Part III - Lent Term 2005
 Approximation Theory - Lecture 4

4 Existence and uniqueness of best approximation

4.1 Existence

Lemma 4.1 Let \mathcal{U} be a compact set in a metric space \mathbb{X}. Then, for every f in \mathbb{X}, there exists an element of best approximation.

Proof. Let $d_{*}:=\inf \{d(f, u): u \in \mathcal{U}\}$, and let $\left(u_{i}\right)$ be a minimizing sequence, i.e., $d\left(f, u_{i}\right) \rightarrow d_{*}$. By the compactness of \mathcal{U}, this sequence has at least one limit point $u_{*} \in \mathcal{U}$, and we may assume that $d\left(u_{i}, u_{*}\right) \rightarrow 0$. By the triangle inequality,

$$
d\left(f, u_{*}\right) \leq d\left(f, u_{i}\right)+d\left(u_{i}, u_{*}\right) \rightarrow d_{*} .
$$

Theorem 4.2 Let \mathcal{U} be a finite-dimensional subspace of a normed linear space \mathbb{X}. Then, for every f in \mathbb{X}, there exists an element of best approximation.

Proof. Let u_{0} be any element of \mathcal{U}, e.g., $u_{0}=0$. The best approximant we seek lies in the set

$$
\mathcal{U}_{0}:=\left\{u: u \in \mathcal{U},\|f-u\| \leq\left\|f-u_{0}\right\|\right\}
$$

This set is compact because it is a closed and bounded subset of a finite-dimensional space. Therefore, by the previous theorem, there is an element u_{*} of best approximation from \mathcal{U}_{0} to f.

4.2 Example of nonexistence

The finite-dimensionality hypothesis cannot be dropped as the following example shows.
Let c_{0} be the Banach space of infinite sequences f such that

$$
f=\left(\xi_{1}, \xi_{2}, \ldots\right), \quad \xi_{k} \rightarrow 0, \quad\|f\|=\max \left|\xi_{k}\right|
$$

and let $\mathcal{U}_{0}:=\left\{u \in c_{0}: \sum_{k=1}^{\infty} 2^{-k} \alpha_{k}=0\right\}$.
Lemma 4.3 For any $f \in c_{0} \backslash \mathcal{U}_{0}$, the element of best approximation from \mathcal{U}_{0} to f does not exist.
Proof. Let $f \in c_{0} \backslash \mathcal{U}_{0}$ and let $\lambda:=\sum_{k=1}^{\infty} 2^{-k} \xi_{k} \neq 0$.

1) On the one hand, the following elements belong to \mathcal{U}_{0} :

$$
u_{1}=f-\frac{2}{1} \lambda(1,0,0, \ldots), \quad u_{2}=f-\frac{4}{3} \lambda(1,1,0,0, \ldots), \quad u_{3}=f-\frac{8}{7} \lambda(1,1,1,0,0, \ldots), \quad \text { etc., }
$$

and $\left\|f-u_{n}\right\|=\left(1-\frac{1}{2^{n}}\right)^{-1}|\lambda| \searrow|\lambda|$. Hence, $d\left(f, \mathcal{U}_{0}\right) \leq|\lambda|$.
2) On the other hand, for any $u \in \mathcal{U}_{0}$, we have $\|f-u\|>|\lambda|$ because

$$
|\lambda|=\left|\sum_{k=1}^{\infty} 2^{-k} \xi_{k}\right|=\left|\sum_{k=1}^{\infty} 2^{-k}\left(\xi_{k}-\alpha_{k}\right)\right| \leq \sum_{k=1}^{\infty} 2^{-k}\left|\xi_{k}-\alpha_{k}\right|<\|f-u\| \sum_{k=1}^{\infty} 2^{-k}=\|f-u\|
$$

the last inequality being strict since $\xi_{k}, \alpha_{k} \rightarrow 0$ implies $\left|\xi_{k}-\alpha_{k}\right|<\|f-u\|$ for $k>k_{0}$.
3) Thus, for any $f \in c_{0} \backslash \mathcal{U}_{0}$, one has $d\left(f, \mathcal{U}_{0}\right)=|\lambda(f)|$, but the element of best approximation does not exist.

