
Part III - Lent Term 2005

Approximation Theory – Lecture 2

2 Weierstrass theorems

The following two theorems lie at the heart of approximation theory.

Theorem 2.1 (Weierstrass1[1885]) For any finite I = [a, b], the set P of all algebraic polynomials is
dense in C(I), i.e., for each f ∈ C(I) and for each ε there exists some p ∈ P such that

|f(x) − p(x)| < ε, a ≤ x ≤ b.

Theorem 2.2 (Weierstrass [1885]) The set T of all trigonometric polynomial is dense in C(T).

Comment 2.3 Weierstrass brought two news to the mathematical world (as usual: a bad one and a good
one). The first from 1872 shocked the mathematical community: there exist functions in C[a, b] which are not
differentiable at every point of [a, b]. The second result appeared in 1885 and, stated above, is in a sense the
converse. Thus the set of continuous functions contains very, very non-smooth functions, but they can each
be approximated arbitrarily well by the ultimate in smooth fuctions. (Extracts are taken from a recent and
very nice survey by A Pinkus, J. Approx. Theory 107 (2000), 1-66.)

Weierstrass theorems (and in fact their original proofs) postulate existence of some sequence
of polynomials converging to a prescribed continuous function uniformly on a bounded closed
intervals. The proofs below provide an explicit construction for each case.

2.1 Korovkin theorem on positive linear operators

Definition 2.4 (Positive operators in C(K)) Let C(K) be the set of real-valued continuous maps
on a compact K. For those, there is a natural (partial) order: f ≥ g means f(x) ≥ g(x) for all
x ∈ K. An operator U : C(K) → C(K) is called positive if f ≥ 0 implies U(f) ≥ 0 and it is called
monotone if f ≥ g implies U(f) ≥ U(g). If U is linear then it is positive iff it is monotone.

Example 2.5 Important examples of linear positive operators on C[a, b] are given by the formula

Un(f, x) =
∫ b

a
Kn(x, t)f(t) dt, with a positive kernel Kn(x, t) ≥ 0,

or its discrete analogue Un(f, x) =
∑n

i=1 kn,i(x)f(ti) with kn,i(x) ≥ 0.

Theorem 2.6 (Korovkin2 [1957]) Let K compact, (Un) in L(C(K)) and positive. Assume that there
exist finite sets (ai), (pi) ∈ C(K) such that

p(x, t) := pt(x) :=

m
∑

i=1

ai(t)pi(x) ≥ 0 with equality iff x = t.

If Un(pi) → pi on the set F := (pi), then Un(f) → f for any f ∈ C(K).

Example 2.7 Two classical examples are

K = [a, b], F = (1, x, x2), pt(x) = (x − t)2;

K = [0, 2π), F = (1, cos x, sin x), pt(x) = 1 − cos(x − t).

1Karl Weierstrass, 1815-1897, he is known, e.g., by Bolzano-Weierstrass theorem, the M-test for convergence, but he is
also the inventor of epsilontics: ”for any ε > 0 there exists a δ > 0 . . . ”

2Pavel Korovkin, 1913-1985, he had a turbulent start of his scientiic career: PhD in 1939, in 1941-45 in the combat
service (artillery), but already in 1947 he has got the senior doctor degree (Habilitation).
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Proof. The idea of the proof is that, given f ∈ C(K) and ε > 0, we can construct for any t ∈ K
two polynomials q+

t , q−t ∈ span(F ) s.t.

1) q−t < f < q+
t on K, 2) |q+

t (x)−q−t (x)|x=t < ε, 3) Un(q±t ) → q±t uniformly in t.

The monotonicity of Un provides

1′) Un(q−t ) < Un(f) < Un(q+
t ),

while the convergence (3) (coupled with (2) in (2′) below) ensures that, for sufficiently large n,
independently of t,

2′) |Un(q+
t , t) − Un(q−t , t)| < ε′, 3′) |Un(q±t , t) − q±t (t)| < ε′′.

Hence, for any t ∈ K,

|Un(f, t) − f(t)| ≤ |Un(f, t) − Un(q−t , t)| + |Un(q−t , t) − q−(t)| + |q−t (t) − f(t)| ≤ ε′ + ε′′ + ε .

Particular case. Construction of such q±t in general situation is given in §2.3 as a (non-examinable)
supplement (for those interested), but here we consider only one important particular case

K = [a, b], F = (1, x, x2), pt(x) = (x − t)2.

Take any ε > 0. Then, because K is a compact, any f continuous on K is uniformly continuous,
i.e., there is a δ (which depends on f ) such that

|x − t| < δ ⇒ |f(x) − f(t)| < ε . (2.1)

For any t ∈ K, we define the polynomials q±t (in x) as follows

q±t (x) := f(t) ±

(

ε + 2‖f‖
(x − t)2

δ2

)

.

