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Discussion 5.27(The reason foret(B+C) 6= etBetC) Comparing the Taylor expansions

et(B+C) = I + t(B + C) + 1
2 t2(B2 + BC + CB + C2) + O

(

t3
)

with

etBetC =
[

I + tB + 1
2 t2B2 + O

(

t3
)]

×
[

I + tC + 1
2 t2C2 + O

(

t3
)]

= I + t(B + C) + 1
2 t2(B2 + 2BC + C2) + O

(

t3
)

,

we obtain
etBetC = et(B+C) + 1

2 t2(BC − CB) + O
(

t3
)

. (5.16)

Thus,etBetC = et(B+C) ∀t ≥ 0 only if B andC commute.[Note: It is trivial to prove that commutativity
is sufficient, not just necessary.]The good news is, however, that approximatinge∆t(B+C) with e∆tBe∆tC

incurs an error ofO
(

(∆t)2
)

which, for ‘our’ diffusion equation, isO
(

(∆x)4
)

. Further, suppose thatr is a
rational function such thatr(z) = ez + O

(

z2
)

. It follows from our analysis that

un+1 = r(∆tB)r(∆tC)un

produces an error ofO
(

(∆t)2
)

. The choicer(z) = (1 + 1
2z)/(1 − 1

2z) results in asplit Crank–Nicolson
scheme, whose implementation reduces to a solution of tridiagonal algebraic linear systems. The error
is consistent with the error of semidiscretization (since∆t = µ(∆x)2). As far as stability is concerned,
we observe that bothB andC are symmetric, therefore so arer(∆tB) andr(∆tC). But symmetry⇒
normalcy⇒ the 2-norm equals the spectral radius. Therefore,

‖un+1‖ ≤ ‖r(∆tB)‖ · ‖r(∆tC)‖ · ‖un‖ = ρ(r(∆tB)) · ρ(r(∆tC)) · ‖un‖.

It is left as an exercise to verify that the eigenvalues of the(symmetric) matricesB andC are nonpositive
and hence to deduce that, providedr is A-stable (therefore|r(z)| < 1 for z ∈ C, Re z < 0), it is true that
ρ(r(∆tB)), ρ(r(∆tC)) ≤ 1. This proves‖un+1‖ ≤ ‖un‖ ≤ · · · ‖u0‖, hence stability.

Improvement 5.28It follows at once from (5.16), using symmetry, that

1
2

(

etBetC + etCetB
)

= et(B+C) + O
(

(∆t)3
)

.

Moreover, an easy exercise in Taylor expansions verifies that the error in theStrang splitting

e∆t(B+C) ≈ e
1

2
∆tBe∆tCe

1

2
∆tB

is alsoO
(

(∆t)3
)

. Thus, as long asr(z) = ez + O
(

z3
)

, the time-stepping formula

un+1 = r( 1
2∆tB)r(∆tC)r( 1

2∆tB)un

carries a local error ofO
(

(∆t)3
)

.

Method 5.29 (Splitting of inhomogeneous systems)Recall our goal, namely fast methods for the two-
dimensional diffusion equation. Our exposition so far has been contrived, because of the assumption that
the boundary conditions are zero. In general, the linear ODEsystem is of the form

u′ = (B + C)u + b, u(0) = u0, (5.17)

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.
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whereb originates in boundary conditions (and possibly in a forcing term in the original PDE). Note that
our analysis should accommodateb = b(t), since boundary conditions might vary in time! Theexact
solution of (5.17) is provided by thevariation of constantsformula

u(t) = et(B+C)u(0) +

∫ t

0

e(t−τ)(B+C)b(τ) dτ, t ≥ 0,

(verify), therefore

u((n + 1)∆t) = e∆t(B+C)u(n∆t) +

∫ (n+1)∆t

n∆t

e[(n+1)∆t−τ ](B+C)b(τ) dτ, n = 0, 1, . . . .

The integral can be frequently evaluated explicitly, e.g. whenb is a linear combination of polynomial and
exponential terms. For example,b(t) ≡ const yields

u((n + 1)∆t) = e∆t(B+C)u(n∆t) + (B + C)−1
(

e∆t(B+C) − I
)

b.

This, unfortunately, is not a helpful observation, since, even if we split the exponential, how are we supposed
to ‘split’ (B + C)−1? The remedy is not to evaluate the integral explicitly but, instead, to use quadrature.
For example, thetrapezoidal rulefor integrals,

∫ h

0

g(τ) dτ = 1
2h[g(0) + g(h)] + O

(

h3
)

gives
u((n + 1)∆t) ≈ e∆t(B+C)u(n∆t) + 1

2∆t[e∆t(B+C)b(n∆t) + b((n + 1)∆t)],

with a local error ofO
(

(∆t)3
)

. We can now replace exponentials with their splittings. Forexample,
Strang’s splitting results in

un+1 = r( 1
2∆tB)r(∆tC)r( 1

2∆tB)[un + 1
2∆tbn] + 1

2∆tbn+1.

As before, everything reduces to (inexpensive) solution oftridiagonal systems!

Technique 5.30(Splitting for nonlinear equations)We may use splitting to resolve nonlinearities (operatio-
rial splitting, as distinct fromdimensional splitting). For example, consider thereaction–diffusionequation

∂u

∂t
=

∂2u

∂x2
+ αu(1 − u)

with (for simplicity) zero boundary conditions atx = 0 andx = 1. Having discretized the space derivatives,
we obtain an ODE system of the formu′ = f(u) + g(u), wheref(u) = Au originates in semidiscretiza-
tion andgm(u) = αum(1−um) in the nonlinear term. The main idea is to compose the solution advancing
1
2∆t with y′ = f(y) + g(yn) and 1

2∆t with y′ = f(yn) + g(y), which gives anO
(

(∆t)2
)

method. Note
that the first equation is linear, while the second consists of scalar Riccati equations, which can be solved
explicitly. Alternatively, we may employ a technique similar to the Strang splitting to increase accuracy to
O

(

(∆t)3
)

.
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