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Method 4.16 (The Hockney method)Solving∇2u = f in an m × m grid with the 5-point formula, we
have written the equations in the formAu = b, whereA is block-TST (withA along the main diagonal
andI in the sub-and-superdiagonal). The spectrum ofA is known,A = QDQ, whereQ is orthogonal and
involutory (Q2 = I) andD is diagonal,D = diagd. The vectorsu andb are partitioned accordingly. Set
vk = Quk, ck = Qbk, k = 1, . . . ,m, therefore
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Let us by this stage reorder the gridby rows, instead of by columns.. In other words, we permutev 7→ ṽ,
c 7→ c̃, s.t.c̃1, say, is made out of the first components ofc1, . . . , cm, c̃2 out of the second components and
so on. This results in
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ṽ = c̃, whereΓl =
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, l = 1, . . . ,m.

These arem uncoupledsystems,Γlṽl = c̃l, l = 1, . . . ,m. Being tridiagonal, each such system can be
solved fast. Thus, the steps of the algorithm and their computational cost are

1. Form the productsck = Qbk, k = 1, . . . ,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O
(

m3
)

2. Solvem × m tridiagonal systemsΓlṽl = c̃l, l = 1, . . . ,m . . . . . . . . . . . . . . . . O
(

m2
)

3. Form the productsuk = Qvk, k = 1, . . . ,m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O
(

m3
)

(permutationsc 7→ c̃ andṽ 7→ v are free: in practice, we storec etc. as a 2D matrix, rather than in a long
vector).

Method 4.17 Improved Hockney algorithmWe observe thatthe computational bottleneck is to be found

in the 2m matrix-vector products by the matrixQ. Recall further thatQk,l =
√

2
m+1 sin πkl

m+1 , k, l =

1, . . . ,m. This special form lends itself to a considerable speedup inmatrix multiplication. Before making
the problem simpler, however, let us make it more complicated! We write a typical product in the form

m
∑

l=1

xl sin
πkl

m + 1
= Im

m
∑

l=0

xl exp
πikl

m + 1
= Im

2m+1
∑

l=0

xl exp
2πikl

2m + 2
, k = 1, . . . ,m, (4.8)

wherexm+1 = · · · = x2m+1 = 0.

Problem 4.18(The discrete Fourier transform)Let Πn be the space of allbi-infinite complexn-periodic
sequences:x = {xk}k∈Z ∈ Πn ⇔ xk+n = xk, k ∈ Z. Setωn = exp 2πi

n , the primitive root of unity of
degreen. Thediscrete Fourier transform (DFT)of x is

Fn : Πn → Πn such that Fnx = y where yk =
1

n

n−1
∑

l=0

ω−kl
n xl, k ∈ Z.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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Trivial exercise:You can easily prove thatFn is an isomorphism ofΠn onto itself and that

F−1
n y = x, where xl =

n−1
∑

k=0

ωkl
n yk, l ∈ Z.

An important observation:Because of (4.8), multiplication byQ can be reduced to calculating an inverse
of DFT.
Since we need to evaluate DFT (or its inverse) only in a singleperiod, we can do so by multiplying a vector
by a matrix, at the cost ofO

(

n2
)

operations. This, however, is suboptimal and the cost of calculation can
be lowered a great deal!

Algorithm 4.19 The fast Fourier transform (FFT)Suppose thatn is a power of 2,n = 2L and denote by

y(E) = {y2j}j∈Z and y(O) = {y2j+1}j∈Z

the even and odd portions ofy, respectively. Note thaty(E),y(O) ∈ Πn/2.
Suppose that we already know the inverse DFT of both ‘short’ sequences,

x(E) = F−1
n/2y

(E), x(O) = F−1
n/2y

(O).

It is then possible to assemblex = F−1
n y in a small number of operations. Sinceωn

n = 1, we have

xl =

2L
−1

∑

j=0

ωjl
2Lyj =

2L−1
−1

∑

j=0

ω2jl
2L y2j +

2L−1
−1

∑

j=0

ω
(2j+1)l

2L y2j+1

=
2L−1

−1
∑

j=0

ωjl
2L−1y

(E)
j + ωl

2L

2L−1
−1

∑

j=0

ωjl
2L−1y

(O)
j = x

(E)
l + ωl

2Lx
(O)
l , l = 0, . . . , 2L − 1.

Therefore, it costs justn products to evaluatex, provided thatx(E) andx(O) are known. This, incidentally,
can be further reduced to12n, since forl = 0, 1, . . . , n/2 − 1 = 2L−1 − 1 we have

ωl+2L−1

2L = ω2L−1

2L ωl
2L = −ωl

2L =⇒ xl+2L−1 = x
(E)
l − ωl

2Lx
(O)
l .

Thus, the productsωl
2Lx

(O)
l need be evaluated only forl ≤ n/2 − 1.

To execute FFT, we start from vectors of unit length and in each sth stage,s = 1, 2, . . . , L, assemble2L−s

vectors of length2s from vectors of length2s−1: this ‘costs’2L−1 = 1
2n products. Altogether, the cost of

FFT is 1
2n log2 n products.

Forn = 1024 = 210, say, the cost is≈ 5×103 products, compared to≈ 106 for naive matrix multiplication!
For n = 220 the respective numbers are≈ 1.05 × 107 and≈ 1.1 × 1012, which represents a saving by a
factor of more than105.

Applications 4.20The FFT has numerous further applications: spectral and pseudospectral discretization
methods for PDEs, computation of Fourier harmonics, image processing, filtering and reconstruction, com-
puter vision, solution of integral equations, fast multiplication of long integers, numerical conformal maps,
. . . . Arguably, it is the most valuable and widely-used computational technique.
Perhaps the most useful is the computation ofFourier coefficients

1

2π

∫ π

−π

e−ikxf(x)dx ≈
1

n

n−1
∑

m=0

ω−km
n f( 2πm

n ), −bn/2c + 1 ≤ k ≤ bn/2c.

If f is periodic and analytic in the strip{z ∈ C : −π ≤ Re z ≤ π, |Im z| ≤ α} then the error decays like
O(e−αn).
The FFT was discovered by Gauss (and forgotten), rediscovered by Lanczos (and forgotten) and, finally,
rediscovered by Cooley and Tuckey (and changed history).
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