
Part II - Lent Term 2005

Numerical Analysis II – Model Solutions

Example (Error analysis for solving ODE)

Let f : R × R
d → R

d be a sufficiently smooth function with a Lipshitz constant L > 0,

‖f(t, x) − f(t, y)‖ ≤ L ‖x − y‖, x, y ∈ R
d, t ≥ 0.

Prove from the first principles that the implicit midpoint rule

yn+1 = yn + hf
(

tn+1/2,
1
2 (yn + yn+1)

)

, n ≥ 0, (1)

converges to the exact solution of the ordinary differential equation

y′ = f(t, y), t ≥ 0, y(0) = y0,

as h → 0 uniformly for 0 ≤ t ≤ t∗, where t∗ is any finite constant.

Solution

1) Local truncation error η (which gives the order of the method). This is the error of the numerical
scheme (1) applied to the exact solution y′(t) = f(t, y(t)):

y(tn+1) = y(tn) + hf
(

tn+1/2,
1
2 (y(tn) + y(tn+1)

)

+ η. (2)

As we cannot use y′(t) = f(t, y(t)) immediately for determining η, we slightly modify the right-
hand side and write

y(tn+1) = y(tn) + hf(tn+1/2, y(tn+1/2)) + η1 + η. (3)

Then, by Lipschitz condition,

|η1| = h
∣

∣f
(

tn+1/2,
1
2 (y(tn) + y(tn+1))

)

− f(tn+1/2, y(tn+1/2))
∣

∣

≤ 1
2hL

∣

∣y(tn) + y(tn+1) − 2y(tn+1/2)
∣

∣ ,

and by Taylor expansion at tn, with y = y(tn), we have

|η1| ≤ 1
2hL

∣

∣y + (y + hy′) − 2(y + 1
2hy′) + O(h2)

∣

∣ = O(h3).

Now, from (3), since f(t, y(t)) = y′(t), we obtain

η1 + η = y(tn+1) − y(tn) − hy′(tn+1/2) = hy′ + 1
2h2y′′ − h [y′ + 1

2hy′′] + O(h3) = O(h3),

hence
|η| ≤ |η1| + O(h3) ≤ ch3.

2) Approximation error en = y(tn)−yn. The recurrence relation for en is obtained by subtract-
ing (1) from (2):

en+1 = en + h
[

f
(

tn+1/2,
1
2 (y(tn) + y(tn+1))

)

− f
(

tn+1/2,
1
2 (yn + yn+1)

)]

+ η.

The Lipschitz condition implies

|en+1| ≤ |en| + 1
2hL |y(tn) − yn + y(tn+1) − yn+1)| + |η|

≤ |en| + 1
2hL (|en| + |en+1|) + ch3.

So, finally,

|en+1| ≤
1 + 1

2hL

1 − 1
2hL

|en| + ch3.
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Now, the relations of the form

|en+1| ≤ A |en| + B, n ≥ 0, e0 = 0,

provide the estimate

|en+1| ≤ B(1 + A + A2 + · · · + An) = B
An+1 − 1

A − 1
.

With our particular A and B, since 1
2 < 1 − 1

2hL < 1 for small h, we have

A − 1 = hL

1−
1
2hL

≥ hL,

An+1 =

(

1 + hL

1−
1
2hL

)n+1

≤ (1 + 2Lh)n+1 ≤ e2Lh(n+1) ≤ e2Lt∗ ,

whence

|en+1| ≤
1

hL
e2Lt∗ch3 ≤ c1h

2,

with a constant c1 that depends only on L, ‖y′′′‖ and t∗, i.e., we have uniform convergence in any
finite interval [0, t∗].
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Example (QR algorithm)

Prove that, for each positive integer k the matrix Ak+1 of the QR algorithm is related to the starting
matrix A1 = A by the formula Ak+1 = Q̄T

k AQ̄k, where Q̄kR̄k is the QR factorization of the matrix
Ak.

Let the QR algorithm be applied to the matrix

A =





1 0

λ 1





for some λ. Deduce from the above formula the elements of Ak+1. Also identify the limiting value
of Ak+1 as k → ∞ and comment briefly on your result.

