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Discussion 5.27The reason foe!(B+C) £ ¢tBetC) Comparing the Taylor expansions
BT = [ 1 (B + C) + 3t3(B* + BC + CB + C?) + O(t%)
with
ePe = [I+tB + i°B* + O(t*)] x [I +tC + 3°C* + O(*)]
=1+t(B+C)+ 3t*(B*+2BC + C?) + O(?),

we obtain
e'Bel? = /B0 4 L42(BC — CB) + O(t%). (5.16)

Thus,etBet¢ = !B+ vt > 0 only if B andC commute.[Note: It is trivial to prove that commutativity
is sufficient, not just necessarfthe good news is, however, that approximaiifg(Z+¢) with 245 eAtC
incurs an error o ((At)?) which, for ‘our’ diffusion equation, i$)((Az)*). Further, suppose thatis a
rational function such that(z) = e* + O(z?). It follows from our analysis that

u" ! = r(AtB)r(AtC)u”

produces an error @ ((At)?). The choicer(z) = (1 + 12)/(1 — 12) results in asplit Crank—Nicolson
scheme, whose implementation reduces to a solution ofgatial algebraic linear systems. The error
is consistent with the error of semidiscretization (sidce= p(Ax)?). As far as stability is concerned,
we observe that bot®B and C' are symmetric, therefore so areAtB) andr(AtC). But symmetry=-
normalcy=- the 2-norm equals the spectral radius. Therefore,

|| < ||r(ALB)|| - |r(ALC)|| - |w”]| = p(r(ALB)) - p(r(AtC)) - |[u™]].

It is left as an exercise to verify that the eigenvalues of(#yenmetric) matriced3 andC' are nonpositive
and hence to deduce that, providei$ A-stable (therefor¢r(z)| < 1 for z € C, Rez < 0), it is true that
p(r(AtB)), p(r(AtC)) < 1. This proveg|u™ ™| < ||u™|| < -- - ||u®]|, hence stability.

Improvement 5.28It follows at once from (5.16), using symmetry, that
% (etBetC + etCetB) — ot(B+O) + O((At)3) )
Moreover, an easy exercise in Taylor expansions verifidsltieserror in theStrang splitting
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is alsoO((At)?). Thus, as long as(z) = e* + O(z*), the time-stepping formula
u"t = r(3AtB)r(AtC)r(LAtB)u”
carries a local error o ((At)?).

Method 5.29 (Splitting of inhomogeneous systenkRgcall our goal, namely fast methods for the two-
dimensional diffusion equation. Our exposition so far hasrbcontrived, because of the assumption that
the boundary conditions are zero. In general, the linear &fEem is of the form

' =(B+Cu+bdb,  u(0)=u’ (5.17)
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whereb originates in boundary conditions (and possibly in a fagdierm in the original PDE). Note that
our analysis should accommoddie= b(t), since boundary conditions might vary in time! Theact
solution of (5.17) is provided by theariation of constant§ormula

t
u(t) = BTy (0) + / =B Op(r)dr, >0,
0

(verify), therefore

(n+1)At
w((n + 1)At) = eAB+FOy (nAt) + / el DA=TI(B+ O (Y A7, n=0,1,....
nAt
The integral can be frequently evaluated explicitly, e.genb is a linear combination of polynomial and
exponential terms. For examplgt) = const yields

u((n+ 1)At) = A BTy (nAt) + (B + )71 (eAt(B+C) - I) b.

This, unfortunately, is not a helpful observation, sinsereif we split the exponential, how are we supposed
to ‘split’ (B + C)~!? The remedy is not to evaluate the integral explicitly bustéad, to use quadrature.
For example, thérapezoidal rulefor integrals,

h
A g(r) dr = Lhlg(0) + g(h)] + O (1)

gives
u((n + 1)At) ~ 2By (nAl) + LALABFOb(nAt) + b((n + 1)At)],

with a local error of(’)((At)3). We can now replace exponentials with their splittings. &cxample,
Strang’s splitting results in

u"t = r(LAtB)r(AtO)r(3ALB)[u" + LAt + S A"

As before, everything reduces to (inexpensive) solutiomidiagonal systems!

Technique 5.30(Splitting for nonlinear equationd)/e may use splitting to resolve nonlinearitiepératio-
rial splitting, as distinct frondimensional splittingy For example, consider thieaction—diffusiorequation

ou  0%u

with (for simplicity) zero boundary conditions at= 0 andx = 1. Having discretized the space derivatives,
we obtain an ODE system of the forat = f(u) + g(u), wheref(u) = Aw originates in semidiscretiza-
tion andg,, (u) = au., (1 —u,,) in the nonlinear term. The main idea is to compose the salatitvancing
1Atwithy’ = f(y) +g(y,) andi At with y' = f(y,,) + g(y), which gives arO((At)?) method. Note
that the first equation is linear, while the second consistsalar Riccati equations, which can be solved
explicitly. Alternatively, we may employ a technique siarito the Strang splitting to increase accuracy to
o((At)?).
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