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Problem 5.21(Stability of leapfrog) We have

ûn+1(θ) − 2iµ(sin θ)ûn(θ) − ûn−1(θ) = 0, n = 1, 2, . . . ,

and our goal is to determine values ofµ such that|ûn(θ)| is uniformly bounded forθ ∈ [−π, π] andn ≥ 1.
This is an example of adifference equation. Specifically, givenawn+1 + bwn + cwn−1 = 0, n = 1, 2, . . .,
wherea 6= 0, we letω± be the zeros ofaω2 + bω + c = 0. Provided thatω− 6= ω+, the general solution is
wn = αωn

+ + βωn
−, whereα, β are constants, dependent on the initial valuesw0 andw1 (if ω− = ω+ then

the solution iswn = (α + βn)ωn
+). In our case, we obtain

ω±(θ) = iµ sin θ ±

√

1 − µ2 sin2 θ, |θ| ≤ π.

However, stability⇔ |ω±(θ)| ≤ 1 (for all |θ| ≤ π) and this, as can be easily verified, is true when|µ| ≤ 1.

Problem 5.22(Stability in the presence of boundaries) It is easy to extend Fourier analysis to cater for
the Euler methodun+1

m = un
m + µ(un

m+1 − un
m), m = 0, 1, . . . ,M + 1 (whereM∆x = 1), with the

initial conditionu(x, 0) = φ(x), x ∈ [0, 1], and zero boundary condition alongx = 1. Thus, we consider
the Cauchy problem for the advection equation with the initial conditionu(x, 0) = φ(x) for x ∈ [0, 1],
u(x, 0) = 0 otherwise (it isn’t differentiable, but this is not much of aproblem). Solving the Cauchy
problem with Euler, we recover identicalun

m for m = 0, 1, . . . ,M . This justifies using Fourier analysis for
the problem with a boundary.

Unfortunately, this is no longer true for leapfrog. Closer examination reveals that we cannot use leapfrog at
m = 0, sinceun

−1 is unknown. The naive remedy, settingun
−1 = 0, leads to instability, which propagates

from the boundary inwards. We can recover stability letting, for example,un+1
0 = un

1 (the proof isvery
difficult).

Problem 5.23(The wave equation) Once we know how to solve the advection equation, it is easy toderive
methods for the wave equation

∂2u

∂t2
=

∂2u

∂x2
,

given in an appropriate domain ofR × R+ with appropriate initial (foru and∂u/∂t) and boundary condi-
tions. Specifically, suppose that(v, w) are the solution of the system

∂v

∂t
=

∂w

∂x
,

∂w

∂t
=

∂v

∂x
of advection equations. Then

∂2v

∂t2
=

∂2w

∂t∂x
=

∂2w

∂x∂t
=

∂2v

∂x2
.

Therefore (imposing correctly initial and boundary conditions)u = v.
Once we have a method for the advection equation, we may generalize it easily to the system∂u/∂t =
A∂u/∂x, where all the eigenvalues ofA are real and nonzero (to ensure hyperbolicity). For the wave

equation we haveA =

[

0 1
1 0

]

. If the original method is stable for alla ≤ µ ≤ b, say, wherea < 0 < b,

then the more general method is stable, provided thata ≤ λµ ≤ b for all λ ∈ σ(A).
For the wave equation solved with the method (5.9), (i.e., inone dimension,un+1

m = un
m +µ(un

m+1 −un
m))

we eliminate thewn
ms from

vn+1
m = vn

m + µ(wn
m+1 − wn

m), wn+1
m = wn

m + µ(vn
m − vn

m−1).

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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This results (lettingun
m = vn

m) in theleapfrog scheme

un+1
m − 2un

m + un−1
m = µ2(un

m+1 − 2un
m + un

m−1)

(note that the Courant number is nowµ2).

