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5 Partial differential equations of evolution

Method 5.1We consider the solution of thediffusion equation

∂u

∂t
=

∂2u

∂x2
,

whereu = u(x, t) is given for0 ≤ x ≤ 1, t ≥ 0, with initial conditionsfor t = 0 and Dirichletboundary
conditionsatx = 0 andx = 1. By Taylor’s expansion

∂u(x, t)

∂t
=

1

∆t
[u(x, t + ∆t) − u(x, t)] + O((∆t)) ,

∂2u(x, t)

∂x2
=

1

(∆x)2
[u(x − ∆x, t) − 2u(x, t) + u(x + ∆x, t)] + O

(

(∆x)2
)

,

motivating the numerical scheme

un+1
m = un

m + µ
(

un
m−1 − 2un

m + un
m+1

)

, m = 1, 2, . . . ,M, (5.1)

where∆x = 1/(M + 1), un
m ≈ u(m∆x, n∆t), while µ = ∆t/(∆x)2 is theCourant number.Substi-

tuting whenever necessary initial conditionsu0
m and boundary conditionsun

0 andun
M , we possess enough

information to advance (5.1) fromun to u
n+1 for n ∈ Z

+.

The question ofconvergenceof the method (5.1) is of crucial importance. Specifically,keepingµ fixed
and letting∆x → 0,2 we ask whether, for everyT > 0, it is true thatun

m → u(x, t) uniformly for
m∆x → x ∈ [0, 1], n∆t → t ∈ [0, T ]. Like for ODEs or for the Poisson equation, unless convergence
takes place, the method should never be used! In the present case, however, a method has an extra parameter,
µ. It is entirely possible for a method to converge for some choice ofµ and diverge otherwise.

Theorem 5.2 µ ≤ 1

2
⇒ convergence.

Proof Let en
m := un

m − u(m∆x, n∆t), m = 1, 2, . . . ,M , n ≥ 0. Convergence is equivalent to

lim
∆x↓0

max
m=1,2,...,M
0≤n≤T/∆t

|en
m| = 0

for every constantT > 0. SinceO(∆t) = O
(

(∆x)2
)

, it follows from (5.1) that there existsC > 0 such
that|en+1

m − en
m − µ(en

m−1 − 2en
m + en

m+1)| ≤ C(∆x)4. Let ηn := maxm=1,...,M |en
m|. Then

|en+1
m | ≤ |µen

m−1 + (1 − 2µ)en
m + µen

m+1| + C(∆x)4 ≤ (2µ + |1 − 2µ|)ηn + C(∆x)4

= ηn + C(∆x)4,

by virtue ofµ ≤ 1

2
. Sinceη0 = 0, induction yields

ηn ≤ Cn(∆x)4 ≤ CT (∆x)4/(∆t) = CT (∆x)2/µ → 0

as∆x ↓ 0. 2

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

2Observe that∆t also tends to zero, since∆t = µ(∆x)2.
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Discussion 5.3In practice we wish to choose∆x and∆t of comparable size, thereforeµ = (∆t)/(∆x)2 is
likely to be large. Consequently, the restriction of the last theorem is disappointing: unless we are willing
to advance with tiny time step∆t, the method (5.1) is of limited practical interest. The situation is similar
to stiff ODEs: like the Euler method, the scheme (5.1) is simple, plausible, explicit, easy to execute and
analyse – but of very limited utility. . . .

Definition 5.4 (Stability in the context of time-stepping methods for PDEsof evolution)A numerical method
for a PDE of evolution isstableif (for zero boundary conditions) it produces a uniformly bounded approx-
imation of the solution in any bounded interval of the form0 ≤ t ≤ T when∆x → 0 and the Courant
number (or a generalization thereof) is constant. This definition is relevant not just for the diffusion equation
but for every PDE of evolution which iswell posed,i.e. such that its exact solution depends (in a compact
time interval) in a uniformly bounded manner on the initial conditions.3 Most PDEs of practical interest are
well posed.

Theorem 5.5 (The Lax equivalence theorem). Suppose that the underlyingPDE is well posed and that it is
solved by a numerical method with an error ofO

(

(∆x)p+1
)

, p ≥ 1. Then stability⇔ convergence.

Problem 5.6 (Stability of (5.1)Although we can deduce from the theorem thatµ ≤ 1

2
⇒ stability, we

will prove directly that stability⇔ µ ≤ 1

2
. Let u

n = [un
1 , un

2 , . . . , un
M ]>. We can express the recurrence

(5.1) asun+1 = Au
n, whereA is TST, with1 − 2µ along the diagonal andµ in the subdiagonal. Hence

σ(A) = {(1− 2µ) + 2µ cos πk
M+1

: k = 1, . . . ,M} = {1− 4µ sin2 πk
2M+2

: k = 1, . . . ,M} and (A being
symmetric)

‖A‖2 = ρ(A) =











|1 − 4µ
(

sin πM
2M+2

)2

| ≤ 1, µ ≤ 1

2
,

4µ
(

sin πM
2M+2

)2

− 1 > 1, 1

2
< µ.

We distinguish between two cases.

(i) µ ≤ 1

2
: ‖un+1‖ ≤ ‖A‖ · ‖un‖ ≤ · · · ≤ ‖A‖n+1‖u0‖ ≤ ‖u0‖ asn → ∞, for everyu

0.

(ii) µ > 1

2
: Chooseu0 as the eigenvector corresponding to the largest (in modulus) eigenvalue,λ, say.

Hence, by induction,un = λn
u

0, becoming unbounded asn → ∞.

Technique 5.7(The method of lines)Let um(t) = u(m∆x, t), m = 0, 1, . . . ,M +1, t ≥ 0. Approximating
∂2/∂x2 as before, we deduce from the PDE that thesemidiscretization

dum

dt
=

1

(∆x)2
(um−1 − 2um + um+1), m = 1, 2, . . . ,M (5.2)

carries an error ofO
(

(∆x)2
)

. This is anODE system,and we can solve it by any ODE solver. Thus, Euler’s
method yields (5.1), while backward Euler results in

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = un
m.

This approach is commonly known asthe method of lines.Much (although not all!) of the theory of finite-
difference methods for PDEs of evolution can be presented asa two-stage task: first semidiscretize, getting
rid of space variables, then use an ODE solver. Typically, each stage is conceptually easier than the process
of discretizing in unison in both time and in space (so-called full discretization).

Method 5.8 (The Crank–Nicolson scheme)Discretizing the ODE (5.2) with the trapezoidal rule, we obtain

un+1
m − 1

2
µ(un+1

m−1 − 2un+1
m + un+1

m+1) = un
m + 1

2
µ(un

m−1 − 2un
m + un

m−1), m = 1, 2, . . . ,M. (5.3)

Thus, each step requires the solution of anM × M TST system. The error is stillO
(

(∆x)2
)

(inherited
from space discretization). However, as we will see, Crank–Nicolson enjoys superior stability features, as
compared with the method (5.1).

Note further that (5.3) is animplicit method: advancing each time step requires to solve a linear algebraic
system. However, the matrix of the system is TST and its solution by sparse Cholesky factorization can be
done inO(M) operations.

3Thus, “stability” is nothing but the statement that well posedness is retained under discretization, uniformly for∆x → 0.

38


