Part III - Lent Term 2005 Approximation Theory – Lecture 2

2 Weierstrass theorems

The following two theorems lie at the heart of approximation theory.

Theorem 2.1 (Weierstrass¹**[1885])** For any finite I = [a, b], the set \mathcal{P} of all algebraic polynomials is dense in C(I), i.e., for each $f \in C(I)$ and for each ε there exists some $p \in \mathcal{P}$ such that

$$|f(x) - p(x)| < \varepsilon, \quad a \le x \le b.$$

Theorem 2.2 (Weierstrass [1885]) The set \mathcal{T} of all trigonometric polynomial is dense in $C(\mathbb{T})$.

Comment 2.3 Weierstrass brought two news to the mathematical world (as usual: a bad one and a good one). The first from 1872 shocked the mathematical community: *there exist functions in* C[a, b] *which are not differentiable at every point of* [a, b]. The second result appeared in 1885 and, stated above, is in a sense the converse. Thus the set of continuous functions contains very, very non-smooth functions, but they can each be approximated arbitrarily well by the ultimate in smooth fuctions. (Extracts are taken from a recent and very nice survey by A Pinkus, J. Approx. Theory 107 (2000), 1-66.)

Weierstrass theorems (and in fact their original proofs) postulate existence of *some* sequence of polynomials converging to a prescribed continuous function uniformly on a bounded closed intervals. The proofs below provide an explicit construction for each case.

2.1 Korovkin theorem on positive linear operators

Definition 2.4 (Positive operators in C(K)) Let C(K) be the set of *real-valued* continuous maps on a compact K. For those, there is a natural (partial) order: $f \ge g$ means $f(x) \ge g(x)$ for all $x \in K$. An operator $U : C(K) \to C(K)$ is called *positive* if $f \ge 0$ implies $U(f) \ge 0$ and it is called *monotone* if $f \ge g$ implies $U(f) \ge U(g)$. If U is linear then it is positive iff it is monotone.

Example 2.5 Important examples of linear positive operators on C[a, b] are given by the formula

$$U_n(f,x) = \int_a^b K_n(x,t)f(t) dt$$
, with a positive kernel $K_n(x,t) \ge 0$,

or its discrete analogue $U_n(f, x) = \sum_{i=1}^n k_{n,i}(x) f(t_i)$ with $k_{n,i}(x) \ge 0$.

Theorem 2.6 (Korovkin² [1957]) Let K compact, (U_n) in $\mathcal{L}(C(K))$ and positive. Assume that there exist finite sets $(a_i), (p_i) \in C(K)$ such that

$$p(x,t):=p_t(x):=\sum_{i=1}^m a_i(t)p_i(x)\geq 0 \quad \text{with equality iff } x=t.$$

If $U_n(p_i) \to p_i$ on the set $F := (p_i)$, then $U_n(f) \to f$ for any $f \in C(K)$.

Example 2.7 Two classical examples are

$$\begin{split} K &= [a,b], \quad F = (1,x,x^2), \qquad p_t(x) = (x-t)^2; \\ K &= [0,2\pi), \quad F = (1,\cos x,\sin x), \quad p_t(x) = 1 - \cos(x-t). \end{split}$$

¹Karl Weierstrass, 1815-1897, he is known, e.g., by Bolzano-Weierstrass theorem, the M-test for convergence, but he is also the inventor of epsilontics: "for any $\varepsilon > 0$ there exists a $\delta > 0 \dots$ "

²Pavel Korovkin, 1913-1985, he had a turbulent start of his scientiic career: PhD in 1939, in 1941-45 in the combat service (artillery), but already in 1947 he has got the senior doctor degree (Habilitation).

Proof. The idea of the proof is that, given $f \in C(K)$ and $\varepsilon > 0$, we can construct for any $t \in K$ two polynomials $q_t^+, q_t^- \in \text{span}(F)$ s.t.

