Numerical Analysis – Lecture 23¹

Problem 5.21 (Stability of leapfrog) We have

$$\hat{u}^{n+1}(\theta) - 2i\mu(\sin\theta)\hat{u}^n(\theta) - \hat{u}^{n-1}(\theta) = 0, \qquad n = 1, 2, \dots,$$

and our goal is to determine values of μ such that $|\hat{u}^n(\theta)|$ is uniformly bounded for $\theta \in [-\pi, \pi]$ and $n \geq 1$. This is an example of a difference equation. Specifically, given $aw_{n+1} + bw_n + cw_{n-1} = 0$, $n = 1, 2, \ldots$, where $a \neq 0$, we let ω_{\pm} be the zeros of $a\omega^2 + b\omega + c = 0$. Provided that $\omega_{-} \neq \omega_{+}$, the general solution is $w_n = \alpha \omega_{+}^n + \beta \omega_{-}^n$, where α, β are constants, dependent on the initial values w_0 and w_1 (if $\omega_{-} = \omega_{+}$ then the solution is $w_n = (\alpha + \beta n)\omega_{+}^n$). In our case, we obtain

$$\omega_{\pm}(\theta) = i\mu \sin \theta \pm \sqrt{1 - \mu^2 \sin^2 \theta}, \qquad |\theta| \le \pi.$$

However, stability $\Leftrightarrow |\omega_{\pm}(\theta)| \le 1$ (for all $|\theta| \le \pi$) and this, as can be easily verified, is true when $|\mu| \le 1$.

Problem 5.22 (Stability in the presence of boundaries) It is easy to extend Fourier analysis to cater for the Euler method $u_m^{n+1}=u_m^n+\mu(u_{m+1}^n-u_m^n),\ m=0,1,\ldots,M+1$ (where $M\Delta x=1$), with the initial condition $u(x,0)=\phi(x),\ x\in[0,1]$, and zero boundary condition along x=1. Thus, we consider the Cauchy problem for the advection equation with the initial condition $u(x,0)=\phi(x)$ for $x\in[0,1]$, u(x,0)=0 otherwise (it isn't differentiable, but this is not much of a problem). Solving the Cauchy problem with Euler, we recover identical u_m^n for $m=0,1,\ldots,M$. This justifies using Fourier analysis for the problem with a boundary.

Unfortunately, this is no longer true for leapfrog. Closer examination reveals that we cannot use leapfrog at m=0, since u_{-1}^n is unknown. The naive remedy, setting $u_{-1}^n=0$, leads to instability, which propagates from the boundary inwards. We can recover stability letting, for example, $u_0^{n+1}=u_1^n$ (the proof is *very* difficult).

Problem 5.23 (*The wave equation*) Once we know how to solve the advection equation, it is easy to derive methods for the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2},$$

given in an appropriate domain of $\mathbb{R} \times \mathbb{R}_+$ with appropriate initial (for u and $\partial u/\partial t$) and boundary conditions. Specifically, suppose that (v,w) are the solution of the system

$$\frac{\partial v}{\partial t} = \frac{\partial w}{\partial x}, \qquad \frac{\partial w}{\partial t} = \frac{\partial v}{\partial x} \qquad \text{of advection equations. Then} \qquad \frac{\partial^2 v}{\partial t^2} = \frac{\partial^2 w}{\partial t \partial x} = \frac{\partial^2 w}{\partial x \partial t} = \frac{\partial^2 v}{\partial x^2}.$$

Therefore (imposing correctly initial and boundary conditions) u = v.

Once we have a method for the advection equation, we may generalize it easily to the system $\partial \boldsymbol{u}/\partial t = A\partial \boldsymbol{u}/\partial x$, where all the eigenvalues of A are real and nonzero (to ensure hyperbolicity). For the wave equation we have $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. If the original method is stable for all $a \leq \mu \leq b$, say, where a < 0 < b,

then the more general method is stable, provided that $a \leq \lambda \mu \leq b$ for all $\lambda \in \sigma(A)$.

For the wave equation solved with the method (5.9), (i.e., in one dimension, $u_m^{n+1} = u_m^n + \mu(u_{m+1}^n - u_m^n)$) we eliminate the w_m^n s from

$$v_m^{n+1} = v_m^n + \mu(w_{m+1}^n - w_m^n), \qquad w_m^{n+1} = w_m^n + \mu(v_m^n - v_{m-1}^n).$$

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

This results (letting $u_m^n = v_m^n$) in the leapfrog scheme

$$u_m^{n+1} - 2u_m^n + u_m^{n-1} = \mu^2(u_{m+1}^n - 2u_m^n + u_{m-1}^n)$$

(note that the Courant number is now μ^2).

