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Numerical Analysis — Lecture 19

5 Partial differential equations of evolution

Method 5.1 We consider the solution of ttdiffusion equation

ou_ o
ot 0x2’

whereu = u(z,t) is given for0 < x < 1, ¢ > 0, with initial conditionsfor ¢ = 0 and Dirichletboundary
conditionsatz = 0 andx = 1. By Taylor's expansion

ou(x,t) 1
—or = aplulmt Al —u(z, )] + O((A1)
OPu(x,t) 1 ,
o2 - (Aa:)2 [“(x - Ax’t) - 2u($7t) + U(w + A-%',t)] + O((Ax) ) s

motivating the numerical scheme
uptt =l 4 (ul g — 2ul A ult ), m=1,2...,M, (5.1)

whereAx = 1/(M + 1), u?, ~ u(mAx,nAt), while u = At/(Ax)? is the Courant number.Substi-
tuting whenever necessary initial conditionf§ and boundary conditions} andu?,, we possess enough
information to advance (5.1) from” to w"+! forn € Z*.

The question otonvergencef the method (5.1) is of crucial importance. Specificakgepingu fixed

and lettingAz — 0,2 we ask whether, for ever¥’ > 0, it is true thatu”, — wu(z,t) uniformly for
mAz — z € [0,1], nAt — t € [0,T]. Like for ODEs or for the Poisson equation, unless convergen
takes place, the method should never be used! In the pressmttiowever, a method has an extra parameter,
w. Itis entirely possible for a method to converge for someahof ;. and diverge otherwise.

Theorem 5.2 1, < 1 = convergence.

Proof Letel? := ul!, — u(mAz,nAt),m =1,2,...,M,n > 0. Convergence is equivalent to

m
lim max Jen|=0
M

Az|0m=1,2,...,
0<n<T/At

for every constanf’ > 0. SinceO(At) = O((Az)?), it follows from (5.1) that there exist§' > 0 such
that|er ™t — e — p(er,_y — 2el + e )] < C(Az)*. Letn™ := maxy,—1,.. a |€]. Then

m—

leptt| < e,y + (1= 2p)ep, + pep, |+ C(Az)* < (2u+ |1 — 2u))n™ + C(Ax)*
=n"+ C(Ax)*,

by virtue ofx < . Sincen® = 0, induction yields
n" < Cn(Az)* < CT(Ax)*/(At) = OT(Az)? /i — 0

asAzx | 0. O

1please email all corrections and suggestions to these motes ser | es@ant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / ww. dant p. cam ac. uk/ user/na/Part|1/Handouts. htni.
20bserve that\t also tends to zero, singst = u(Az)?.
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Discussion 5.3n practice we wish to choos&z andAt of comparable size, therefore= (At)/(Ax)? is
likely to be large. Consequently, the restriction of the thsorem is disappointing: unless we are willing
to advance with tiny time steft, the method (5.1) is of limited practical interest. The &fton is similar

to stiff ODEs: like the Euler method, the scheme (5.1) is $émplausible, explicit, easy to execute and
analyse — but of very limited utility. . ..

Definition 5.4 (Stability in the context of time-stepping methods for PDEss/olution)A numerical method

for a PDE of evolution istableif (for zero boundary conditions) it produces a uniformlyubded approx-
imation of the solution in any bounded interval of the fobnx ¢ < 7"'whenAz — 0 and the Courant
number (or a generalization thereof) is constant. This digfimis relevant not just for the diffusion equation
but for every PDE of evolution which iwell posedj.e. such that its exact solution depends (in a compact
time interval) in a uniformly bounded manner on the initiahditions® Most PDEs of practical interest are
well posed.

Theorem 5.5 (The Lax equivalence theorem). Suppose that the undeigis well posed and that it is
solved by a numerical method with an error(ﬁ((A:c)P“),p > 1. Then stability= convergence.

Problem 5.6 (Stability of (5.1)Although we can deduce from the theorem thaK % = stability, we
will prove directly that stability= p < 1. Letu™ = [uf,u},...,u},]T. We can express the recurrence
(5.1) asu™t! = Au™, whereA is TST, with1 — 2 along the diagonal and in the subdiagonal. Hence
o(A) = {(1—2u) +2pcos J\ﬂfl ck=1,...,M} = {1 —4pusin? 213/12 :k=1,...,M}and A being
symmetric)

2
|1 —4u (sinzj’\r/[]\i2) | <1, p< i,

4] = p(4) = e 1
4,u(sin#+2) -1>1, 5<p

We distinguish between two cases.

) p < 5o llum T < AL flum]] < - < A"l < [lu®| asn — oo, for everyu®.

(i) pu > %: Chooseu’ as the eigenvector corresponding to the largest (in moyleigenvalue )\, say.
Hence, by inductiomy™ = A\"u°, becoming unbounded as— oo.

Technique 5.7(The method of lined)et u,, (t) = u(mAz,t),m =0,1,..., M+1,t > 0. Approximating
0?/0x? as before, we deduce from the PDE thatskenidiscretization

du,, 1

T: W(um,l—Zum—i—uerl), m:1,2,...,M (52)
carries an error aP ((Az)?). This is anODE systemand we can solve it by any ODE solver. Thus, Euler’s
method yields (5.1), while backward Euler results in

™t — = 2l i) =

This approach is commonly known #ee method of linedMuch (although not all!) of the theory of finite-
difference methods for PDEs of evolution can be presentedhas-stage task: first semidiscretize, getting
rid of space variables, then use an ODE solver. Typicallshetage is conceptually easier than the process
of discretizing in unison in both time and in space (so-cHiig! discretizatior).

Method 5.8 (The Crank—Nicolson schemB}scretizing the ODE (5.2) with the trapezoidal rule, weaibt

uﬁfl — %u(uzf_ll — Quﬁfl + urnfjrll) =un + %,u(u:ﬁhl —2ur +ur_q), m=1,2,...,M. (5.3)

Thus, each step requires the solution ofnx M TST system. The error is sti ((Az)?) (inherited
from space discretization). However, as we will see, Cratikelson enjoys superior stability features, as
compared with the method (5.1).

Note further that (5.3) is amplicit method: advancing each time step requires to solve a lingabiaic
system. However, the matrix of the system is TST and its gollty sparse Cholesky factorization can be
done inO(M) operations.

3Thus, “stability” is nothing but the statement that well ptisess is retained under discretization, uniformly ot — 0.
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