Let us verify that these q±t satisfy conditions (1)-(3) above.
1) We have

|x − t| < δ ⇒ f(x) − q+
t (x) ≤ f(x) − f(t) − ε

(2.1)
< 0 ,

while
|x − t| ≥ δ ⇒ f(x) − q+

t (x) < f(x) − f(t) − 2‖f‖ ≤ 0 .

2) Clearly,
|q+

t (x) − q−t (x)|x=t = 2ε.

3) We can represent both polynomials in the form

qt(x) = c2(t)p2(x) + c1(t)p1(x) + c0(t)p0(x) , pi(x) = xi,

where ci(·) are uniformly bounded functions, say, |ci(t)| ≤ cε(f), hence

‖Un(q±t ) − q±t ‖ ≤ 3cε(f)max
i

‖Un(pi) − pi‖,

and because of convergence Un(pi) → pi we can find an n0 (that depends on ε and f ) such that

‖Un(pi) − pi‖ ≤ ε/cε(f), n ≥ n0 ,

whence ‖Un(q±t ) − q±t ‖ ≤ 3ε. ¤

Corollary 2.8 Let (Un) be in L(C[a, b]) and positive. Then

Un(pi) → pi on F = {1, x, x2} ⇒ Un(f) → f ∀f ∈ C[a, b].

Corollary 2.9 Let (Un) be in L(C(T)) and positive. Then

Un(pi) → pi on F = {1, cos x, sin x} ⇒ Un(f) → f ∀f ∈ C(T).
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2.2 Exercises

2.1. Using Weierstrass theorem prove that the polynomials are dense in Ck[0, 1], the Banach
space of all k times continuously differentiable functions on [0, 1] with the norm

‖f‖(k)
∞ := max

0≤i≤k
‖f (i)‖∞ .

2.2. Prove that, for any positive linear operator U , we have ‖U‖ = ‖U(1, ·)‖. Then derive that,
under assumption of Korovkin theorem, we have

sup
n

‖Un‖ < M < ∞.

(The latter inequality is in fact a necessary condition for any sequence (Un) of linear operators
to provide convergence Un(f) → f for all f in C[a, b].)

Hint. Apply U to the functions in the inequality −‖f‖ ≤ f ≤ ‖f‖.

2.3. (Exam question 2002) Use Korovkin theorem for the case K = [a, b] and p(x, t) = (x − t)2 to
show that the only linear positive operator U : C[a, b] → C[a, b] such that

U(pi) = pi on F = {1, x, x2}

is the identity operator, i.e. U(f) = f for all f ∈ C[a, b].
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2.3 General construction of q
±

t (non-examinable)

We generalize the construction used for pt(x) = (x− t)2, it is useful to compare the corresponding
steps.

1) From the assumption, span(F ) contains strictly positive polynomials, e.g., pt′ + pt′′ for any
fixed t′ 6= t′′. Let p∗ be one such. For any t ∈ K, set

f =:
f(t)

p∗(t)
p∗ + ht.

This equality is simply the formula of interpolation of f by p∗ at one point x = t with the remain-
der ht. It defines a continuous function h of two variables such that

h(x, t) := ht(x) ∈ C(K2), h(t, t) = 0, ∀t ∈ K.

Take any ε > 0. Then

|h| ≤ ε + a bound for |h| on the set ∆ := {(x, t) : |h| ≥ ε}.

Since h is continuous, this set is closed, hence compact, it also does not contain the set {(t, t) : t ∈

K}, the only zero-set of p. Therefore, with δ := min∆ p, we have δ > 0 and |h| ≤ ‖h‖ ≤ ‖h‖
δ

p =: γp
on ∆. So

|h| ≤ ε + γp, hence |ht| ≤ ε + γpt uniformly in t ∈ K.

2) It is almost what we need with the exception that ε (i.e., the constants) may not belong to
span(F ). But we can majorize ε by the positive polynomial εαp∗ with α := 1/minx p∗(x) < ∞.
Thus, the polynomials

q±t :=
f(t)

p∗(t)
p∗ ±

(

εαp∗ + γpt

)

satisfies the inequalities q−t < f < q+
t and (since pt(t) = 0)

|q+
t (t) − q−t (t)| = 2εαp∗(t) < 2εα‖p∗‖ =: ε1

3) By assumption, Un → I on F , hence also on span(F ) := {
∑m

i=1 cifi : c ∈ R
m}. The latter

is finite-dimensional, therefore Un → I uniformly on bounded subsets of span(F ). The subset
P = {pt}t∈K is bounded, thus Un → I on P , i.e., Un(pt) → pt uniformly in t, in particular
Un(p∗) → p∗, hence

Un(q±t ) → q±t uniformly in t.
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