Part III - Lent Term 2005
 Approximation Theory - Lecture 2

2 Weierstrass theorems

The following two theorems lie at the heart of approximation theory.
Theorem 2.1 (Weierstrass $\left.{ }^{1}[\mathbf{1 8 8 5}]\right)$ For any finite $I=[a, b]$, the set \mathcal{P} of all algebraic polynomials is dense in $C(I)$, i.e., for each $f \in C(I)$ and for each ε there exists some $p \in \mathcal{P}$ such that

$$
|f(x)-p(x)|<\varepsilon, \quad a \leq x \leq b
$$

Theorem 2.2 (Weierstrass [1885]) The set \mathcal{T} of all trigonometric polynomial is dense in $C(\mathbb{T})$.
Comment 2.3 Weierstrass brought two news to the mathematical world (as usual: a bad one and a good one). The first from 1872 shocked the mathematical community: there exist functions in $C[a, b]$ which are not differentiable at every point of $[a, b]$. The second result appeared in 1885 and, stated above, is in a sense the converse. Thus the set of continuous functions contains very, very non-smooth functions, but they can each be approximated arbitrarily well by the ultimate in smooth fuctions. (Extracts are taken from a recent and very nice survey by A Pinkus, J. Approx. Theory 107 (2000), 1-66.)

Weierstrass theorems (and in fact their original proofs) postulate existence of some sequence of polynomials converging to a prescribed continuous function uniformly on a bounded closed intervals. The proofs below provide an explicit construction for each case.

2.1 Korovkin theorem on positive linear operators

Definition 2.4 (Positive operators in $C(K)$) Let $C(K)$ be the set of real-valued continuous maps on a compact K. For those, there is a natural (partial) order: $f \geq g$ means $f(x) \geq g(x)$ for all $x \in K$. An operator $U: C(K) \rightarrow C(K)$ is called positive if $f \geq 0$ implies $U(f) \geq 0$ and it is called monotone if $f \geq g$ implies $U(f) \geq U(g)$. If U is linear then it is positive iff it is monotone.

Example 2.5 Important examples of linear positive operators on $C[a, b]$ are given by the formula

$$
U_{n}(f, x)=\int_{a}^{b} K_{n}(x, t) f(t) d t, \quad \text { with a positive kernel } K_{n}(x, t) \geq 0
$$

or its discrete analogue $U_{n}(f, x)=\sum_{i=1}^{n} k_{n, i}(x) f\left(t_{i}\right)$ with $k_{n, i}(x) \geq 0$.
Theorem 2.6 (Korovkin ${ }^{2}$ [1957]) Let K compact, $\left(U_{n}\right)$ in $\mathcal{L}(C(K))$ and positive. Assume that there exist finite sets $\left(a_{i}\right),\left(p_{i}\right) \in C(K)$ such that

$$
p(x, t):=p_{t}(x):=\sum_{i=1}^{m} a_{i}(t) p_{i}(x) \geq 0 \quad \text { with equality iff } x=t .
$$

If $U_{n}\left(p_{i}\right) \rightarrow p_{i}$ on the set $F:=\left(p_{i}\right)$, then $U_{n}(f) \rightarrow f$ for any $f \in C(K)$.

Example 2.7 Two classical examples are

$$
\begin{array}{lll}
K=[a, b], & F=\left(1, x, x^{2}\right), & p_{t}(x)=(x-t)^{2} \\
K=[0,2 \pi), & F=(1, \cos x, \sin x), & p_{t}(x)=1-\cos (x-t)
\end{array}
$$

[^0]Proof. The idea of the proof is that, given $f \in C(K)$ and $\varepsilon>0$, we can construct for any $t \in K$ two polynomials $q_{t}^{+}, q_{t}^{-} \in \operatorname{span}(F)$ s.t.

1) $q_{t}^{-}<f<q_{t}^{+} \quad$ on K,
2) $\left|q_{t}^{+}(x)-q_{t}^{-}(x)\right|_{x=t}<\varepsilon$,
3) $\quad U_{n}\left(q_{t}^{ \pm}\right) \rightarrow q_{t}^{ \pm} \quad$ uniformly in t.

