4 Existence and uniqueness of best approximation

4.1 Existence

Lemma 4.1 Let \(U \) be a compact set in a metric space \(\mathcal{X} \). Then, for every \(f \) in \(\mathcal{X} \), there exists an element of best approximation.

Proof. Let \(d_\ast := \inf \{ d(f, u) : u \in U \} \), and let \((u_i)\) be a minimizing sequence, i.e., \(d(f, u_i) \to d_\ast \). By the compactness of \(U \), this sequence has at least one limit point \(u_\ast \in U \), and we may assume that \(d(u_i, u_\ast) \to 0 \). By the triangle inequality,

\[
d(f, u_\ast) \leq d(f, u_i) + d(u_i, u_\ast) \to d_\ast.
\]

Theorem 4.2 Let \(U \) be a finite-dimensional subspace of a normed linear space \(\mathcal{X} \). Then, for every \(f \) in \(\mathcal{X} \), there exists an element of best approximation.

Proof. Let \(u_0 \) be any element of \(U \), e.g., \(u_0 = 0 \). The best approximant we seek lies in the set

\[
U_0 := \{ u : u \in U, \| f - u \| \leq \| f - u_0 \| \}.
\]

This set is compact because it is a closed and bounded subset of a finite-dimensional space. Therefore, by the previous theorem, there is an element \(u_\ast \) of best approximation from \(U_0 \) to \(f \).

4.2 Example of nonexistence

The finite-dimensionality hypothesis cannot be dropped as the following example shows.

Let \(c_0 \) be the Banach space of infinite sequences \(f \) such that

\[
f = (\xi_1, \xi_2, \ldots), \quad \xi_k \to 0, \quad \| f \| = \max |\xi_k|,
\]

and let \(U_0 := \{ u \in c_0 : \sum_{k=1}^{\infty} 2^{-k} \alpha_k = 0 \} \).

Lemma 4.3 For any \(f \in c_0 \setminus U_0 \), the element of best approximation from \(U_0 \) to \(f \) does not exist.

Proof. Let \(f \in c_0 \setminus U_0 \) and let \(\lambda := \sum_{k=1}^{\infty} 2^{-k} \xi_k \neq 0 \).

1) On the one hand, the following elements belong to \(U_0 \):

\[
u_1 = f - \frac{2}{3} \lambda (1, 0, 0, \ldots), \quad u_2 = f - \frac{2}{3} \lambda (1, 1, 0, 0, \ldots), \quad u_3 = f - \frac{2}{3} \lambda (1, 1, 1, 0, 0, \ldots), \quad \text{etc.,}
\]

and \(\| f - u_n \| = (1 - \frac{1}{2^n})^{-1} |\lambda| \setminus |\lambda| \). Hence, \(d(f, U_0) \leq |\lambda| \).

2) On the other hand, for any \(u \in U_0 \), we have \(\| f - u \| > |\lambda| \) because

\[
|\lambda| = |\sum_{k=1}^{\infty} 2^{-k} \xi_k| = |\sum_{k=1}^{\infty} 2^{-k} (\xi_k - \alpha_k)| \leq \sum_{k=1}^{\infty} 2^{-k} |\xi_k - \alpha_k| < \| f - u \| \sum_{k=1}^{\infty} 2^{-k} = \| f - u \|,
\]

the last inequality being strict since \(\xi_k, \alpha_k \to 0 \) implies \(|\xi_k - \alpha_k| < \| f - u \| \) for \(k > k_0 \).

3) Thus, for any \(f \in c_0 \setminus U_0 \), one has \(d(f, U_0) = |\lambda(f)| \), but the element of best approximation does not exist.
4.3 Uniqueness

Definition 4.4 A normed linear space X is called strictly convex if the unit sphere contains no line segments on its surface, i.e.,
\[\|x\| = \|y\| = 1, \quad x \neq y \Rightarrow \|\frac{1}{2}(x + y)\| < \frac{1}{2}\|x\| + \frac{1}{2}\|y\| = 1 \quad \forall x, y. \]

Lemma 4.5 Let U be a subspace of a strictly convex normed linear space X. Then, for each element $f \in X$, there is at most one element of best approximation.