1) $q_t^- < f < q_t^+$ on K, 2) $|q_t^+(x) - q_t^-(x)|_{x=t} < \varepsilon$, 3) $U_n(q_t^{\pm}) \to q_t^{\pm}$ uniformly in t.

The monotonicity of U_n provides

1')
$$U_n(q_t^-) < U_n(f) < U_n(q_t^+),$$

while the convergence (3) (coupled with (2) in (2') below) ensures that, for sufficiently large *n*, *independently of t*,

2')
$$|U_n(q_t^+, t) - U_n(q_t^-, t)| < \varepsilon', \quad 3') \quad |U_n(q_t^\pm, t) - q_t^\pm(t)| < \varepsilon''.$$

Hence, for any $t \in K$,

$$|U_n(f,t) - f(t)| \le |U_n(f,t) - U_n(q_t^-,t)| + |U_n(q_t^-,t) - q^-(t)| + |q_t^-(t) - f(t)| \le \varepsilon' + \varepsilon'' + \varepsilon$$

Particular case. Construction of such q_t^{\pm} in general situation is given in §2.3 as a (non-examinable) supplement (for those interested), but here we consider only one important particular case

$$K = [a, b], \quad F = (1, x, x^2), \quad p_t(x) = (x - t)^2.$$

Take any $\varepsilon > 0$. Then, because *K* is a compact, any *f* continuous on *K* is uniformly continuous, i.e., there is a δ (which depends on *f*) such that

$$|x-t| < \delta \Rightarrow |f(x) - f(t)| < \varepsilon.$$
 (2.1)

For any $t \in K$, we define the polynomials q_t^{\pm} (in *x*) as follows

$$q_t^{\pm}(x) := f(t) \pm \left(\varepsilon + 2\|f\|\frac{(x-t)^2}{\delta^2}\right)$$

Let us verify that these q_t^{\pm} satisfy conditions (1)-(3) above.

1) We have

$$|x-t| < \delta \Rightarrow f(x) - q_t^+(x) \le f(x) - f(t) - \varepsilon \stackrel{(2.1)}{<} 0$$

while

$$|x - t| \ge \delta \implies f(x) - q_t^+(x) < f(x) - f(t) - 2||f|| \le 0.$$

2) Clearly,

$$|q_t^+(x) - q_t^-(x)|_{x=t} = 2\varepsilon.$$

3) We can represent both polynomials in the form

$$q_t(x) = c_2(t)p_2(x) + c_1(t)p_1(x) + c_0(t)p_0(x), \quad p_i(x) = x^i,$$

where $c_i(\cdot)$ are uniformly bounded functions, say, $|c_i(t)| \le c_{\varepsilon}(f)$, hence

$$\|U_n(q_t^{\pm}) - q_t^{\pm}\| \le 3c_{\varepsilon}(f) \max_i \|U_n(p_i) - p_i\|,$$

and because of convergence $U_n(p_i) \rightarrow p_i$ we can find an n_0 (that depends on ε and f) such that

$$\|U_n(p_i) - p_i\| \le \varepsilon/c_\varepsilon(f), \quad n \ge n_0$$

whence $||U_n(q_t^{\pm}) - q_t^{\pm}|| \le 3\varepsilon$.

Corollary 2.8 Let (U_n) be in $\mathcal{L}(C[a, b])$ and positive. Then

$$U_n(p_i) \to p_i \quad on \quad F = \{1, x, x^2\} \quad \Rightarrow \quad U_n(f) \to f \quad \forall f \in C[a, b].$$

Corollary 2.9 Let (U_n) be in $\mathcal{L}(C(\mathbb{T}))$ and positive. Then

$$U_n(p_i) \to p_i \quad \text{on} \quad F = \{1, \cos x, \sin x\} \quad \Rightarrow \quad U_n(f) \to f \quad \forall f \in C(\mathbb{T})$$

