
Part III - Lent Term 2005

Approximation Theory – Lecture 3

3 Weierstrass theorems (cont.)

3.1 Bernstein polynomials and the first Weierstrass theorem

Definition 3.1 (Bernstein1polynomials [1912]) For f ∈ C[0, 1], the Bernstein polynomials of f

are given by the formula

Bn(f, x) :=
n
∑

k=0

(

n
k

)

xk(1 − x)n−kf( k
n ) . (3.1)

This formula produces a positive linear map f → Bn(f) of C[0, 1] into Pn.

Lemma 3.2 For any n,m ∈ N, we have Bn(Pm) ⊆ Pm.

Proof. We prove the statement once we show that DmBn(Pm) ≡ 0. So, let us find the derivative
of Bn(f):

B′

n(f, x) =
∑n

k=1

(

n
k

)

kxk−1(1 − x)n−kf( k
n ) −

∑n−1
k=0

(

n
k

)

(n − k)xk(1 − x)n−k−1f( k
n )

= n
∑n−1

k=0

(

n−1
k

)

xk(1 − x)n−1−k∆1/nf( k
n ) ,

(3.2)

with ∆1/nf(t) := f(t + 1
n ) − f(t). Since ∆h(Pm) ⊆ Pm−1, one obtains that ∆m+1

h := ∆h∆m
h

vanishes identically on Pm, hence Bn(Pm) ⊆ Pm. ¤

Lemma 3.3 Bn(pi) → pi for pi(x) = xi, where i = 0, 1, 2.

Proof. Since Bn(Pm) ⊆ Pm, and since also Bn(f, x) = f(x) at x = 0, 1 for any f , it follows that
Bn(p) = p for p ∈ P1, thus Bn(xi) → xi for i = 0, 1 trivially and we are done once we show that
Bn(q) → q for some q ∈ P2 \ P1, e.g., for q(x) = x(1 − x).

This q vanishes at 0 and 1 and is quadratic, hence so is Bn(q), therefore Bn(q) = γq. It follows
that B′

n(q, 0) = γq′(0) = γ, while by (3.2), B′

n(q, 0) = n(q( 1
n ) − q(0)) = nq( 1

n ) = 1 − 1
n , i.e.,

γ = 1 − 1
n . Thus Bn(q) = (1 − 1

n )q → q. ¤

Theorem 3.4 (Weierstrass [1885]) For any finite I = [a, b], P is dense in C(I), i.e., for each f ∈ C(I)
and for each ε > 0 there exists some p ∈ P such that

|f(x) − p(x)| < ε, a ≤ x ≤ b .

Proof. For I = [0, 1], the Korovkin Theorem, with the choices

F = {1, x, x2} ∈ P2, p(x, t) = (x − t)2, Un = Bn.

shows that Bn(f) → f for all f ∈ C[0, 1]. ¤

Definition 3.5 (d-dimensional Bernstein polynomials) For f ∈ C[0, 1]d, the d-dimensional Bern-
stein polynomials of f are given by the formula

Bn(f ;x1, . . . , xd) :=
∑n

k1=0 · · ·
∑n

kd=0 bn,k1
(x1) · · · bn,kd

(xd)f(k1

n , . . . , kd

n ) .

Theorem 3.6 (d-dimensional Weierstrass) The restrictions of the polynomials in d arguments to any
compact subset K of R

d is dense in C(K).

Proof. It is sufficient to prove the theorem for K = I = [0, 1]d. Apply Korovkin with

F = {xα} ∈ P2,...,2, p(x, t) =

d
∑

i=1

(xi − ti)
2, Un = Bn. ¤

1Sergei Bernstein (1880-1968), Russian mathematician, one of the ”fathers” of Approx. Theory, PhD from the Sorbonne
in 1904, in his thesis solved Hilbert’s 19th Problem (first Problem to be solved), however on returning back to Russia in
1905 he had to start his doctorate again because Russia did not recognize foreign qualification for university posts; so, he
solved Hilbert’s 20th Problem. In 1955 he became the third Russian elected as a foreign member of the Paris Academy of
Sciences (after the tsar Peter the Great and mathematician P. Chebyshev).
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3.2 Fejer sums and the second Weierstrass theorem

Definition 3.7 (Fourier2sums) For f ∈ L1(T), its n-th partial Fourier series is given by

sn(f, x) :=
a0

2
+

n
∑

k=1

ak cos kx + bk sin kx,

[

ak

bk

]

:=
1

π

∫

T

f(t)

[

cos kt

sin kt

]

dt .

