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Numerical Analysis – Lecture 171

Observation 4.12(Attenuation for different frequencies)The speed of convergence of some iterative meth-
ods, e.g. Gauss–Seidel, can be increased drastically within the context of solving linear equations that
originate in the discretization of PDEs. Herewith we analyse (with a great deal of hand-waving) the 5-point
formula in anm × m square grid, being solved by the Gauss–Seidel iteration. Wecommence from a com-
putational observation: once the Gauss–Seidel method is applied, the errorin the first few iterationsdecays
very substantially, roughly by a factor of1

2 in each iteration. Subsequently, everything slows down andthe
method settles to its excruciatingly-slow asymptotic rateof convergence.
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l,j ei(lθ+jψ). It is possible to prove that, in suitable norms,‖r(k)‖ = |‖ε(k)‖|. (More

about Fourier transforms and norms later!) Were the boundary conditionsperiodic,it would have been easy
to prove that
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– for Dirichlet boundary conditions this isn’t strictly true but the difference is of a lower order of magnitude
and we’ll disregard it. Thus, thelocal attenuationof the error is roughly
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Note that the frequencies ‘supported’ by the grid live in[−π, π]: wiggles between grid points (i.e., frequen-
cies which lie outside[−π, π] relative to the grid) pass unnoticed!
Bad news:For |θ|, |ψ| = O

(

m−1
)

we obtainρ
(k+1)
θ,ψ ≈ 1 − cm−2 for somec > 0, the disappointingly

small attenuation already familiar from the analysis of Gauss–Seidel.
Good news:Consider just thelarge frequencies.Then
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Thus, Gauss–Seidel converges fast forlarge frequencies.

Algorithm 4.13 (The multigrid method)Suppose that we cover the square domain by a range of nested
grids, of increasing coarseness,Dm ⊂ Dm/2 ⊂ · · ·, say. The corresponding ‘fast’ frequencies are

Dm DmDm/2 Dm/2· · · · · ·

The idea is to cover the whole relevant range of frequencies by ‘fast bands’. In other words, the purpose of
Gauss–Seidel iterations is solely to remove the contribution of fast frequencies relative to each nested grid.

A multigrid sweepstarts at the finest grid, travels to the coarsest (where the number of variables is small
and we can afford to solve the equations with Cholesky, say) and back to the finest:

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

2
εl,j should not be confused with the error in the solution of the original Poisson equation!
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coarsening - ¾ refining

Eachcoarseningstage involves computing the residualrh = bh − Ahxh (h is the size of the grid) and
restricting it to the coarser grid. There again we are solving for the residual,i.e. we iterate for the equations
A2hy2h = r2h. A good restriction combines 9 ‘fine’ values according to therule
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Refinement entails a prolongationyh = Py2h by linear interpolation (the exact opposite of the above
procedure) and correctionxnew

h = xold
h + yh.

It is usual to employ only a moderate number of iterations in each restriction (3–5, say) and prolongation
(just 1–2 iterations, to take care of fast frequencies that have been reintroduced by prolongation) and to
check for convergence only by the end of the sweep. Unless convergence occurs, we embark on another
multigrid sweep and so on.

Algorithm 4.14 (Full multigrid) Start from the coarsest grid and advance to the finest in a ‘zig-zag’ fashion
to obtain good starting value, subsequently continue with the V-cycles, as above:
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Observation 4.15(Special structure of 5-point equations)We wish to motivate and introduce our next
family of efficient solution methods for the 5-point equations: thefast Poisson solvers.Thus, suppose that
we are solving∇2u = f in a squarem × m grid with the 5-point formula (all this can be generalized a
great deal, e.g. to the nine-point formula). Let the grid be enumerated innatural ordering,i.e. by columns.
Thus, the linear systemAu = b can be written explicitly in the form
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The matrixA is m × m, tridiagonal, symmetricand Toeplitz (i.e., constant along diagonals): we call
such a matrixTST.You can verify easily that its eigenvalues are−4 + 2 cos kπ

m+1 , k = 1, . . . ,m, and the

corresponding orthogonal eigenvectors areqk,l =
√

2
m+1 sin klπ

m+1 , k, l = 1, . . . ,m. [Note that allm × m

TST matrices share the same full set of eigenvectors, hence they all commute!]
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