2.2 Exercises

2.1. Using Weierstrass theorem prove that the polynomials are dense in $C^k[0,1]$, the Banach space of all *k* times continuously differentiable functions on [0,1] with the norm

$$||f||_{\infty}^{(k)} := \max_{0 \le i \le k} ||f^{(i)}||_{\infty}.$$

2.2. Prove that, for any positive linear operator U, we have $||U|| = ||U(1, \cdot)||$. Then derive that, under assumption of Korovkin theorem, we have

$$\sup_{n} \|U_n\| < M < \infty.$$

(The latter inequality is in fact a *necessary* condition for any sequence (U_n) of linear operators to provide convergence $U_n(f) \to f$ for all f in C[a, b].)

Hint. Apply *U* to the functions in the inequality $-\|f\| \le f \le \|f\|$.

2.3. (*Exam question 2002*) Use Korovkin theorem for the case K = [a, b] and $p(x, t) = (x - t)^2$ to show that the only linear positive operator $U : C[a, b] \to C[a, b]$ such that

$$U(p_i) = p_i$$
 on $F = \{1, x, x^2\}$

is the identity operator, i.e. U(f) = f for all $f \in C[a, b]$.

2.3 General construction of q_t^{\pm} (non-examinable)

We generalize the construction used for $p_t(x) = (x - t)^2$, it is useful to compare the corresponding steps.

1) From the assumption, span(*F*) contains *strictly* positive polynomials, e.g., $p_{t'} + p_{t''}$ for any fixed $t' \neq t''$. Let p^* be one such. For any $t \in K$, set

$$f =: \frac{f(t)}{p^*(t)}p^* + h_t.$$

This equality is simply the formula of interpolation of f by p_* at one point x = t with the remainder h_t . It defines a continuous function h of two variables such that

$$h(x,t) := h_t(x) \in C(K^2), \quad h(t,t) = 0, \quad \forall t \in K.$$

Take any $\varepsilon > 0$. Then

$$|h| \le \varepsilon + a$$
 bound for $|h|$ on the set $\Delta := \{(x, t) : |h| \ge \varepsilon\}$.

Since *h* is continuous, this set is closed, hence compact, it also does not contain the set $\{(t, t) : t \in K\}$, the only zero-set of *p*. Therefore, with $\delta := \min_{\Delta} p$, we have $\delta > 0$ and $|h| \le ||h|| \le \frac{||h||}{\delta}p =: \gamma p$ on Δ . So

 $|h| \leq \varepsilon + \gamma p$, hence $|h_t| \leq \varepsilon + \gamma p_t$ uniformly in $t \in K$.

2) It is almost what we need with the exception that ε (i.e., the constants) may not belong to span(*F*). But we can majorize ε by the positive polynomial $\varepsilon \alpha p_*$ with $\alpha := 1/\min_x p_*(x) < \infty$. Thus, the polynomials

$$q_t^{\pm} := \frac{f(t)}{p_*(t)} p_* \pm \left(\varepsilon \alpha p_* + \gamma p_t\right)$$

satisfies the inequalities $q_t^- < f < q_t^+$ and (since $p_t(t) = 0$)

$$|q_t^+(t) - q_t^-(t)| = 2\varepsilon\alpha p_*(t) < 2\varepsilon\alpha ||p_*|| =: \varepsilon_1$$

3) By assumption, $U_n \to I$ on F, hence also on $\operatorname{span}(F) := \{\sum_{i=1}^m c_i f_i : c \in \mathbb{R}^m\}$. The latter is finite-dimensional, therefore $U_n \to I$ uniformly on bounded subsets of $\operatorname{span}(F)$. The subset $P = \{p_t\}_{t \in K}$ is bounded, thus $U_n \to I$ on P, i.e., $U_n(p_t) \to p_t$ uniformly in t, in particular $U_n(p^*) \to p^*$, hence

 $U_n(q_t^{\pm}) \to q_t^{\pm}$ uniformly in t.