
Mathematical Tripos Part II
Lent 2005

Professor A. Iserles

Numerical Analysis – Lecture 141

Implementation 3.37To implement theMilne device,we work with apair of multistep methods of the
same order, one explicit(predictor)and the other implicit(corrector),e.g.

Predictor : yn+2 = yn+1 + h[ 5
12f(tn−1,yn−1) −

4
3f(tn,yn) + 23

12f(tn+1,yn+1)],

Corrector : yn+2 = yn+1 + h[− 1
12f(tn,yn) + 2

3f(tn+1,yn+1) + 5
12f(tn+2,yn+2)],

the third-order Adams–Bashforth and Adams–Moulton methods respectively.
The predictor is employed not just to estimate the error of the corrector, but also to providean initial guess
in the solution of the implicit corrector equations.Typically, for nonstiff equations, we iterate correction
equations at most twice, while stiff equations requireiteration to convergence, otherwise the typically
superior stability features of the corrector are lost.

Let TOL > 0 be a user-specifiedtolerance:the maximal error allowed in approximating the ODE. Having
completed a single step and estimated the error, there are three possibilities:

(a) 1
10TOL ≤ ‖ error ‖ ≤ TOL, say: Accept the step, continue totn+2 with the same step size.

(b) ‖ error ‖ < 1
10TOL, say: Accept the step and increase the step length;

(c) ‖ error ‖ > TOL: Reject the step, recommence integration fromtn with smallerh.

Amending step size can be done easily with polynomial interpolation, although this means that we need to
store past values well in excess of what is necessary for simple implementation of both multistep methods.

Improvement 3.38Let e be our estimate oflocal error. Thene/h is our estimate for the global error in an
interval of unit length. It is usual to require the latter quantity not to exceedTOL since good implementa-
tions of numerical ODEs should monitor the accumulation ofglobal error. This is callederror estimation
per unit step.

Technique 3.39(Embedded Runge–Kutta methods)The situation is more complicated with RK, since no
single error constant determines local growth of the error.The approach ofembedded RKrequires, again,
two (typically explicit) methods: an RK method ofν stages and orderp, say, and another method, ofν + l
stages,l ≥ 1, and orderp + 1, such thatthe firstν stages of both methods are identical.(This means
that the cost of implementing the higher-order method is marginal, once we have computed the lower-order
approximation.) For example, consider (and verify!)

k1 = f(tn,yn),

k2 = f
(

tn + 1
2h,yn + 1

2hk1

)

,

y
[1]
n+1 = yn + hk2 =⇒ order 2,

k3 = f(tn + h,yn − hk1 + 2hk2),

y
[2]
n+1 = yn + 1

6h(k1 + 4k2 + k3) =⇒ order 3.

We thus estimatey[1]
n+1 − y(tn+1) ≈ y

[1]
n+1 − y

[2]
n+1. [It might look paradoxical, at least at first glance, but

the only purpose of the higher-order method is to provide error control for the lower-order one!]

Technique 3.39(The Zadunaisky device)Suppose that the ODEy′ = f(t,y), y(0) = y0, is solved by an
arbitrary numerical method of orderp and that we have stored (not necessarily equidistant) past solution

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

27



valuesyn,yn−1, . . . ,yn−p. We form an interpolatingpth degree polynomial (with vector coefficients)d

such thatd(tn−i) = yn−i, i = 0, 1, . . . , p, and consider the differential equation

z′ = f(t,z) + d′(t) − f(t,d), z(tn) = yn. (3.13)

There are two important observations with regard to (3.13)

(1) Sinced(t)−y(t) = O
(

hp+1
)

, the termd′(t)−f(t,d) is usually small (becausey′(t)−f(t,y(t)) ≡
0). Therefore, (3.13) is a small perturbation of the originalODE.

(2) The exact solution of (3.13) is known:z(t) = d(t).

Now, having producedyn+1 with our numerical method, we proceed to evaluatezn+1 as well,using exactly
the same method and implementation details.We then evaluate the error inzn+1, namelyzn+1 −d(tn+1),
and use it as an estimate of the error inyn+1.

Problem 3.40: Solving nonlinear algebraic systemsWe have already observed that the implementation of
an implicit ODE method, whether multistep or RK, requires the solution of (in general, nonlinear) algebraic
equations in each step. For example, for ans-step method, we need to solve in each step the algebraic
system

yn+s = σshf(tn+s,yn+s) + v, (3.14)

where the vectorv can be formed from past (hence known) solution values and their derivatives. The easiest
approach isfunctional iteration

y
[j+1]
n+s = σshf(tn+s,y

[j]
n+s) + v, j = 0, 1, . . . ,

wherey
[0]
n+s is typically provided by the predictor scheme. It is very effective fornonstiff equations but

fails for stiff ODEs, since the convergence of this iterative scheme requires similar restriction onh as that
we strive to avoid by choosing an implicit method in the first place!

If the ODE is stiff, we might prefer aNewton–Raphsonmethod, namely

y
[j+1]
n+s = y

[j]
n+s −

[

I − σsh
∂f(tn+s,y

[j]
n+s)

∂y

]−1

[y
[j]
n+s − σshf(tn+s,y

[j]
n+s) − v].

The justification of the above is as follows: suppose thaty
[j]
n+s is an approximation to the solution. We

linearise (3.14) locally about(tn+s,y
[j]
n+s),

yn+s − σshf(tn+s,yn+s) − v ≈ [y
[j]
n+s − σshf(tn+s,y

[j]
n+s) − v] +

[

I − σsh
∂f(tn+s,y

[j]
n+s)

∂y

]

(yn+s − y
[j]
n+s)

and choosey[j+1]
n+s by equating the right-hand side to0.

The snag is that repeatedly evaluating and inverting (i.e. LU-factorizing) the Jacobian matrix in every iter-
ation isveryexpensive. The remedy is to implement themodified Newton–Raphson method, namely

y
[j+1]
n+s = y

[j]
n+s −

[

I − σsh
∂f(tn+s,y

[0]
n+s)

∂y

]−1

[y
[j]
n+s − σshf(tn+s,y

[j]
n+s) − v]. (3.15)

Thus, the Jacobian need be evaluated onlyoncea step.

The only role the Jacobian matrix plays in (3.15) is to ensureconvergence: its precise value makes no
difference to the ultimate value oflimj→∞ y

[j]
n+s. Therefore we might replace it with a finite-difference

approximation, evaluate it once every several steps etc. Further note that the implementation of the method
requires the LU factorization ofI − σshJ , whereJ is our approximation of the Jacobian matrix, only once
we change eitherh or J . Recalling that, once the LU factorization is known, the solution of linear systems
is cheaper by an order of magnitude than the LU factorizationitself, we deduce that the overall cost of this
procedure is not excessive. For stiff equations it is definitely cheaper than using a minute step size with a
‘bad’ (e.g., explicit multistep or explicit RK) method.

28