Solution

Since
Ai = QiRi, and Ai+1 = RiQi = Qi+1Ri+1,

we have

Ak = Q1R1Q1R1Q1 · · · R1Q1R1Q1R1

= Q1Q2R2Q2R2 · · · Q2R2Q2R2R1

= Q1Q2Q3 · · · QkRk · · · R3R2R1

= Q̄kR̄k.

Since also Ri = QT
i Ai, we have

Ak+1 = RkQk = QT
k AkQk = QT

k QT
k−1Ak−1Qk−1Qk = · · ·

= QT
k QT

k−1 · · ·QT
1 A1Q1 · · ·Qk−1Qk

= Q̄T
k AQ̄k.

(In particular, since for orthogonal matrices QT = Q−1, the matrix Ak is similar to A, i.e., Ak =
SAS−1 for some matrix S, hence it has the same eigenvalues as the original matrix A).

2) Now, for the matrix A given, we compute

Ak =





1 0

kλ 1



 , Q̄T
k =

1√
1 + k2λ2





1 kλ

−kλ 1



 ,

whence

Ak+1 =
1

1 + k2λ2





1 kλ

−kλ 1



 ×





1 0

λ 1



 ×





1 −kλ

kλ 1





=
1

1 + k2λ2





1 + kλ2 + k2λ2 −k2λ3

λ 1 − kλ2 + k2λ2





and

lim
k→∞

Ak+1 =





1 −λ

0 1



 ,

the first column being λmaxe1, with λmax the largest eigenvalue of A.

3



Example (Runge–Kutta method)

Consider the Runge–Kutta method

k1 = f(tn, yn),

k2 = f(tn + a21h, yn + a21k1h),

k3 = f (tn + (a31 + a32)h, yn + (a31k1 + a32k2)h) ,

yn+1 = yn + (b1k1 + b2k2 + b3k3)h

for solving y′(t) = f(t, y), t ∈ R. Show that its order is at least two if the equations

b1 + b2 + b3 = 1 and b2a21 + b3(a31 + a32) = 1
2 (∗)

are satisfied, and it is three if the parameters have the values

a21 = 1, a31 = 4/9, a32 = 2/9, b1 = 1/4, b2 = 0, b3 = 3/4. (∗∗)

Solution

We need to show that, for yn = y(tn), where y is the exact solution of y′(t) = f(t, y), and with
particular parameters given in (∗) and (∗∗), we obtain

(∗) y(tn+1) = y(tn) + (b1k1 + b2k2 + b3k3)h + O(h3),

(∗∗) y(tn+1) = y(tn) + (b1k1 + b2k2 + b3k3)h + O(h4),

respectively. We will prove it by showing that the right-hand side coincide with the Taylor expan-
sion of y at tn up to a given order, i.e.,

(b1k1 + b2k2 + b3k3)h = hy′ +
1

2
h2y′′ + O(h3) = hy′ +

1

2
h2y′′ +

1

6
h3y′′′O(h4),

So, we make the Taylor expansion of ki around the point (tn, y(tn)), and use the formulae for
previous kj -s to express ki in terms of f and its partial derivatives:

k1 = f,

k2 = f + h [a21ft + a21k1fy] +
1

2
h2

[

a2
21ftt + 2a2

21k1fty + a2
21k

2
1fyy

]

+ O(h3)

= f + h [a21(ft + ffy)] +
1

2
h2

[

a2
21(ftt + 2ffty + f2fyy)

]

+ O(h3),

k3 = f + h [(a31 + a32)ft + (a31k1 + a32k2)fy]

+
1

2
h2

[

(a31 + a32)
2ftt + 2(a31 + a32)(a31k1 + a32k2)fty + (a31k1 + a32k2)

2fyy

]

+ O(h3)

= f + h [(a31 + a32)(ft + ffy)] + h2 [a32a21(ft + ffy)fy]

+
1

2
h2

[

(a31 + a32)
2(ftt + 2ffty + f2fyy)

]

+ O(h3) .