Lemma 3.8 One has

sn(f, x) =
1

π

∫

T

Dn(x − t)f(t)dt, Dn(x) =
sin(n + 1

2 )x

2 sin 1
2x

– the Dirichlet kernel.

Proof. From definition

ak cos kx + bk sin kx =
1

π

∫

T

f(t) [cos kt cos kx + sin kt sin kx] dt =
1

π

∫

T

f(t) cos k(x − t) dt ,

so that

sn(f, x) =
1

π

∫

T

Dn(x − t)f(t) dt, Dn(x) =
1

2
+

n
∑

k=1

cos kx .

It remains to find the expression for the sum. Since 2 sin 1
2x cos kx = sin(k+ 1

2 )x−sin(k− 1
2 )x, we

see that

2 sin 1
2x · Dn(x) = sin 1

2x + [sin 3
2x − sin 1

2x] + · · · + [sin(n + 1
2 )x − sin(n − 1

2 )x] = sin(n + 1
2 )x,

hence the result. ¤

Definition 3.9 (Fejer3sums [1904]) The Fejer operator associates with f the average of its partial
Fourier series of orders up to n − 1,

σn(f) =
1

n

n−1
∑

j=0

sj(f).

In the same way,

σn(f, x) =
1

π

∫

T

Fn(x − t)f(t)dt, Fn(x) =
1

n

sin2 n
2 x

2 sin2 1
2x

– the Fejer kernel. (3.3)

Lemma 3.10 The Fejer operator σn is a positive operator (which sn is not), and

σn

(

cos kt

sin kt
, x

)

=

(

1 −
k

n

)

cos kx

sin kx

hence σn → 1 on Tk for any k, in particular, σn(pi) → pi for pi(x) ∈ {1, cos x, sin x}.

Theorem 3.11 (Weierstrass [1885]) The set T of all trigonometric polynomial is dense in C(T).

Proof. For T = [−π, π), the Korovkin Theorem, with the choices

F = {1, cos x, sin x} ∈ T1, p(x, t) = 1 − cos(x − t), Un = σn,

shows that σn(f) → f for all f ∈ C(T). ¤

Remark 3.12 Notice that, since ‖sn‖ ∼ lnn, the Fourier sums (sn) fail to converge to 1 on C(T).

2Jean Baptiste Fourier, 1768-1830, French mathematician and politician, in 1798 participated in Napoleon’s invasion of
Egypt (as a scientific advisor), in 1801 was appointed by Napoleon as the Prefect of Grenobl, the post he held till 1813, it
was during that time when he did his important work on the theory of heat.

3Lipot Fejer, 1880-1959, was born Leopold Weiss but changed his name around 1900 to make himself more Hungarian,
studium in Budapest and Berlin, since 1911 the chair of mathematics at the University of Budapest.
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3.3 Exercises

3.1. Prove: If f ∈ C[0, 1] vanishes at 0 and 1, then the sequence (B∗

nf),

B∗

n(f, x) :=
n−1
∑

k=1

⌊(

n
k

)

f
(

k
n

)⌋

xk(1 − x)n−k,

which consists of polynomials with integer coefficients in the standard power form, converges
uniformly to f . (Here btc is the largest integer not bigger than t.)

Hint. Show that |Bn(f, x) − B∗

n(f, x)| ≤ 1
n .

3.2. Prove: If f ∈ Ck[0, 1], then not only does Bn(f) converge uniformly to f , but also the k-th
derivatives of Bn(f) converge uniformly to f (k).

Hint. From (3.2) derive an expression for B
(k)
n (f) and compare it with Bn−k(f (k)). You may

use the fact that h−k∆k
h(f, t) = f (k)(ξ) with some ξ ∈ [t, t + kh].

3.3. Find explicit expression for Bn(p1), Bn(p2) and Bn(p3), where pi(x) = xi, directly from the
formula (3.1). Hint. Differentiate the identity

n
∑

k=0

(

n
k

)

pkqn−k = (p + q)n

with respect to p, and proceed by induction.

3.4. For the Fejer kernel Fn, prove the formula (3.3), and that ‖Fn‖L1[−π,π] = π. Prove that the
Fejer operator σn : C(T) → C(T) satisfies ‖σn‖ = 1. Why is the Lebesgue inequality

‖f − σn(f)‖ ≤ (‖σn‖ + 1)En(f) = 2En(f)

not applicable to the linear operator σn?
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