Implementation 5.24 It is quite usual to solvehyperbolic PDEs (advection equation, wave equation,
Schr̈odinger equation, Euler equations of invicid compressibleflow. . . ) by explicit methods, because stabil-
ity conditions can be typically satisfied with∆t ∼ ∆x. However, solving parabolic equations with explicit
methods leads typically to restrictions of the form∆t ∼ (∆x)2, and this is unacceptable. Instead, we use
implicit methods, e.g. Crank–Nicolson. This means that in each time step we need to solve a system of
linear algebraic equations, and this can be costly if there are several space dimensions. Thus, consider the
diffusion equation

∂u

∂t
= ∇>(a(x, y)∇u) + f(x, y) =

∂

∂x

(

a(x, y)
∂u

∂x

)

+
∂

∂y

(

a(x, y)
∂u

∂y

)

+ f(x, y), (5.12)

wherea(x, y) > 0, f(x, y) are given, together with initial conditions on[0, 1]2 and Dirichlet boundary
conditions along∂[0, 1]2 × [0,∞). Replace each space derivative bycentral differences at midpoints,

dg(ξ)

dξ
≈

g(ξ + 1
2∆x) − g(ξ − 1

2∆x)

∆x
,

resulting in the ODE system

u′

l,m =
1

(∆x)2
[al− 1

2
,mul−1,m + al+ 1

2
,mul+1,m + al,m−

1

2

ul,m−1 + al,m+ 1

2

ul,m+1

− (al− 1

2
,m + al+ 1

2
,m + al,m−

1

2

+ al,m+ 1

2

)ul,m] + fl,m.
(5.13)

The system (5.13) can be in turn solved by an implicit ODE method, e.g. Crank–Nicolson, except that this
requires a (costly) solution of a large algebraic system in each time step.

Intermezzo 5.25(Linear systems of ODEs) The system (5.13) is linear and (assuming for the time being
zero boundary conditions andf ≡ 0) homogeneous. With greater generality, let us consider theODE
system

y
′ = Ay, y(0) = y0. (5.14)

We define formally amatrix exponential by Taylor series,eB =
∑∞

k=0
1
k!B

k, and easily verify by formal
differentiation thatd etA/dt = AetA, thereforey(t) = etA

y0.
Much of our theory of one-step methods for ODEs is illuminated by the observation that, in a linear case,
we are approximating a matrix exponential. Thus,

Euler: yn = (I + hA)n
y0 and1 + z = ez + O

(

z2
)

;

TR: yn =
[

(

I − 1
2hA

)−1 (

I + 1
2hA

)

]n

y0 and 1+ 1

2
z

1− 1

2
z

= ez + O
(

z3
)

.

Technique 5.26(Splitting methods) Going back to (5.13), wesplit A = B + C, so thatB andC are
constructed from the contribution of discretizations in the x andy directions respectively. In other words,
B includes all thea`± 1

2
,m terms andC consists of the remaininga`,m±

1

2

components. Note that, if the grid
is ordered by columns,B is tridiagonal. However, if the grid is ordered by rows,C is tridiagonal. Recall
that, forz1, z2 ∈ C, ez1+z2 = ez1ez2 and suppose for a moment that this property extends to matrices, i.e.
thatetA = et(B+C) = etBetC . Had this been true, we could have approximated each component with the
trapezoidal rule, say, to produce

u
n+1 =

(

I − ∆t
2 B

)−1 (

I + ∆t
2 B

) (

I − ∆t
2 C

)−1 (

I + ∆t
2 C

)

u
n. (5.15)

The advantage of (5.15) lies in the fact that (up to a known permutation) bothI − ∆t
2 B andI − ∆t

2 C are
tridiagonal, hence can be solved very cheaply.
Unfortunately, the assumption thatet(B+C) = etBetC is, in general, false.[Note: It is true, however, for
a(x, y) ≡ const.] Not all hope is lost, though, and we will demonstrate that, suitably implemented, splitting
is a powerful technique to reduce drastically the expense ofnumerical solution.
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