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Problem 4.8Finite-difference discretization of∇2u = f ‘replaces’ the PDE by a large system of linear
equations. In the sequel we pay special attention to thefive-point formula,which we rewrite in the form

−ul−1,j − ul+1,j − ul,j−1 − ul,j+1 + 4ul,j = −(∆x)2fl,j , (4.5)

where(l∆x, j∆x) ∈ Ω. Having ordered grid points, we can write (4.5) as a linear system,Au = b, say.
(The precise manner of ordering grid points into a long vector is immaterial to our present discussion. The
most obvious isnatural ordering,by columns, but other orderings are of interest.) Recall from Lecture
1 that if Ω is a square thenA is symmetric and positive-definite.

Our present concern is to prove that, as∆x → 0, the numerical solution (4.5) tends to the exact solution of
the Poisson equation∇2u = f (with appropriate Dirichlet boundary conditions). For thesake of simplicity,
we restrict our attention to the important case ofΩ being aunit square,whencel, j = 1, 2, . . . ,m, where
∆x = 1/(m + 1).

Proposition 4.9 The eigenvalues of the matrixA are

λα,β = 4

{

sin2

[

απ

2(m + 1)

]

+ sin2

[

βπ

2(m + 1)

]}

, α, β = 1, 2, . . . ,m.

Proof It is enough, givenα, β ∈ {1, 2, . . . ,m}, to demonstrate the existence of a nonzero vector(vl,j)
m+1
l,j=0

such thatvl,0 = vl,m+1 = v0,j = vm+1,j = 0 for l, j = 0, . . . ,m + 1 and

−vl−1,j − vl+1,j − vl,j−1 − vl,j+1 + 4vl,j = λα,βvl,j , l, j = 1, 2, . . . ,m + 1.

We let

vl,j = sin

(

lαπ

m + 1

)

sin

(

jβπ

m + 1

)

, l, j = 0, 1, . . . ,m + 1.

Note that the ‘boundary conditions’ are satisfied and, by virtue of the identity

sin(θ − ψ) + sin(θ + ψ) = 2 sin θ cos ψ.

We have

−vl−1,j − vl+1,j − vl,j−1 − vl,j+1 + 4vl,j = −

{

sin

[

(l − 1)απ

m + 1

]

+ sin

[

(l + 1)απ

m + 1

]}

sin

(

jβπ

m + 1

)

− sin

(

lαπ

m + 1

){

sin

[

(j − 1)βπ

m + 1

]

+ sin

[

(j + 1)βπ

m + 1

]}

+ 4 sin

(

lαπ

m + 1

)

sin

(

jβπ

m + 1

)

= λα,βvl,j .

This proves the proposition. 2

As a matter of independent mathematical interest, note thatfor 1 ≤ α, β ¿ m we have

λα,β

(∆x)2
≈

4

(∆x)2

[

α2π2

4(m + 1)2
+

β2π2

4(m + 1)2

]

= (α2 + β2)π2

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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and recall (e.g. from the solution of the Poisson equation ina square by separation of variables inMaths
Methods) that theexacteigenvalues of−∇2 are(α2 + β2)π2, α, β ∈ N.

Let ũl,j = u(l∆x, j∆x) (the exact solution of the Poisson equation) andel,j = ul,j − ũl,j (the pointwise
error of the five-point formula). Sete = (el,j).

Theorem 4.10 Subject to sufficient smoothness of the functionf and of the boundary conditions, there exists
a numberc > 0, independent of∆x, such that

‖e‖ ≤ c∆x, ∆x → 0. (4.6)

Proof We already know (having constructed the 5-point formula by matching Taylor expansions) that

−ũl−1,j − ũl+1,j − ũl,j−1 − ũl,j+1 + 4ũl,j = −(∆x)2fl,j + O
(

(∆x)4
)

.

Subtracting this from (4.5), we obtain

−el−1,j − el+1,j − el,j−1 − el,j+1 + 4el,j = O
(

(∆x)4
)

. (4.7)

Sinceel,j = 0 on the boundary, we deduce that, in a matrix notation, (4.7) can be written asAe = δ, where
‖δ‖ = O

(

(∆x)3
)

: the reason is that

δl,j = O
(

(∆x)4
)

implies ‖δ‖2 =

m
∑

l=1

m
∑

j=1

δ2
l,j = O((∆x))

−2
×O

(

(∆x)8
)

.

Thereforee = A−1δ.
The matrixA is symmetric, hence so isA−1 and it is true that‖A−1‖ = ρ(A−1). The eigenvalues ofA−1

can be deduced from Proposition 4.9, since they are the reciprocals of the eigenvalues ofA. Thus, recalling
that∆x = 1/(m + 1),

ρ(A−1) = 1
4 max

α,β=1,...,m

{

sin2

[

απ

2(m + 1)

]

+ sin2

[

βπ

2(m + 1)

]}

−1

=
1

8 sin2( 1
2π∆x)

≈
1

2π2(∆x)2
.

Therefore‖e‖ ≤ ‖A−1‖ · ‖δ‖ ≤ c∆x for some constantc > 0. 2

Problem 4.11(Solution of the 5-point equations)We have already seen that

Jacobi: u
(k+1)
l,j = 1

4

[

u
(k)
l−1,j + u

(k)
l+1,j + u

(k)
l,j−1 + u

(k)
l,j+1 − (∆x)2fl,j

]

;

Gauss–Seidel: u
(k+1)
l,j = 1

4

[

u
(k+1)
l−1,j + u

(k)
l+1,j + u

(k+1)
l,j−1 + u

(k)
l,j+1 − (∆x)2fl,j

]

.

Moreover, it has been proved earlier in the lecture course (using Theorem 1.7) that both methods converge
to the solution of (4.5). However,the speed of convergence is very slow!As a matter of fact, it is possible
to prove that, denoting byB andL the iteration matrices of Jacobi and Gauss–Seidel respectively, it is true
that (again, in a unit square)

ρ(B) = cos

(

π

m + 1

)

≈ 1 −
π2

2m2
,

ρ(L) =

[

cos

(

π

m + 1

)]2

≈ 1 −
π2

m2
.

Note that (at least asymptotically) Gauss–Seidel convergesat twice the speed of Jacobi.Yet, even the speed
of convergence of Gauss–Seidel is exceedingly slow. For example,m = 100 yieldsρ(B) ≈ 0.9995 and
ρ(L) ≈ 0.9990. Requiring 6 significant digits, we need≈ 27991 Jacobi iterations or≈ 13996 iterations of
Gauss–Seidel.
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