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Technique 3.32Inasmuch as no multistep method of orderp ≥ 3 may be A-stable, stability properties
of BDF, say, are satisfactory for most stiff equations. The point is that in many stiff linear systems in
applications the eigenvalues are not just inC

− but also well away fromiR. [Analysis of nonlinear stiff
equations is difficult and well outside the scope of this course.] All BDF methods of orderp ≤ 6 (i.e.,
all convergent BDF methods) share the feature that the linear stability domainD includes a wedge about
(−∞, 0): such methods are said to beA0-stable.

Example 3.33Unlike multistep methods, implicit high-order RK may be A-stable. For example, recall the
3rd-order method
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from the last lecture. Applying it toy′ = λy, we have
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This is a linear system, whose solution is
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Thenyn+1 = r(hλ)yn, therefore, by induction,yn = [r(hλ)]ny0 and we deduce that

D = {z ∈ C : |r(z)| < 1}

We wish to prove that|r(z)| < 1 for everyz ∈ C
−, since this is equivalent to A-stability. This will be done

by a technique that can be applied to other RK methods. According to themaximum modulus principle
from Complex Methods, ifg is analytic in the closed complex domainV then|g| attains its maximum on
∂V. We letg = r. This is a rational function, hence its only singularities are the poles2 ± i

√
2 andg is

analytic inV = cl C− = {z ∈ C : Re z ≤ 0}. Therefore it attains its maximum on∂V = iR and

A-stability ⇔ |r(z)| < 1, z ∈ C
− ⇔ |r(it)| ≤ 1, t ∈ R.

In turn,
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1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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t4 ≥ 0 and it follows that the method is A-stable.

Example 3.34It is possible to prove that the 2-stageGauss–Legendre method
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is of order 4. [You can do this fory′ = f(y) by expansion, but it becomes messy fory′ = f(t,y).] It can be
easily verified that fory′ = λy we haveyn = [r(hλ)]ny0, wherer(z) = (1+ 1
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Since the poles ofr reside at3± i
√

3 and|r(it)| ≡ 1, we can again use the maximum modulus principle to
argue thatD = C

− and the Gauss–Legendre method is A-stable.

Problem 3.35The step sizeh is not some preordained quantity: it is a parameter of the method (in reality,
many parameters, since we may vary it from step to step). The basic input of a well-written computer
package for ODEs is not the step size but theerror tolerance:the level of precision, as required by the user.
The choice ofh > 0 is an important tool at our disposal to keep a local estimate of the error beneath the
required tolerance in the solution interval. In other words, we need not just atime-stepping algorithm,but
also mechanisms forerror control and for amending the step size.

Technique 3.36(The Milne device) Suppose that we wish to monitor the error of the trapezoidalrule
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We already know that the order is 2. Moreover, substituting the true solution we deduce that
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from the numerical method: this yields
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error constant. For example, the 2nd order 2-step Adams–Bashforth method
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The idea behind theMilne deviceis to use two multistep methods of the same order, one explicit and the
second implicit (e.g., (3.12) and (3.11), respectively), to estimate the local error of the implicit method. For
example,locally,
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Subtracting, we obtain the estimate
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and we use the right hand side as an estimate of the local error.

Note that TR is a far better method than AB: it is A-stable, hence itsglobal behaviour is superior. We
employ ABsolelyto estimate the local error. This adds very little to the overall cost of TR, since AB is an
explicit method.
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