Part III - Lent Term 2005 Approximation Theory – Lecture 4

4 Existence and uniqueness of best approximation

4.1 Existence

Lemma 4.1 Let U be a compact set in a metric space X. Then, for every f in X, there exists an element of best approximation.

Proof. Let $d_* := \inf \{ d(f, u) : u \in U \}$, and let (u_i) be a minimizing sequence, i.e., $d(f, u_i) \to d_*$. By the compactness of U, this sequence has at least one limit point $u_* \in U$, and we may assume that $d(u_i, u_*) \to 0$. By the triangle inequality,

$$d(f, u_*) \le d(f, u_i) + d(u_i, u_*) \to d_*.$$

Theorem 4.2 Let U be a finite-dimensional subspace of a normed linear space X. Then, for every f in X, there exists an element of best approximation.

Proof. Let u_0 be any element of \mathcal{U} , e.g., $u_0 = 0$. The best approximant we seek lies in the set

$$\mathcal{U}_0 := \{ u : u \in \mathcal{U}, \| f - u \| \le \| f - u_0 \| \}.$$

This set is compact because it is a closed and bounded subset of a finite–dimensional space. Therefore, by the previous theorem, there is an element u_* of best approximation from \mathcal{U}_0 to f.

4.2 Example of nonexistence

The finite-dimensionality hypothesis cannot be dropped as the following example shows.

Let c_0 be the Banach space of infinite sequences f such that

$$f = (\xi_1, \xi_2, \ldots), \quad \xi_k \to 0, \qquad ||f|| = \max |\xi_k|,$$

and let $\mathcal{U}_0 := \{ u \in c_0 : \sum_{k=1}^{\infty} 2^{-k} \alpha_k = 0 \}.$

Lemma 4.3 For any $f \in c_0 \setminus U_0$, the element of best approximation from U_0 to f does not exist.

Proof. Let $f \in c_0 \setminus U_0$ and let $\lambda := \sum_{k=1}^{\infty} 2^{-k} \xi_k \neq 0$.

1) On the one hand, the following elements belong to U_0 :

$$u_1 = f - \frac{2}{1}\lambda(1, 0, 0, \ldots), \quad u_2 = f - \frac{4}{3}\lambda(1, 1, 0, 0, \ldots), \quad u_3 = f - \frac{8}{7}\lambda(1, 1, 1, 0, 0, \ldots), \quad \text{etc.,}$$

and $||f - u_n|| = (1 - \frac{1}{2^n})^{-1} |\lambda| \searrow |\lambda|$. Hence, $d(f, \mathcal{U}_0) \le |\lambda|$.

2) On the other hand, for any $u \in U_0$, we have $||f - u|| > |\lambda|$ because

$$|\lambda| = |\sum_{k=1}^{\infty} 2^{-k} \xi_k| = |\sum_{k=1}^{\infty} 2^{-k} (\xi_k - \alpha_k)| \le \sum_{k=1}^{\infty} 2^{-k} |\xi_k - \alpha_k| < ||f - u|| \sum_{k=1}^{\infty} 2^{-k} = ||f - u||,$$

the last inequality being strict since $\xi_k, \alpha_k \to 0$ implies $|\xi_k - \alpha_k| < ||f - u||$ for $k > k_0$.

3) Thus, for any $f \in c_0 \setminus U_0$, one has $d(f, U_0) = |\lambda(f)|$, but the element of best approximation does not exist.

4.3 Uniqueness

Definition 4.4 A normed linear space X is called *strictly convex* if the unit sphere contains no line segments on its surface, i.e.,

$$||x|| = ||y|| = 1, \quad x \neq y \quad \Rightarrow \quad ||\frac{1}{2}(x+y)|| < \frac{1}{2}||x|| + \frac{1}{2}||y|| = 1 \quad \forall x, y.$$

Lemma 4.5 Let U be a subspace of a strictly convex normed linear space X. Then, for each element $f \in X$, there is at most one element of best approximation.

Proof. Suppose that u_1 and u_2 are two different best approximations from \mathcal{U} to f and $||f - u_i|| = \lambda$. Then

$$\|f - \frac{1}{2}(u_1 + u_2)\| = \|\frac{1}{2}(f - u_1) + \frac{1}{2}(f - u_2)\| < \frac{1}{2}\|f - u_1\| + \frac{1}{2}\|f - u_2\| = \lambda,$$

a contradiction to the definition of best approximation.

Theorem 4.6 Let U_n be a finite-dimensional subspace of a strictly convex normed linear space X. Then, for each $f \in X$, there exists a unique element of best approximation.