Implementation 5.24 It is quite usual to solve *hyperbolic* PDEs (advection equation, wave equation, Schrödinger equation, Euler equations of invicid compressible flow...) by explicit methods, because stability conditions can be typically satisfied with $\Delta t \sim \Delta x$. However, solving parabolic equations with explicit methods leads typically to restrictions of the form $\Delta t \sim (\Delta x)^2$, and this is unacceptable. Instead, we use implicit methods, e.g. Crank–Nicolson. This means that in each time step we need to solve a system of linear algebraic equations, and this can be costly if there are several space dimensions. Thus, consider the diffusion equation

$$\frac{\partial u}{\partial t} = \nabla^{\top} (a(x, y) \nabla u) + f(x, y) = \frac{\partial}{\partial x} \left(a(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(a(x, y) \frac{\partial u}{\partial y} \right) + f(x, y), \tag{5.12}$$

where a(x,y)>0, f(x,y) are given, together with initial conditions on $[0,1]^2$ and Dirichlet boundary conditions along $\partial[0,1]^2\times[0,\infty)$. Replace each space derivative by *central differences* at midpoints,

$$\frac{\mathrm{d}g(\xi)}{\mathrm{d}\xi} \approx \frac{g(\xi + \frac{1}{2}\Delta x) - g(\xi - \frac{1}{2}\Delta x)}{\Delta x},$$

resulting in the ODE system

$$u'_{l,m} = \frac{1}{(\Delta x)^2} \left[a_{l-\frac{1}{2},m} u_{l-1,m} + a_{l+\frac{1}{2},m} u_{l+1,m} + a_{l,m-\frac{1}{2}} u_{l,m-1} + a_{l,m+\frac{1}{2}} u_{l,m+1} - (a_{l-\frac{1}{2},m} + a_{l+\frac{1}{2},m} + a_{l,m-\frac{1}{2}} + a_{l,m+\frac{1}{2}}) u_{l,m} \right] + f_{l,m}.$$
(5.13)

The system (5.13) can be in turn solved by an implicit ODE method, e.g. Crank–Nicolson, except that this requires a (costly) solution of a large algebraic system in each time step.

Intermezzo 5.25 (*Linear systems of ODEs*) The system (5.13) is linear and (assuming for the time being zero boundary conditions and $f \equiv 0$) homogeneous. With greater generality, let us consider the ODE system

$$\mathbf{y}' = A\mathbf{y}, \qquad \mathbf{y}(0) = \mathbf{y}_0. \tag{5.14}$$

We define formally a *matrix exponential* by Taylor series, $e^B = \sum_{k=0}^{\infty} \frac{1}{k!} B^k$, and easily verify by formal differentiation that $d e^{tA}/dt = A e^{tA}$, therefore $y(t) = e^{tA} y_0$.

Much of our theory of one-step methods for ODEs is illuminated by the observation that, in a linear case, we are approximating a matrix exponential. Thus,

Euler:
$$y_n = (I + hA)^n y_0$$
 and $1 + z = e^z + \mathcal{O}(z^2)$;

TR:
$$y_n = \left[\left(I - \frac{1}{2}hA \right)^{-1} \left(I + \frac{1}{2}hA \right) \right]^n y_0 \text{ and } \frac{1 + \frac{1}{2}z}{1 - \frac{1}{2}z} = e^z + \mathcal{O}(z^3).$$

Technique 5.26 (Splitting methods) Going back to (5.13), we split A = B + C, so that B and C are constructed from the contribution of discretizations in the x and y directions respectively. In other words, B includes all the $a_{\ell\pm\frac{1}{2},m}$ terms and C consists of the remaining $a_{\ell,m\pm\frac{1}{2}}$ components. Note that, if the grid is ordered by columns, B is tridiagonal. However, if the grid is ordered by rows, C is tridiagonal. Recall that, for $z_1, z_2 \in \mathbb{C}$, $e^{z_1+z_2}=e^{z_1}e^{z_2}$ and suppose for a moment that this property extends to matrices, i.e. that $e^{tA}=e^{t(B+C)}=e^{tB}e^{tC}$. Had this been true, we could have approximated each component with the trapezoidal rule, say, to produce

$$\boldsymbol{u}^{n+1} = \left(I - \frac{\Delta t}{2}B\right)^{-1} \left(I + \frac{\Delta t}{2}B\right) \left(I - \frac{\Delta t}{2}C\right)^{-1} \left(I + \frac{\Delta t}{2}C\right) \boldsymbol{u}^{n}. \tag{5.15}$$

The advantage of (5.15) lies in the fact that (up to a known permutation) both $I - \frac{\Delta t}{2}B$ and $I - \frac{\Delta t}{2}C$ are tridiagonal, hence can be solved very cheaply.

Unfortunately, the assumption that $e^{t(B+\dot{C})} = e^{tB}e^{tC}$ is, in general, false. [Note: It is true, however, for $a(x,y) \equiv const.$] Not all hope is lost, though, and we will demonstrate that, suitably implemented, splitting is a powerful technique to reduce drastically the expense of numerical solution.