The monotonicity of U_{n} provides

$$
\left.1^{\prime}\right) \quad U_{n}\left(q_{t}^{-}\right)<U_{n}(f)<U_{n}\left(q_{t}^{+}\right)
$$

while the convergence (3) (coupled with (2) in (2') below) ensures that, for sufficiently large n, independently of t,

$$
\left.\left.2^{\prime}\right) \quad\left|U_{n}\left(q_{t}^{+}, t\right)-U_{n}\left(q_{t}^{-}, t\right)\right|<\varepsilon^{\prime}, \quad 3^{\prime}\right) \quad\left|U_{n}\left(q_{t}^{ \pm}, t\right)-q_{t}^{ \pm}(t)\right|<\varepsilon^{\prime \prime}
$$

Hence, for any $t \in K$,

$$
\left|U_{n}(f, t)-f(t)\right| \leq\left|U_{n}(f, t)-U_{n}\left(q_{t}^{-}, t\right)\right|+\left|U_{n}\left(q_{t}^{-}, t\right)-q^{-}(t)\right|+\left|q_{t}^{-}(t)-f(t)\right| \leq \varepsilon^{\prime}+\varepsilon^{\prime \prime}+\varepsilon
$$

Particular case. Construction of such $q_{t}^{ \pm}$in general situation is given in $\S 2.3$ as a (non-examinable) supplement (for those interested), but here we consider only one important particular case

$$
K=[a, b], \quad F=\left(1, x, x^{2}\right), \quad p_{t}(x)=(x-t)^{2}
$$

Take any $\varepsilon>0$. Then, because K is a compact, any f continuous on K is uniformly continuous, i.e., there is a δ (which depends on f) such that

$$
\begin{equation*}
|x-t|<\delta \Rightarrow|f(x)-f(t)|<\varepsilon \tag{2.1}
\end{equation*}
$$

For any $t \in K$, we define the polynomials $q_{t}^{ \pm}$(in x) as follows

$$
q_{t}^{ \pm}(x):=f(t) \pm\left(\varepsilon+2\|f\| \frac{(x-t)^{2}}{\delta^{2}}\right)
$$

Let us verify that these $q_{t}^{ \pm}$satisfy conditions (1)-(3) above.

1) We have

$$
|x-t|<\delta \Rightarrow f(x)-q_{t}^{+}(x) \leq f(x)-f(t)-\varepsilon \stackrel{(2.1)}{<} 0
$$

while

$$
|x-t| \geq \delta \Rightarrow f(x)-q_{t}^{+}(x)<f(x)-f(t)-2\|f\| \leq 0
$$

2) Clearly,

$$
\left|q_{t}^{+}(x)-q_{t}^{-}(x)\right|_{x=t}=2 \varepsilon
$$

3) We can represent both polynomials in the form

$$
q_{t}(x)=c_{2}(t) p_{2}(x)+c_{1}(t) p_{1}(x)+c_{0}(t) p_{0}(x), \quad p_{i}(x)=x^{i}
$$

where $c_{i}(\cdot)$ are uniformly bounded functions, say, $\left|c_{i}(t)\right| \leq c_{\varepsilon}(f)$, hence

$$
\left\|U_{n}\left(q_{t}^{ \pm}\right)-q_{t}^{ \pm}\right\| \leq 3 c_{\varepsilon}(f) \max _{i}\left\|U_{n}\left(p_{i}\right)-p_{i}\right\|
$$

and because of convergence $U_{n}\left(p_{i}\right) \rightarrow p_{i}$ we can find an n_{0} (that depends on ε and f) such that

$$
\left\|U_{n}\left(p_{i}\right)-p_{i}\right\| \leq \varepsilon / c_{\varepsilon}(f), \quad n \geq n_{0}
$$

whence $\left\|U_{n}\left(q_{t}^{ \pm}\right)-q_{t}^{ \pm}\right\| \leq 3 \varepsilon$.
Corollary 2.8 Let $\left(U_{n}\right)$ be in $\mathcal{L}(C[a, b])$ and positive. Then

$$
U_{n}\left(p_{i}\right) \rightarrow p_{i} \quad \text { on } \quad F=\left\{1, x, x^{2}\right\} \quad \Rightarrow \quad U_{n}(f) \rightarrow f \quad \forall f \in C[a, b]
$$

Corollary 2.9 Let $\left(U_{n}\right)$ be in $\mathcal{L}(C(\mathbb{T}))$ and positive. Then

$$
U_{n}\left(p_{i}\right) \rightarrow p_{i} \quad \text { on } \quad F=\{1, \cos x, \sin x\} \quad \Rightarrow \quad U_{n}(f) \rightarrow f \quad \forall f \in C(\mathbb{T})
$$

2.2 Exercises

2.1. Using Weierstrass theorem prove that the polynomials are dense in $C^{k}[0,1]$, the Banach space of all k times continuously differentiable functions on $[0,1]$ with the norm

$$
\|f\|_{\infty}^{(k)}:=\max _{0 \leq i \leq k}\left\|f^{(i)}\right\|_{\infty}
$$

