Part II - Lent Term 2005
Numerical Analysis II - Model Solutions

Example (Error analysis for solving ODE)

Let f : R x R? — R be a sufficiently smooth function with a Lipshitz constant L > 0,
If(ta) = fEI < Lllw—yll, =yeR?, t>0.

Prove from the first principles that the implicit midpoint rule

Yntl = Yn + hf (tn+1/27 %(yn =+ yn+1)) , n =0,

converges to the exact solution of the ordinary differential equation

y = f(t,y), t>0, y(0)=uyo,

as h — 0 uniformly for 0 < ¢ < ¢*, where t* is any finite constant.

Solution

1) Local truncation error n (which gives the order of the method). This is the error of the numerical

scheme (1) applied to the exact solution y'(t) = f(¢,y(¢)):

y(thrl) = y(tn) + hf (tn+1/27 %(y(tn) + y(thrl)) + 1.

(2)

As we cannot use y'(t) = f(t,y(t)) immediately for determining 7, we slightly modify the right-

hand side and write

Y(tnr1) = y(tn) + hf(tng1y2, Y(tngiy2)) +m + 1.

Then, by Lipschitz condition,

m| = R|f (tns1y2, 3W(tn) + y(tns1))) = f(Engry2, Y (Enga2))|
< AL |y(tn) + y(tns1) — 2y(tagas2)]

and by Taylor expansion at ¢,,, with y = y(¢,,), we have
Im| < 3hLly+ (y+hy') = 2(y + $hy') + O(h?)| = O(h?).

Now, from (3), since f(t,y(t)) = y'(t), we obtain

m+n=ytns1) — y(tn) — Wy (tng12) = by’ + $h%Y" — [y’ + $hy"] + O(R*) = O(h?),

hence
In| < |m| + O(R®) < ch®.

(3)

2) Approximation error e,, = y(t,) — y». The recurrence relation for e, is obtained by subtract-

ing (1) from (2):

ent1 =¢en+h [f (tn+1/2a %(y(tn) + y(thrl))) - f (tn+1/27 %(yn + yTLJrl))] +17.

The Lipschitz condition implies

lent1]l < len| + %hL [y(tn) — Yn + y(tat1) — ynt1)| + 0l
< lenl+ %hL (lenl + len+1]) + ch?®.

So, finally,
1+ 2hL
|en+1 | < 2

3
= 1 |€n| + ch’.
1- 1L



Now, the relations of the form
lenta] < Alen|+ B, n>0, e=0,
provide the estimate

AnJrl -1

leni1| <B1+A+A*+...4A")=B —

With our particular A and B, since % <1- %hL < 1 for small h, we have

A—1=—-hL >pL,

1 il
1—§hL

n+1
An+1 — (1 + hL ) S (1 4 2Lh)n+1 S e2Lh(n+1) S e2Lt*,

whence 1
lent1] < Eeth ch?® < e1h?,

with a constant ¢; that depends only on L, ||| and ¢*, i.e., we have uniform convergence in any
finite interval [0, ¢*].



Example (QR algorithm)

Prove that, for each positive integer k the matrix A1 of the Q R algorithm is related to the starting
matrix A; = A by the formula A1 = Q% AQk, where Q. Ry, is the QR factorization of the matrix
A*.

Let the QR algorithm be applied to the matrix

i

for some A. Deduce from the above formula the elements of Aj_ . Also identify the limiting value
of Aj4+1 as k — oo and comment briefly on your result.
Solution

Since
A =QiR;, and Ay = RiQi = Qit1Rit1,

we have
AF = QIR1Q1R1Q1 -+ RiQiRiQ1Ry

= Q1Q2R2Q2Ry - Q2R2Q2RoRy
= Q1Q2Q3 -+ QrpRp -+ R3RoRy
= QrRy.
Since also R; = QT A;, we have
Aps1 = RiQr = QT AQr = QLQi_ 1Ak 1Qr-1Qr =+
= QiQi-1 QT AiQ1 - Qr1Qx
= QLAQy.
(In particular, since for orthogonal matrices QT = Q7! the matrix Ay, is similar to A4, ie., 4 =

SAS—1! for some matrix S, hence it has the same eigenvalues as the original matrix A).
2) Now, for the matrix A given, we compute

. 1 0 . 1 1 kA
A = 9 Qk :722 )
kX 1 VI+E2AN | kX 1

whence
) 1 1 kX 10 1 —kA
kMl = 53 X X
LHREN | pn 1 A1 kA1
1 1+ kX2 + k202 —k2)\3
1+ k2p2 A 1— kA2 4 k2)2
and

1 =X
lim Ak+1 = N
k—o0 0 1

the first column being Ayaxe1, with Anax the largest eigenvalue of A.