4.3 Uniqueness

Definition 4.4 A normed linear space \mathbb{X} is called strictly convex if the unit sphere contains no line segments on its surface, i.e.,

$$
\|x\|=\|y\|=1, \quad x \neq y \quad \Rightarrow \quad\left\|\frac{1}{2}(x+y)\right\|<\frac{1}{2}\|x\|+\frac{1}{2}\|y\|=1 \quad \forall x, y
$$

Lemma 4.5 Let \mathcal{U} be a subspace of a strictly convex normed linear space \mathbb{X}. Then, for each element $f \in \mathbb{X}$, there is at most one element of best approximation.
Proof. Suppose that u_{1} and u_{2} are two different best approximations from \mathcal{U} to f and $\left\|f-u_{i}\right\|=\lambda$. Then

$$
\left\|f-\frac{1}{2}\left(u_{1}+u_{2}\right)\right\|=\left\|\frac{1}{2}\left(f-u_{1}\right)+\frac{1}{2}\left(f-u_{2}\right)\right\|<\frac{1}{2}\left\|f-u_{1}\right\|+\frac{1}{2}\left\|f-u_{2}\right\|=\lambda
$$

a contradiction to the definition of best approximation.
Theorem 4.6 Let \mathcal{U}_{n} be a finite-dimensional subspace of a strictly convex normed linear space \mathbb{X}. Then, for each $f \in \mathbb{X}$, there exists a unique element of best approximation.
Example 4.7 Any Hilbert space with a scalar product (f, g) and the norm $\|f\|:=(f, f)^{1 / 2}$ is strictly convex. This follows from the identity

$$
\left\|\frac{1}{2}(f+g)\right\|^{2}+\left\|\frac{1}{2}(f-g)\right\|^{2}=\frac{1}{2}\|f\|^{2}+\frac{1}{2}\|g\|^{2} .
$$

Example 4.8 The spaces $L_{p}[a, b]$ with the norm $\|f\|_{p}:=\left\{\int_{a}^{b}|f(t)|^{p} d t\right\}^{1 / p}$ are strictly convex if $1<p<\infty$.
Example 4.9 The spaces $L_{1}[a, b]$ and $L_{\infty}[a, b]:=C[a, b]$ are not strictly convex and examples of some subspaces which provide several b.a.'s to some functions can be easily given.
a) Let $\mathbb{X}=L_{1}[-1,1], f(x)=\operatorname{sgn} x, \mathcal{U}_{1}=\{\alpha\}$. Then any $\alpha \in[-1,1]$ is a b.a. to f.
b) Let $\mathbb{X}=C[0,1], g \equiv 1, \mathcal{U}_{1}=\{\alpha x\}$. Then any αx with $\alpha \in[0,2]$ is a b.a. to g.

However, the nonuniqueness is not guranteed. If in (a) one takes $f(x)=\operatorname{sgn}\left(x-x_{0}\right)$ with any $x_{0} \neq 0$, then a b.a. from \mathcal{U}_{1} is unique.

4.4 Example of nonuniqueness in L_{1}

Lemma 4.10 1) Let $f \in L_{1}(\mathbb{T})$. Then, for $0<k<n$, we have $\int_{-\pi}^{\pi} f(n x)_{\sin k x}^{\cos k x}=0$
2) If also $f \perp 1$, then $f(n \cdot) \perp \mathcal{T}_{n-1}$.

Proof. Since $\begin{gathered}\cos k x \\ \sin k x\end{gathered}$ are linear combination of $e^{i m x}$ with $0<|m|<n$, it will be enough to prove that $I:=\int_{-\pi}^{\pi} f(n x) e^{i m x} d x=0$. Setting $x=t+2 \pi / n$, and using the equality $\int_{\mathbb{T}} g=\int_{\mathbb{T}+\alpha} g$, we obtain
$I=\int_{-\pi}^{\pi} f(n x) e^{i m x} d x=\int_{-\pi-2 \pi / n}^{\pi-2 \pi / n} f(n t+2 \pi) e^{i m t+2 i m \pi / n} d t=e^{2 i m \pi / n} \int_{-\pi}^{\pi} f(n t) e^{i m t} d t=e^{2 i m \pi / n} I$.
Since $0<|m|<n$, we have $e^{2 i \pi m / n} \neq 1$, hence $I=0$.
Lemma 4.11 For $F(x)=\operatorname{sgn} \sin n x$, any $s \in \mathcal{T}_{n-1}$ with $\|s\|_{\infty}<1$ is a polynomial of b.a. to F in $L_{1}(\mathbb{T})$.
Proof. By previous lemma, $F \perp \mathcal{T}_{n-1}$. Then, for any $s \in \mathcal{T}_{n-1}$,

$$
\int_{\mathbb{T}}|F(x)-s(x)| d x \geq\left|\int_{\mathbb{T}}[F(x)-s(x)] \operatorname{sgn} \sin n x d x\right|=\left|\int_{\mathbb{T}} F(x) \operatorname{sgn} \sin n x d x\right|=2 \pi
$$

If $|s(x)|<1=|F(x)|$, then $\operatorname{sgn}[F(x)-s(x)]=\operatorname{sgn} F(x)=\operatorname{sgn} \sin n x$, and the first inequality becomes equality.
This example has a remarkable generalization.
Theorem 4.12 (Hobby-Rice) For any n-dimensional subspace \mathcal{U}_{n} of $L_{1}[a, b]$ there exists a sign function h with n breakpoints such that $h \perp \mathcal{U}_{n}$.
Theorem 4.13 (Krein $\left.{ }^{1}[1938]\right)$ No finite-dimensional subspace of $L_{1}[a, b]$ is a unicity space, i.e., for any \mathcal{U}_{n} in $L_{1}[a, b]$ there exists a function $f \in L_{1}[a, b]$ that has several b.a.

