g.
fy = df(yn)/dy. Thus,
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We havek1, k2 = f + O(h) and substitution in the above equations yieldsk1 = f + O
(
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)

, k2 =
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. Substituting again, we obtain
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But y′ = f ⇒ y′′ = fyf ⇒ y′′′ = f2
y f + fyyf2 and we deduce from Taylor’s theorem that the method is at

least of order 3. (It is easy to verify that it isn’t of order 4,for example applying it to the equationy′ = λy.)

Phenomenon 3.27Consider the linear system

y′ = Ay where A =

[

−100 1
0 − 1

10

]

.

The exact solution is a linear combination ofe−t/10 ande−100t: the first decays gently, whereas the second
becomes practically zero almost at once. Suppose that we solve the ODE with theforward Eulermethod.
As will be shown soon, the requirement thatlimn→∞ yn = 0 (for fixed h > 0) leads to an unacceptable
restriction on the size ofh.

With greater generality, let us solvey′ = Ay, for generalN × N constant matrixA, with Euler’s method.
Thenyn+1 = (I+hA)yn, thereforeyn = (I+hA)ny0. Let the eigenvalues ofA beλ1, . . . , λN , with cor-
responding linearly-independent eigenvectorsv1,v2, . . . ,vN . Let D = diagλ andV = [v1,v2, . . . ,vN ],

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

2This procedure might lead to loss of generality for methods of order≥ 5.
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whenceA = V DV −1. We assume further thatRe λl < 0, l = 1, . . . , N . In that case it is easy to prove that
limt→∞ y(t) = 0, e.g. by representing the exact solution of the ODE explicitly as

y(t) = etAy0, where etA =

∞
∑

k=0

1

k!
tkAk = V etDV −1.

However,yn = V (I + hD)nV −1y0, whereA = V DV −1 and the matrixD is diagonal, therefore
limn→∞ yn = 0 for all initial valuesy0 iff |1 + hλl| < 1, l = 1, . . . , N . In our example we thus
require|1 − 1

10
h|, |1 − 100h| < 1, henceh < 1

50
.

It is important to realise that this restriction, necessaryto recovery of correct asymptotic behaviour, has
nothing to do with local accuracy, since, for largen, the genuine ‘unstable’ component is exceedingly
small. Its purpose is solely to prevent this component from leading to an unbounded growth in the numerical
solution.

Definition 3.28 We say that the ODEy′ = f(t,y) is stiff if (for some methods) we need to depressh
to maintainstability well beyond requirements of accuracy. An important exampleof stiff systems occurs
when an equation is linear,Re λl < 0, l = 1, 2, . . . , N , and the quotientmax |λk|/min |λk| is large: a ratio
of 1020 is not unusual in real-life problems!

Stiff equations, mostly nonlinear, occur throughout applications, whenever we have two (or more) different
timescales in the ODE. A typical example are equations ofchemical kinetics,where each timescale is
determined by the speed of reaction between two compounds: such speeds can differ by many orders of
magnitude.

Definition 3.29Suppose that a numerical method, applied toy′ = λy, y(0) = 1, with constanth, produces
the solution sequence{yn}n∈Z+ . We call the set

D = {hλ ∈ C : lim
n→∞

yn = 0}

the linear stability domainof the method. Noting that the set ofλ ∈ C for which y(t)
t→∞
−→ 0 is the left

half-planeC
− = {z ∈ C : Re z < 0}, we say that the method isA-stableif C

− ⊆ D.

Example 3.30We have already seen that for Euler’s methodyn → 0 iff |1 + hλ| < 1, thereforeD =
{z ∈ C : |1 + z| < 1}. Moreover, solvingy′ = λy with the trapezoidal rule,we obtainyn+1 =
[(1 + 1
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hλ)]yn thus, by induction,yn = [(1 + 1
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hλ)]ny0. Therefore

z ∈ D ⇔

∣

∣

∣

∣

1 + 1

2
z

1 − 1

2
z

∣

∣

∣

∣
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and we deduce thatD = C
−. Hence, the method is A-stable.

It can be proved by similar means that forbackward Eulerit is true thatD = {z ∈ C : |1− z| > 1}, hence
that the method is also A-stable.

Note that A-stability does not mean thatanystep size will do! We need to chooseh small enough to ensure
the right accuracy, but we don’t want to depress it much further to prevent instability.

Discussion 3.31A-stability analysis of multistep methods is considerablymore complicated. However,
according to thesecond Dahlquist barrier,no multistep method of orderp ≥ 3 may be A-stable. Note that
thep = 2 barrier for A-stability is attained by the trapezoidal rule.

The Dahlquist barrier implies that, in our quest for higher-order methods with good stability properties, we
need to pursue one of the following strategies:

• either relax the definition of A-stability

• or consider other methods in place of multistep.

The two courses of action will be considered in the next lecture.
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