Proof. Suppose that u_1 and u_2 are two different best approximations from U to f and $\|f - u_i\| = \lambda_i$. Then
\[\|f - \frac{1}{2}(u_1 + u_2)\| = \|\frac{1}{2}(f - u_1) + \frac{1}{2}(f - u_2)\| < \frac{1}{2}\|f - u_1\| + \frac{1}{2}\|f - u_2\| = \lambda, \]
a contradiction to the definition of best approximation.

Theorem 4.6 Let U_n be a finite-dimensional subspace of a strictly convex normed linear space X. Then, for each $f \in X$, there exists a unique element of best approximation.

Example 4.7 Any Hilbert space with a scalar product (f, g) and the norm $\|f\| := (f, f)^{1/2}$ is strictly convex. This follows from the identity
\[\|\frac{1}{2}(f + g)\|^2 + \|\frac{1}{2}(f - g)\|^2 = \frac{1}{2}\|f\|^2 + \frac{1}{2}\|g\|^2. \]

Example 4.8 The spaces $L_p[a, b]$ with the norm $\|f\| := (\int_a^b |f(t)|^p dt)^{1/p}$ are strictly convex if $1 < p < \infty$.

Example 4.9 The spaces $L_1[a, b]$ and $L_\infty[a, b] := C[a, b]$ are not strictly convex and examples of some subspaces which provide several b.a.’s to X. For example, let $X = L_1[-1, 1]$, $f(x) = \text{sgn} x, U_1 = \{0\}$. Then any $\alpha \in [-1, 1]$ is a b.a. to f.

However, the nonuniqueness is not guaranteed. If in (a) one takes $f(x) = \text{sgn}(x - x_0)$ with any $x_0 \neq 0$, then a.b. from U_1 is unique.

4.4 Example of nonuniqueness in L_1

Lemma 4.10 1) Let $f \in L_1(\mathbb{T})$. Then, for $0 < k < n$, we have $\int_0^\pi f(nx) e^{imx} dx = 0$

2) If also $f \perp 1$, then $f(x) \perp T_{n-1}$.

Proof. Since e^{imx} are linear combination of e^{imx} with $0 < |m| < n$, it will be enough to prove that $I := \int_0^\pi f(nx) e^{imx} dx = 0$. Setting $x = t + \frac{\pi}{n}$, and using the equality $\int_T g = \int_{T+\alpha} g$, we obtain
\[I = \int_{-\pi}^\pi f(nx) e^{imx} dx = \int_{-\pi - 2\pi/n}^{\pi - 2\pi/n} f(nt + \frac{\pi}{n}) e^{imt+2im\pi/n} dt = e^{2im\pi/n} \int_{-\pi}^\pi f(nt) e^{imt} dt = e^{2im\pi/n} I. \]
Since $0 < |m| < n$, we have $e^{2im\pi/n} \neq 1$, hence $I = 0$.

Lemma 4.11 For $F(x) = \text{sgn} \sin nx$, any $s \in T_{n-1}$ with $\|s\|_\infty < 1$ is a polynomial of b.a. to F in $L_1(\mathbb{T})$.

Proof. By previous lemma, $F \perp T_{n-1}$. Then, for any $s \in T_{n-1}$,
\[\int_T |F(x) - s(x)| dx \geq \int_T |F(x) - s(x)| \text{sgn} \sin nx dx = \int_T F(x) \text{sgn} \sin nx dx = 2\pi. \]
If $\|s\|_\infty < 1 = \|F\|$, then $\text{sgn} (F(x) - s(x)) = \text{sgn} F(x) = \text{sgn} \sin nx$, and the first inequality becomes equality.

This example has a remarkable generalization.

Theorem 4.12 (Hobby–Rice) For any n-dimensional subspace U_n of $L_1[a, b]$ there exists a sign function h with n breakpoints such that $h \perp U_n$.