Now, summing up and combining terms at powers of h, we derive

h(b1k1 + b2k2 + b3k3) = h(b1 + b2 + b3)f + h2 [b2a21 + b3(a31 + a32)] (ft + ffy)

+ h3
{

b3a32a21(ft + ffy)fy +
[

1
2b2a

2
21 + 1

2b3(a31 + a32)
2
]

(ftt + 2ffty + f2fyy)
}

+ O(h4).

Differentiating the identity y′(t) = f(t, y) with respect to t we find that, for the exact solution y,

y′ = f,

y′′ = ft + fyf,

y′′′ = (ftt + ftyf + fyft) + (fyt + fyyf + f2
y )f = (ftt + 2ftyf + fyyf

2) + (ft + fyf)fy .

So, in case (∗), we indeed have order two, and we get order three if

b3a32a21 = 1
2b2a

2
21 + 1

2b3(a31 + a32)
2 = 1

6 ,

and that is the case for the parameteres in (∗∗).
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Example (Multistep method)

Determine the order of the multistep method

yn+2 − (1 + α)yn+1 + αyn =
1

12
h [(5 + α)fn+2 + (8 − 8α)fn+1 − (1 + 5α)fn]

for the solution of ODEs y′ = f(t, y) for different choices of α.

Solution

The order of a numerical method yn+1 = φ(t0..tn, y0..yn) for solving y′ = f(t, y) is the order of its
error on the exact solution y reduced by one, i.e., it is the largest integer p such that

y(tn+1) = φ(t0..tn, y(t0)..y(tn)) + O(hp+1).

In our case, since fk = f(tk, yk) = y′(tk) for the exact solution y, it is the error of the formula

y(tn+2) − (1 + α)y(tn+1) + αy(tn)

= 1
12h [(5 + α)y′(tn+2) + (8 − 8α)y′(tn+1) − (1 + 5α)y′(tn)] + O(hp+1)

for all sufficiently smooth functions y. We see at once that this p is the highest term until which
the Taylor expansions of the right- and of the left-hand sides coincide.

Method 1. Equivalently, it is the largest p for which the above formula is identity for any
polynomial of degree p. It is sufficient to verify this formula for monomials y(t) = tk and for any
particular h and tn, say h = 1 and tn = −1 (so that tn+1 = 0 and tn+2 = 1). We have

y(t) = t0, 0 = 0,

y(t) = t1, 1 − α = 1
12 (12 − 12α) = 1 − α,

y(t) = t2, 1 + α = 2
12 ((5 + α) + (1 + 5α)) = 1 + α,

y(t) = t3, 1 − α = 3
12 ((5 + α) − (1 + 5α)) = 1 − α,

y(t) = t4, 1 + α = 4
12 ((5 + α) + (1 + 5α)) = 2(1 + α),

y(t) = t5, 1 − α = 5
12 ((5 + α) − (1 + 5α)) = 5

3 (1 − α).

So, the method is of order three for any α, and it is of order four if α = −1.

Method 2. By Theorem 3.11 of Lecture Notes, we have

ρ(w) = w − (1 + α) + 1/w, σ(w) = 1
12 [(5 + α)w + (8 − 8α) − (1 + 5α)/w] .

(Here, we made a shift n + 1 → n to simplify expressions involved.) Then

ρ(ez) − zσ(ez)

= [1 + z + 1
2!z

2 + 1
3!z

3 + 1
4!z

4 + 1
5!z

5] − (1 + α) + α[1 − z + 1
2!z

2 − 1
3!z

3 + 1
4!z

4 − 1
5!z

5]

− 1
12z

{

(5 + α)[1 + z + 1
2!z

2 + 1
3!z

3 + 1
4!z

4] + (8 − 8α)

+ (1 + 5α)[1 − z + 1
2!z

2 − 1
3!z

3 + 1
4!z

4]
}

+ O(z6)

= − 1
4! (1 + α)z4 − 1

5!
2
3 (1 − α)z5 + O(z6),

where calculations of the coefficients at zk is the same procedure as for y(t) = tk in the Method 1.
So, again, the method is of order three for any α, and it is of order four if α = −1.
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