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Problem 5.21(Sability of leapfrog) We have
a"t(0) — 2ip(sin 0)a™(0) — a1 (0) = 0, n=12...,

and our goal is to determine valuesio$uch thata™ ()| is uniformly bounded fop € [—n, «] andn > 1.
This is an example of difference equation. Specifically, giveruw,,, 1 + bw,, + cw,—1 =0,n=1,2,..,
wherea # 0, we letw.. be the zeros afw? + bw + ¢ = 0. Provided thatv_ # w., the general solution is
w, = aw’ + Bw”, wherea, § are constants, dependent on the initial valwggndw, (if w_ = wy then
the solution isw,, = (a + fn)w’). In our case, we obtain

w4 (f) =ipsin® £ /1 — p2sin?6, 0] <.

However, stability= |wi (0)| < 1 (for all |§] < ) and this, as can be easily verified, is true when< 1.

Problem 5.22 (Sability in the presence of boundaries) It is easy to extend Fourier analysis to cater for
the Euler method:?;t = w?, + p(uly —ul), m = 0,1,..., M + 1 (whereM Az = 1), with the
initial conditionu(z,0) = ¢(z), € [0, 1], and zero boundary condition alomng= 1. Thus, we consider
the Cauchy problem for the advection equation with theahitonditionu(z,0) = ¢(z) for € [0, 1],
u(xz,0) = 0 otherwise (it isn’t differentiable, but this is not much ofpeoblem). Solving the Cauchy
problem with Euler, we recover identica}, for m = 0, 1, ..., M. This justifies using Fourier analysis for
the problem with a boundary.

Unfortunately, this is no longer true for leapfrog. Closeamination reveals that we cannot use leapfrog at
m = 0, sinceu”, is unknown. The naive remedy, setting, = 0, leads to instability, which propagates
from the boundary inwards. We can recover stability lettifoy example,u{)”rl = u} (the proof isvery
difficult).

Problem 5.23(The wave equation) Once we know how to solve the advection equation, it is easietive
methods for the wave equation
%u  O%u

o2 ox?’
given in an appropriate domain Bf x R, with appropriate initial (fon. anddu/dt) and boundary condi-
tions. Specifically, suppose th@t, w) are the solution of the system

v _ dw dw _ v of advection equations. Then @ = 82_11) _ P 8_%

ot~ o’ 0t ow g ' 017 ~ Btdr  dzdt  0z2
Therefore (imposing correctly initial and boundary coiatis) u = v.
Once we have a method for the advection equation, we may gereeit easily to the systeriu /0t =
Adu/0xz, where all the eigenvalues of are real and nonzero (to ensure hyperbolicity). For the wave
0 1
10
then the more general method is stable, providedd¢hat\p < b forall A € o(A).
For the wave equation solved with the method (5.9), (i.eonie dimensionut = u?, + pu(u?,  ; —ul’,))
we eliminate thev;),s from

equation we havel = { } If the original method is stable for all < 1 < b, say, wherer < 0 < b,

n+l _ . n n n n+l _ .. n n n
Um = Uy, + p“(wm,—i-l - wm,)? Wy, = Wy, + /”L(Um - vm—l)'

1please email all corrections and suggestions to these mofes ser | es@lant p. cam ac. uk. All handouts are available on
the WWW at the URLht t p: / / www. dant p. cam ac. uk/ user/ na/ Part ||/ Handouts. htm .
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This results (letting:?, = v*) in theleapfrog scheme
wptt = 2, = R — 2uf, )
(note that the Courant number is n@i).

Implementation 5.24 It is quite usual to solvényperbolic PDEs (advection equation, wave equation,
Schibdinger equation, Euler equations of invicid compresdible. . . ) by explicit methods, because stabil-
ity conditions can be typically satisfied witht ~ Axz. However, solving parabolic equations with explicit
methods leads typically to restrictions of the for ~ (Az)?, and this is unacceptable. Instead, we use
implicit methods, e.g. Crank—Nicolson. This means thatdohetime step we need to solve a system of
linear algebraic equations, and this can be costly if thezesaveral space dimensions. Thus, consider the
diffusion equation

ou

o =V eV + fa) = 5 (et )+ 5 (awnGe )+ fen). 612

wherea(z,y) > 0, f(x,y) are given, together with initial conditions df, 1] and Dirichlet boundary
conditions alon@)[0, 1] x [0, o0). Replace each space derivativedaptral differences at midpoints,

dg(§) _ g(€ + 3Az) — g(€ — §Ax)
e ~ Az ’

resulting in the ODE system

1
/
u = —=|a U — a u a Uu — a u
I,m (AJI)2[ l*%-,m l 1,m+ l+%,m l+1,m+ l,mfé l,m 1+ l,er% l,m+1 (513)

— (@t O T Ot al,m+%)ul7m] + fim-

The system (5.13) can be in turn solved by an implicit ODE métte.g. Crank—Nicolson, except that this
requires a (costly) solution of a large algebraic systenathdime step.

Intermezzo 5.25(Linear systems of ODES) The system (5.13) is linear and (assuming for the time being
zero boundary conditions anfl = 0) homogeneous. With greater generality, let us considelOb&
system

y' = Ay, y(0) = y,. (5.14)
We define formally amatrix exponential by Taylor seriesg? = 372 %B’“, and easily verify by formal
differentiation thatl e /dt = Ae!4, thereforey(t) = e*4y,,.
Much of our theory of one-step methods for ODEs is illumidabg the observation that, in a linear case,
we are approximating a matrix exponential. Thus,

Euler: y,, = (I + hA)"y, andl + z = e + O(2?);
TRy, =[(1-3h4)"" (1+1h4)] ypand P = e + O(:%).

Technique 5.26(Splitting methods) Going back to (5.13), weplit A = B + C, so thatB andC are
constructed from the contribution of discretizations ia thandy directions respectively. In other words,
Bincludes all thez,, 1 ,,, terms and” consists of the remaining, ,, .1 components. Note that, if the grid
is ordered by cqumnsB is tridiagonal. However, if the grid is ordered by rovgs,is tridiagonal. Recall
that, forzy, zo € C, e**7*2 = e*1e*2 and suppose for a moment that this property extends to raatrie.
thatet4 = e!(B+C) = ¢tBetC . Had this been true, we could have approximated each compuii the
trapezoidal rule, say, to produce

Wt = (I - 4B) 7 (I+4MB) (I - 4LC) ™ (I + 4L0) u™. (5.15)

The advantage of (5.15) lies in the fact that (up to a knowmnpéation) bothl — %B andl — %C’ are
tridiagonal, hence can be solved very cheaply.

Unfortunately, the assumption thet?+¢) = etBelC s, in general, false[Note: It is true, however, for
a(z,y) = const.] Not all hope is lost, though, and we will demonstrate thatably implemented, splitting
is a powerful technique to reduce drastically the expenseinferical solution.
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