Theorem 4.13 (Krein[1938]) No finite-dimensional subspace of $L_1[a, b]$ is a unicity space, i.e., for any U_n in $L_1[a, b]$ there exists a function $f \in L_1[a, b]$ that has several b.a.

1Mark Krein (1907-1989), Russian mathematician, one of the recipients of prestigious Wolf Prize in mathematics “for his fundamental contributions to functional analysis and its applications”.
4.5 Exercises

4.1. Prove that the equality \(\|x\| = \|y\| = \|\frac{1}{2}x + \frac{1}{2}y\| = 1 \) implies that \(\|\alpha x + (1 - \alpha)y\| = 1 \) for any \(\alpha \in [0, 1] \), i.e., that two conditions in Definition 4.4 are really equivalent.

4.2. Does the unicity Theorem 4.6 have a converse? That is, can we infer strict convexity from a knowledge that for each \(f \in X \) and for each finite-dimensional \(U \subset X \) there exists a unique element of best approximation?

Hint. Let \(X = \mathbb{R}^2 \) with a norm which is not strictly convex, i.e., the set \(\|x\| = 1 \) contains a line segment. Find \(f \) and one-dimensional subspace \(U \) with several b.a. to \(f \).

4.3. Fill in the details of the following proof of Theorem 4.2. It is based on the Weierstrass theorem: A continuous function on a closed bounded set in \(\mathbb{R}^n \) attains its minimum.

\(a) \) Let \(f \in X \), an let \(U_n = \text{span} (g_k)_{k=1}^n \) where \(g_k \) are linearly independent.

\(b) \) For \(x = (x_1, \ldots, x_n) \), the function \(G(x) := \| \sum_{k=1}^n x_k g_k \| \) is a continuous function of \(n \) real variables \(x_k \), hence, on the unit ball \(\sum x_k^2 = 1 \), it takes some minimal value \(\rho > 0 \).

\(c) \) The function \(F(x) := \| f - \sum_{k=1}^n x_k g_k \| \) is continuous as well, and it follows from (b) that \(F(x) \to \infty \) as \(x \to \infty \).

\(d) \) Thus, looking for the infimum of \(F(x) \) over \(x \in \mathbb{R}^n \), we may restrict ourselves to some ball \(B_r := \{ x : \sum x_k^2 \leq r \} \), this is a bounded closed set in \(\mathbb{R}^n \), hence, on \(B_r \), \(F(x) \) attains its minimal value.

4.4. The essence of the example given in Lemma 4.3 is that the linear functional

\[\lambda : c_0 \to \mathbb{R}, \quad \lambda(f) := \sum_{k=1}^{\infty} 2^{-k} \xi_k, \quad f = (\xi_1, \xi_2, \ldots) \in c_0 \]

does not take its norm

\[\|\lambda\| := \sup \{ |\lambda(f)| : \|f\| = 1 \}, \]

i.e., there is no function \(f \in c_0 \) such that \(|\lambda(f)| = \|\lambda\| \|f\| \).

\(a) \) Prove that, for any \(X \) and any \(\lambda \in X^* \) (the space of all linear bounded functionals on \(X \)), we have the equality \(|\lambda(f)| = \|\lambda\| \text{dist}(f, \ker \lambda) \) for any \(f \in X \).

\(b) \) Using (a), even if you have not proved it, prove that if \(\lambda : X \to \mathbb{R} \) does not take its norm, then the subspace \(U_0 := \ker \lambda \) is a non-existence set.

\(c) \) For \(\ell_1 \), the Banach space of infinite sequences \(f \) such that

\[f = (\xi_1, \xi_2, \ldots), \quad \sum_{k=1}^{\infty} |\xi_k| < \infty, \quad \|f\| = \sum_k |\xi_k|, \]

construct a functional \(\lambda(f) = \sum_{k=1}^{\infty} \lambda_k \xi_k \) which does not take its norm, thus find a subspace of \(\ell_1 \) which is a non-existence set.

Hint. For any \(f \in U_n \), consider the function \(F = |f| \cdot h \), where \(h \) is a sign function from Hobby–Rice theorem.