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4 The Poisson equation

Problem 4.1(Approximation of∇2) Our goal is to solve thePoisson equation

∇2u = f ∀ (x, y) ∈ Ω, (4.1)

whereΩ is an open connected domain ofR
2 with a Jordan boundary, specified together with theDirichlet

boundary condition
u(x, y) = φ(x, y) ∀ (x, y) ∈ ∂Ω. (4.2)

(You may assume thatf ∈ C[Ω], φ ∈ C2[Ω], but this can be relaxed by an approach outside the scope of
this course.) To this end we impose onΩ a square grid with uniform spacing of∆x > 0 and replace (4.1)
by afinite-differenceformula. For simplicity, we require for the time being that∂Ω ‘fits’ into the grid: if a
grid point lies insideΩ then all its neighbours are incl Ω. We will discuss briefly in the sequel grids that
fail this condition.

Remark 4.2 Finite differences are neither the only nor, arguably, the best means of solving partial differ-
ential equations. Other methods abound: finite elements, boundary elements, spectral and pseudospectral
methods, finite-volume methods, vorticity methods, particle methods, meshless methods, gas-lattice meth-
ods and, in the important special case of the Poisson equation (4.1), fast multipole methods. Yet, finite
difference are the simplest and the only ones to feature in this lecture course.

Back to Problem 4.1Since∇2 = ∂2/∂x2 + ∂2/∂y2, we need to consider the approximation of second
derivatives.

Proposition 4.3 Letg ∈ C4[a, b] andx ∈ (a + ∆x, b − ∆x). Then

g′′(x) =
1

(∆x)2
[g(x − ∆x) − 2g(x) + g(x + ∆x)] + O

(

(∆x)2
)

. (4.3)

Proof Expanding into Taylor series,

g(x − ∆x) = g(x) − ∆xg′(x) + 1
2 (∆x)2g′′(x) − 1

6 (∆x)3g′′′(x) + O
(

(∆x)4
)

g(x + ∆x) = g(x) + ∆xg′(x) + 1
2 (∆x)2g′′(x) + 1

6 (∆x)3g′′′(x) + O
(

(∆x)4
)

and (4.3) follows by adding the two, subtracting2g(x) and dividing by(∆x)2. 2

Corollary 4.4 The approximation

∇2u(x, y) ≈
1

(∆x)2
[u(x − ∆x, y) + u(x + ∆x, y) + u(x, y − ∆x) + u(x, y + ∆x) − 4u(x, y)]

produces a (local) error ofO
(

(∆x)2
)

.

Approximation 4.5 The aforementioned analysis justifies thefive-point method

ul−1,m + ul+1,m + ul,m−1 + ul,m+1 − 4ul,m = (∆x)2fl,m, (l∆x,m∆x) ∈ Ω, (4.4)

wherefl,m = f(l∆x,m∆x), ul,m ≈ u(l∆x,m∆x). It is usually denoted by thecomputational stencil

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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Whenever(l∆x,m∆x) ∈ ∂Ω, we substitute appropriate Dirichlet boundary values. Note that the outcome
of our procedure is a set of linear algebraic equations, whose solution approximates the solution of the
Poisson equation (4.1) at the grid points.

Approximation 4.6 It is easy (but laborious) to produce higher-order methods.You may verify, for exam-
ple, that
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produces a local error ofO
(

(∆x)4
)

. Needless to say, the implementation of this method is more compli-
cated, since we might be ‘missing’ points near the boundary.Moreover, the set of algebraic equations that
need be solved is less sparse than for the 5-point method, hence its solution is more expensive.

It is considerably easier to implement thenine-point method
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but, unfortunately, it produces error ofO
(

(∆x)2
)

. This can be remedied by a clever trick which is outside
the scope of this course.

Problem 4.7 (Non-equispaced grids)Since the boundary often fails to fit exactly into a square grid, we
sometimes need to approximate∇2 using non-equispaced points. Clearly, it is enough to be able to ap-
proximate a second directional derivative w.r.t. each variable and subsequently ‘synthetize’ an approxima-

tion to ∇2. For example, suppose that grid points are given with the spacing t t t∆x κ∆x , where
0 < κ ≤ 1. It is easy to verify by a Taylor expansion that

1

(∆x)2

[

2
κ+1g(x − ∆x) − 2

κ
g(x) + 2

κ(κ+1)g(x + κ∆x)
]

= g′′(x) + 1
2 (κ − 1)g′′′(x)∆x + O

(

(∆x)2
)

,

with error ofO((∆x)) (note thatκ = 1 gives, as expected,O
(

(∆x)2
)

). Better approximation can be ob-

tained by taking two equispaced points on the ‘interior’ side, i.e. t t t t∆x ∆x κ∆x as follows,

1

(∆x)2

[

κ−1
κ+2g(x − 2∆x) − 2(κ−2)

κ+1 g(x − ∆x) + κ−3
κ

g(x) + 6
κ(κ+1)(κ+2)g(x + κ∆x)

]

= g′′(x) + O
(

(∆x)2
)

.
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