Mathematical Tripos Part Il
Lent 2005
Professor A. Iserles

Numerical Analysis — Lecture 14

Implementation 3.37 To implement theMilne device,we work with apair of multistep methods of the
same order, one explidipredictor)and the other implicifcorrector),e.g.

Predictor : yn+2 = yn+1 + h[%f(tnfla ynfl) - %f(tnv yn) + %f(tn+17 yn+1)]7
Corrector : yn+2 = yn+1 + h’[ié.f(tnv yn) =+ %f(tn+1; yn—'rl) + %f(tn+2; y77,+2)]a

the third-order Adams—Bashforth and Adams—Moulton meshredpectively.

The predictor is employed not just to estimate the error efdbrrector, but also to provide initial guess
in the solution of the implicit corrector equation3ypically, for nonstiff equations, we iterate correction
equations at most twice, while stiff equations requtezation to convergengeotherwise the typically
superior stability features of the corrector are lost.

Let TOL > 0 be a user-specifietlerance:the maximal error allowed in approximating the ODE. Having
completed a single step and estimated the error, thererae possibilities:

(@) 5 TOL < || error || < TOL, say: Accept the step, continuettp, » with the same step size.
(b) || error || < f—OTOL, say: Accept the step and increase the step length;
(c) || error || > TOL: Reject the step, recommence integration frigmvith smallerh.

Amending step size can be done easily with polynomial irtiaton, although this means that we need to
store past values well in excess of what is necessary forsiimplementation of both multistep methods.

Improvement 3.38Let e be our estimate dbcal error. Thene/h is our estimate for the global error in an
interval of unit length. It is usual to require the latter gtity not to exceedOL since good implementa-
tions of numerical ODEs should monitor the accumulatioglobal error. This is callecerror estimation
per unit step.

Technique 3.39(Embedded Runge—Kutta methodige situation is more complicated with RK, since no
single error constant determines local growth of the effbie approach ofmbedded RKequires, again,
two (typically explicit) methods: an RK method ofstages and order, say, and another method, oft [
stages]/ > 1, and orderp + 1, such thathe firstr stages of both methods are identicgllhis means
that the cost of implementing the higher-order method igyinat, once we have computed the lower-order
approximation.) For example, consider (and verify!)

k1= f(tn Y,),
ko= f (tn + Sh,y, + shk1),

ygrl =y, + hk = order 2,
ks = f(tn + h,y, — hky + 2hk,),

y'ELQ-]‘rl =y, + gh(k: + 4ks + k3) = order 3.

We thus estimatgg]+1 —Y(tnt1) =~ yﬂl — yﬂl [It might look paradoxical, at least at first glance, but
the only purpose of the higher-order method is to providerecontrol for the lower-order one!]

Technique 3.39(The Zadunaisky devic&uppose that the OD¥ = f(¢,y), y(0) = y,, is solved by an
arbitrary numerical method of orderand that we have stored (not necessarily equidistant) pagien

1please email all corrections and suggestions to these motes ser | es@lant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / ww. dant p. cam ac. uk/ user/na/ Part ||/ Handouts. htni.

27



valuesy,,, ¥,,—1;- - -, Y,—,- We form an interpolatingth degree polynomial (with vector coefficieni)
such thatd(t,,—;) = y,,_,, i =0,1,...,p, and consider the differential equation

2 =f(t,z) +d(t) - f(t.d),  z(t.) =y, (3.13)
There are two important observations with regard to (3.13)

(1) Sinced(t) —y(t) = O(hPT!), the termd’(t) — f (¢, d) is usually small (becaugg (t) — f(t,y(t)) =
0). Therefore, (3.13) is a small perturbation of the origiB&E.

(2) The exact solution of (3.13) is knowg(t) = d(t).

Now, having produceg,, . ; with our numerical method, we proceed to evaluaie, as well,using exactly
the same method and implementation detaife.then evaluate the error #),1, namelyz,, 11 — d(t,,41),
and use it as an estimate of the errogin, ;.

Problem 3.40: Solving nonlinear algebraic system#/e have already observed that the implementation of
an implicit ODE method, whether multistep or RK, requires solution of (in general, nonlinear) algebraic
equations in each step. For example, forsastep method, we need to solve in each step the algebraic
system
Ynts = oshf(tnts, yn+s) + v, (3.14)

where the vectoo can be formed from past (hence known) solution values anddegvatives. The easiest
approach igunctional iteration

ygisl] :UShf(t7L+37y£gLs)+v7 .7 20717"'7

Whereyﬂs is typically provided by the predictor scheme. It is veryeetive fornonstiff equations but

fails for stiff ODEs since the convergence of this iterative scheme requineasirestriction ons as that
we strive to avoid by choosing an implicit method in the firstoe!

If the ODE is stiff, we might prefer Alewton—Raphsomethod, namely

. -1
- - Of (bossr Y2y . -
y%isl] = yg{Ls - |- Ush# [ygf]ﬂ - Ushf(tn-‘rsvyglrs) - v]'

The justification of the above is as follows: suppose @fiﬁgs is an approximation to the solution. We

linearise (3.14) locally about,, s, yﬂs),

]

7 af tn &yg] s j
Ynis = Oshf(tngs, Ynis) =V = [Ynys — 0hf(tnys, y[,ﬂ_g) —v]+ (tn+ s) 5] )

I- UshT (yn+s ~—Ynis

and Choosq;g‘fj:] by equating the right-hand side @
The snag is that repeatedly evaluating and inverting (Lefactorizing) the Jacobian matrix in every iter-
ation isveryexpensive. The remedy is to implement thedified Newton—Raphson methadmely

Ynt+s = Ynts - ay

-1
. . 0 tn 5 (0] . )
1) _ bl (g gy O e s | ey (3.15)

Thus, the Jacobian need be evaluated onigea step.

The only role the Jacobian matrix plays in (3.15) is to ensumevergence: its precise value makes no
difference to the ultimate value difim;_. yﬂs Therefore we might replace it with a finite-difference
approximation, evaluate it once every several steps etth&unote that the implementation of the method
requires the LU factorization df — o hJ, whereJ is our approximation of the Jacobian matrix, only once
we change eithek or J. Recalling that, once the LU factorization is known, theutioh of linear systems

is cheaper by an order of magnitude than the LU factorizatgstf, we deduce that the overall cost of this
procedure is not excessive. For stiff equations it is defiyjitheaper than using a minute step size with a
‘bad’ (e.g., explicit multistep or explicit RK) method.

28