Example (Runge-Kutta method)
Consider the Runge-Kutta method

ki = f(tn yn),

ks = f(tn +a21h,yn + az1kih),

ks = f(tn + (a31 + as2)h, yn + (az1k1 + agzka)h),
Ynt1 = Yo+ (brky + boka + b3ks)h

for solving y'(t) = f(t,y), t € R. Show that its order is at least two if the equations
b1 +bo+b3=1 and bas + bg(agl + agg) = % (*)
are satisfied, and it is three if the parameters have the values

a1 = 1, asy = 4/9, asy = 2/9, bl = 1/4, b2 = 0, b3 = 3/4 (**)

Solution

We need to show that, for y,, = y(t,), where y is the exact solution of y'(¢) = f(t,y), and with
particular parameters given in (x) and (*x), we obtain

(*)  y(tar1) = y(tn) + (brk1 + baks + bsks)h + O(h®),
() Y(tnt1) = y(tn) + (bik1 + boks + bsks)h + O(h?),

respectively. We will prove it by showing that the right-hand side coincide with the Taylor expan-
sion of y at ¢, up to a given order, i.e.,

1 1 1
(buka + boka + bsks)h = hy + 5h*y" + O(h*) = hy' + Sh*y" + Zh*y"O(hY),

So, we make the Taylor expansion of k; around the point (¢,,y(t,)), and use the formulae for
previous k;-s to express k; in terms of f and its partial derivatives:

ki = f,
1
ky = f+hlaafi + a2k fy] + §h2 (a3 fie + 203, k1 fry + a5, k3 fyy] + O(R?)

= F bl F1)+ 582 [+ 2 o+ Fh)] + O0)
ks = f+h[(as1 + as2)fe + (as1k1 + as2kz) fy]
+ %/ﬂ [(as1 + as2)” fie + 2(as1 + asz)(az1k1 + asaks) fiy + (asiky + asoka)® fy] + O(h?)
= [+ hl(as +az2)(fe + £fy)] + B2 [azaazi (fe + Ffy) fy)
+ %hz [(as1 + as2)*(foe + 2f fry + f2fyy)] + O(R?).
Now, summing up and combining terms at powers of i, we derive

h(biki + baoka + bsks) = h(by + by + bs) f + h? [baao1 + bs(as1 + as2)] (ft + ffy)
+ h® {bsaspao1 (fe + ffy) fy + [3b203, + $bs(ast + as2)?] (fue + 2f foy + [ fyy) } + O(RY).
Differentiating the identity y'(t) = f(t,y) with respect to t we find that, for the exact solution y,
y = f
y' = fi+ fyf,
y" = (fu+ frof + fyfe) + (fyr + fouf + fg?)f = (fur +2fuyf + Fyu I*) + (Fe + fy ) fy -

So, in case (*), we indeed have order two, and we get order three if
bsazzaz = %angl + $b3(as: + az)? = L

and that is the case for the parameteres in ().



Example (Multistep method)

Determine the order of the multistep method

ih [(5+ @) fnre + (8 = 8a) fur1 — (1 +5a)fn]

Yn+2 — (1 + O‘)yn—i—l + ayn = 12

for the solution of ODEs y' = f(¢,y) for different choices of a.

Solution

The order of a numerical method y,,+1 = ¢(to..tn, yo.-yn) for solving ' = f(¢,y) is the order of its
error on the exact solution y reduced by one, i.e., it is the largest integer p such that

Y(tnr1) = $lto-tn, y(to)-y(tn)) + O(hP).

In our case, since fr = f(tr, yx) = y'(tx) for the exact solution y, it is the error of the formula

Y(tnt2) = (L 4+ a)y(tni1) + ay(ts)
= 3505+ )y (tnr2) + (8 = 8a)y (tnt1) — (1 + 5a)y'(tn)] + O(APHY)
for all sufficiently smooth functions y. We see at once that this p is the highest term until which
the Taylor expansions of the right- and of the left-hand sides coincide.

Method 1. Equivalently, it is the largest p for which the above formula is identity for any
polynomial of degree p. It is sufficient to verify this formula for monomials y(t) = t* and for any
particular h and t,,, say h = 1 and t,, = —1 (so that ¢, = 0 and t,,42 = 1). We have

y(t) = 0 = 0,

yt)y=t', 1-a = £(12-12a)=1-a,

yit)=t*, 1+a = Z(BG+a)+(1+5a)=1+aq,

y(t): l-a = 3(Bb+a)—(1+4+5a)=1-a,

y(t) = 1+a = %((5—1—@)4—(14—504)) 2(1 4+ «),

yt)=t°, 1—a = Z(G+a)-(1+5a))=3(1-a).
So, the method is of order three for any «, and it is of order four if « = —1.

Method 2. By Theorem 3.11 of Lecture Notes, we have
plw)=w—(1+a)+1/w, o(w)=5[5+a)w+(8—8x)— (1+5ax)/w].

(Here, we made a shift n + 1 — n to simplify expressions involved.) Then

p(e*) — zo(e*)
=l+z24 422+ 528+ 520+ F2° — (14 a) +all — 2+ 527 — 425+ $2 — 527
— 52 {6+ a)[l +2z+ %22+ $2°+ 2% + (8 — 8a)
+ (1 +5a)[1 — 2+ 522 — 323+ 524} + O(2°)
:—%(1—!—04)2’4—é%(l—a)f—i—(’)(zﬁ),

where calculations of the coefficients at z* is the same procedure as for y(t) = t* in the Method 1.
So, again, the method is of order three for any «, and it is of order four if « = —1.