2.2. Prove that, for any positive linear operator U, we have $\|U\|=\|U(1, \cdot)\|$. Then derive that, under assumption of Korovkin theorem, we have

$$
\sup _{n}\left\|U_{n}\right\|<M<\infty
$$

(The latter inequality is in fact a necessary condition for any sequence $\left(U_{n}\right)$ of linear operators to provide convergence $U_{n}(f) \rightarrow f$ for all f in $C[a, b]$.)
Hint. Apply U to the functions in the inequality $-\|f\| \leq f \leq\|f\|$.
2.3. (Exam question 2002) Use Korovkin theorem for the case $K=[a, b]$ and $p(x, t)=(x-t)^{2}$ to show that the only linear positive operator $U: C[a, b] \rightarrow C[a, b]$ such that

$$
U\left(p_{i}\right)=p_{i} \quad \text { on } \quad F=\left\{1, x, x^{2}\right\}
$$

is the identity operator, i.e. $U(f)=f$ for all $f \in C[a, b]$.

2.3 General construction of $q_{t}^{ \pm}$(non-examinable)

We generalize the construction used for $p_{t}(x)=(x-t)^{2}$, it is useful to compare the corresponding steps.

1) From the assumption, $\operatorname{span}(F)$ contains strictly positive polynomials, e.g., $p_{t^{\prime}}+p_{t^{\prime \prime}}$ for any fixed $t^{\prime} \neq t^{\prime \prime}$. Let p^{*} be one such. For any $t \in K$, set

$$
f=: \frac{f(t)}{p^{*}(t)} p^{*}+h_{t}
$$

This equality is simply the formula of interpolation of f by p_{*} at one point $x=t$ with the remainder h_{t}. It defines a continuous function h of two variables such that

$$
h(x, t):=h_{t}(x) \in C\left(K^{2}\right), \quad h(t, t)=0, \quad \forall t \in K
$$

Take any $\varepsilon>0$. Then

$$
|h| \leq \varepsilon+\text { a bound for }|h| \text { on the set } \Delta:=\{(x, t):|h| \geq \varepsilon\}
$$

Since h is continuous, this set is closed, hence compact, it also does not contain the set $\{(t, t): t \in$ $K\}$, the only zero-set of p. Therefore, with $\delta:=\min _{\Delta} p$, we have $\delta>0$ and $|h| \leq\|h\| \leq \frac{\|h\|}{\delta} p=: \gamma p$ on Δ. So

$$
|h| \leq \varepsilon+\gamma p, \quad \text { hence } \quad\left|h_{t}\right| \leq \varepsilon+\gamma p_{t} \quad \text { uniformly in } t \in K
$$

2) It is almost what we need with the exception that ε (i.e., the constants) may not belong to $\operatorname{span}(F)$. But we can majorize ε by the positive polynomial $\varepsilon \alpha p_{*}$ with $\alpha:=1 / \min _{x} p_{*}(x)<\infty$. Thus, the polynomials

$$
q_{t}^{ \pm}:=\frac{f(t)}{p_{*}(t)} p_{*} \pm\left(\varepsilon \alpha p_{*}+\gamma p_{t}\right)
$$

satisfies the inequalities $q_{t}^{-}<f<q_{t}^{+}$and (since $p_{t}(t)=0$)

$$
\left|q_{t}^{+}(t)-q_{t}^{-}(t)\right|=2 \varepsilon \alpha p_{*}(t)<2 \varepsilon \alpha\left\|p_{*}\right\|=: \varepsilon_{1}
$$

3) By assumption, $U_{n} \rightarrow I$ on F, hence also on $\operatorname{span}(F):=\left\{\sum_{i=1}^{m} c_{i} f_{i}: c \in \mathbb{R}^{m}\right\}$. The latter is finite-dimensional, therefore $U_{n} \rightarrow I$ uniformly on bounded subsets of $\operatorname{span}(F)$. The subset $P=\left\{p_{t}\right\}_{t \in K}$ is bounded, thus $U_{n} \rightarrow I$ on P, i.e., $U_{n}\left(p_{t}\right) \rightarrow p_{t}$ uniformly in t, in particular $U_{n}\left(p^{*}\right) \rightarrow p^{*}$, hence

$$
U_{n}\left(q_{t}^{ \pm}\right) \rightarrow q_{t}^{ \pm} \quad \text { uniformly in } t
$$

[^0]: ${ }^{1}$ Karl Weierstrass, 1815-1897, he is known, e.g., by Bolzano-Weierstrass theorem, the M-test for convergence, but he is also the inventor of epsilontics: "for any $\varepsilon>0$ there exists a $\delta>0 \ldots$ "
 ${ }^{2}$ Pavel Korovkin, 1913-1985, he had a turbulent start of his scientiic career: PhD in 1939, in 1941-45 in the combat service (artillery), but already in 1947 he has got the senior doctor degree (Habilitation).

