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Numerical Analysis — Lecture 17

Observation 4.12(Attenuation for different frequencieghe speed of convergence of some iterative meth-
ods, e.g. Gauss—Seidel, can be increased drasticallynwiitlei context of solving linear equations that
originate in the discretization of PDEs. Herewith we anelfsith a great deal of hand-waving) the 5-point
formula in anm x m square grid, being solved by the Gauss—Seidel iterationcdifenence from a com-
putational observation: once the Gauss—Seidel methogledpthe erroin the first few iterationslecays
very substantially, roughly by a factor éfin each iteration. Subsequently, everything slows downthaed
method settles to its excruciatingly-slow asymptotic @&fteonvergence.
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Let rékzj =Y al(f“j)ei(le+jw). It is possible to prove that, in suitable normjg,*)|| = |||[e®|||. (More

about Fourier transforms and norms later!) Were the boynztanditionsperiodic,it would have been easy
to prove that
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— for Dirichlet boundary conditions this isn't strictly &wbut the difference is of a lower order of magnitude
and we’ll disregard it. Thus, thecal attenuatiorof the error is roughly
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Note that the frequencies ‘supported’ by the grid livg-inr, 7]: wiggles between grid points (i.e., frequen-
cies which lie outsidé—, 7] relative to the grid) pass unnoticed!

Bad news:For [¢], || = O(m™!) we obtainpé’fjl) ~ 1 — em~2 for somec > 0, the disappointingly
small attenuation already familiar from the analysis of &atSeidel.

Good newsConsider just théarge frequenciesThen
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Thus, Gauss—Seidel converges fastéoge frequencies.

Algorithm 4.13 (The multigrid methodsuppose that we cover the square domain by a range of nested
grids, of increasing coarsenegs,, C D,,/» C ---, say. The corresponding ‘fast’ frequencies are
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The idea is to cover the whole relevant range of frequengiefabt bands’. In other words, the purpose of
Gauss—Seidel iterations is solely to remove the contobutf fast frequencies relative to each nested grid.

A multigrid sweepstarts at the finest grid, travels to the coarsest (wheredhwer of variables is small
and we can afford to solve the equations with Cholesky, sag)oack to the finest:

1please email all corrections and suggestions to these motes ser | es@ant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / ww. dant p. cam ac. uk/ user/na/ Part |1/ Handouts. htni.
25“ should not be confused with the error in the solution of thginal Poisson equation!
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coarsening —— <~—— refining

Eachcoarseningstage involves computing the residugl = b, — A,x;, (h is the size of the grid) and
restricting it to the coarser grid. There again we are sglfdan the residualj.e. we iterate for the equations
Asnysy, = T2n. A good restriction combines 9 ‘fine’ values according torthie
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Refinement entails a prolongatiqy), = Py, by linear interpolation (the exact opposite of the above
procedure) and correctiagf®” = 94 + y,.

It is usual to employ only a moderate number of iterationsaaherestriction (3-5, say) and prolongation
(just 1-2 iterations, to take care of fast frequencies tlaaeheen reintroduced by prolongation) and to
check for convergence only by the end of the sweep. Unlesgegence occurs, we embark on another
multigrid sweep and so on.

Algorithm 4.14 (Full multigrid) Start from the coarsest grid and advance to the finest in ezaiy fashion
to obtain good starting value, subsequently continue iméh\tcycles, as above:

Observation 4.15(Special structure of 5-point equationgje wish to motivate and introduce our next
family of efficient solution methods for the 5-point equato thefast Poisson solversthus, suppose that
we are solvingv?u = f in a squaren x m grid with the 5-point formula (all this can be generalized a
great deal, e.g. to the nine-point formula). Let the grid bemeerated imatural ordering,i.e. by columns.
Thus, the linear systetrdu = b can be written explicitly in the form

A I 0 U1 o 41 0
I A I w2 2 1 -4 1
A= , u= co|, b= |, A=
. . . . b . . .
0 I A . b 0 (-
The matrix A is m x m, tridiagonal, symmetricand Toeplitz(i.e., constant along diagonals): we call
such a matrixTST.You can verify easily that its eigenvalues aré + 2 cos mk—L k=1,...,m, and the

corresponding orthogonal eigenvectors @re = ,/m%rl sin ka1 k,l=1,...,m. [Note that allm x m

TST matrices share the same full set of eigenvectors, heagall commute!]
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