[^0]
4.5 Exercises

4.1. Prove that the equality $\|x\|=\|y\|=\left\|\frac{1}{2} x+\frac{1}{2} y\right\|=1$ implies that $\|\alpha x+(1-\alpha) y\|=1$ for any $\alpha \in[0,1]$, i.e., that two conditions in Definition 4.4 are really equivalent.
4.2. Does the unicity Theorem 4.6 have a converse? That is, can we infer strict convexity from a knowledge that for each $f \in \mathbb{X}$ and for each finite-dimensional $\mathcal{U} \subset \mathbb{X}$ there exists a unique element of best approximation?
Hint. Let $\mathbb{X}=\mathbb{R}^{2}$ with a norm which is not strictly convex, i.e., the set $\|x\|=1$ contains a line segment. Find f and one-dimensional subspace \mathcal{U}_{1} with several b.a. to f.
4.3. Fill in the details of the following proof of Theorem 4.2. It is based on the Weierstrass theorem: A continuous function on a closed bounded set in \mathbb{R}^{n} attains its minimum.
a) Let $f \in \mathbb{X}$, an let $\mathcal{U}_{n}=\operatorname{span}\left(g_{k}\right)_{k=1}^{n}$ where g_{k} are linearly indepdendent.
b) For $x=\left(x_{1}, \ldots, x_{n}\right)$, the function $G(x):=\left\|\sum_{k=1}^{n} x_{k} g_{k}\right\|$ is a continuous function of n real variables x_{k}, hence, on the unit ball $\sum x_{k}^{2}=1$, it takes some minimal value $\rho>0$.
c) The function $F(x):=\left\|f-\sum_{k=1}^{n} x_{k} g_{k}\right\|$ is continuous as well, and it follows from (b) that $F(x) \rightarrow \infty$ as $x \rightarrow \infty$.
d) Thus, looking for the infimum of $F(x)$ over $x \in \mathbb{R}^{n}$, we may restrict ourselves to some ball $B_{r}:=\left\{x: \sum x_{k}^{2} \leq r\right\}$, this is a bounded closed set in \mathbb{R}^{n}, hence, on $B_{r}, F(x)$ attains its minimal value.
4.4. The essence of the example given in Lemma 4.3 is that the linear functional

$$
\lambda: c_{0} \rightarrow \mathbb{R}, \quad \lambda(f):=\sum_{k=1}^{\infty} 2^{-k} \xi_{k}, \quad f=\left(\xi_{1}, \xi_{2}, \ldots\right) \in c_{0}
$$

does not take its norm

$$
\|\lambda\|:=\sup \{|\lambda(f)|:\|f\|=1\},
$$

i.e., there is no function $f \in c_{0}$ such that $|\lambda(f)|=\|\lambda\|\|f\|$.
a) Prove that, for any \mathbb{X} and any λ in \mathbb{X}^{*} (the space of all linear bounded functionals on \mathbb{X}), we have the equality $|\lambda(f)|=\|\lambda\| \operatorname{dist}(f, \operatorname{ker} \lambda)$ for any $f \in \mathbb{X}$.
b) Using (a), even if you have not proved it, prove that if $\lambda: \mathbb{X} \rightarrow \mathbb{R}$ does not take its norm, then the subspace $\mathcal{U}_{0}:=\operatorname{ker} \lambda$ is a non-existence set.
c) For ℓ_{1}, the Banach space of infinite sequences f such that

$$
f=\left(\xi_{1}, \xi_{2}, \ldots\right), \quad \sum_{k=1}^{\infty}\left|\xi_{k}\right|<\infty, \quad\|f\|=\sum_{k}\left|\xi_{k}\right|
$$

construct a functional $\lambda(f)=\sum_{k=1}^{\infty} \lambda_{k} \xi_{k}$ which does not take its norm, thus find a subspace of ℓ_{1} which is a non-existence set.
4.5. Derive Krein's Theorem 4.13 from Hobby-Rice Theorem 4.12.

Hint. For any $f \in \mathcal{U}_{n}$ consider the function $F=|f| \cdot h$, where h is a sign function from Hobby-Rice theorem.

[^0]: ${ }^{1}$ Mark Krein (1907-1989), Russian mathematician, one of the recipients of prestigious Wolf Prize in mathematics "for his fundamental contributions to functional analysis and its applications".