Example 4.7 Any Hilbert space with a scalar product (f, g) and the norm $||f|| := (f, f)^{1/2}$ is strictly convex. This follows from the identity

$$\|\frac{1}{2}(f+g)\|^2 + \|\frac{1}{2}(f-g)\|^2 = \frac{1}{2}\|f\|^2 + \frac{1}{2}\|g\|^2.$$

Example 4.8 The spaces $L_p[a, b]$ with the norm $||f||_p := {\int_a^b |f(t)|^p dt}^{1/p}$ are strictly convex if 1 .

Example 4.9 The spaces $L_1[a, b]$ and $L_{\infty}[a, b] := C[a, b]$ are *not* strictly convex and examples of *some* subspaces which provide several b.a.'s to *some* functions can be easily given.

a) Let $\mathbb{X} = L_1[-1, 1]$, $f(x) = \operatorname{sgn} x$, $\mathcal{U}_1 = \{\alpha\}$. Then any $\alpha \in [-1, 1]$ is a b.a. to f.

b) Let $\mathbb{X} = C[0,1]$, $g \equiv 1$, $\mathcal{U}_1 = \{\alpha x\}$. Then any αx with $\alpha \in [0,2]$ is a b.a. to g.

However, the nonuniqueness is not guranteed. If in (a) one takes $f(x) = \text{sgn}(x - x_0)$ with any $x_0 \neq 0$, then a b.a. from \mathcal{U}_1 is unique.

4.4 Example of nonuniqueness in *L*₁

Lemma 4.10 1) Let $f \in L_1(\mathbb{T})$. Then, for 0 < k < n, we have $\int_{-\pi}^{\pi} f(nx) \cos kx \sin kx = 0$

2) If also
$$f \perp 1$$
, then $f(n \cdot) \perp T_{n-1}$

Proof. Since $\cos kx \\ \sin kx$ are linear combination of e^{imx} with 0 < |m| < n, it will be enough to prove that $I := \int_{-\pi}^{\pi} f(nx)e^{imx} dx = 0$. Setting $x = t + 2\pi/n$, and using the equality $\int_{\mathbb{T}} g = \int_{\mathbb{T}+\alpha} g$, we obtain

$$I = \int_{-\pi}^{\pi} f(nx)e^{imx}dx = \int_{-\pi-2\pi/n}^{\pi-2\pi/n} f(nt+2\pi)e^{imt+2im\pi/n}dt = e^{2im\pi/n} \int_{-\pi}^{\pi} f(nt)e^{imt}dt = e^{2im\pi/n}I.$$

Since 0 < |m| < n, we have $e^{2i\pi m/n} \neq 1$, hence I = 0.

Lemma 4.11 For $F(x) = \operatorname{sgn} \sin nx$, any $s \in \mathcal{T}_{n-1}$ with $||s||_{\infty} < 1$ is a polynomial of b.a. to F in $L_1(\mathbb{T})$. **Proof.** By previous lemma, $F \perp \mathcal{T}_{n-1}$. Then, for any $s \in \mathcal{T}_{n-1}$,

$$\int_{\mathbb{T}} |F(x) - s(x)| \, dx \ge \Big| \int_{\mathbb{T}} [F(x) - s(x)] \operatorname{sgn} \sin nx \, dx \Big| = \Big| \int_{\mathbb{T}} F(x) \operatorname{sgn} \sin nx \, dx \Big| = 2\pi e^{-\frac{1}{2}} e^{-\frac{1}{2}}$$

If |s(x)| < 1 = |F(x)|, then sgn [F(x) - s(x)] = sgn F(x) = sgn sin nx, and the first inequality becomes equality.

This example has a remarkable generalization.

Theorem 4.12 (Hobby–Rice) For any *n*-dimensional subspace U_n of $L_1[a, b]$ there exists a sign function *h* with *n* breakpoints such that $h \perp U_n$.

Theorem 4.13 (Krein¹[1938]) No finite-dimensional subspace of $L_1[a, b]$ is a unicity space, i.e., for any U_n in $L_1[a, b]$ there exists a function $f \in L_1[a, b]$ that has several b.a.

¹Mark Krein (1907-1989), Russian mathematician, one of the recipients of prestigious Wolf Prize in mathematics "for his fundamental contributions to functional analysis and its applications".

4.5 Exercises

- **4.1.** Prove that the equality $||x|| = ||y|| = ||\frac{1}{2}x + \frac{1}{2}y|| = 1$ implies that $||\alpha x + (1 \alpha)y|| = 1$ for any $\alpha \in [0, 1]$, i.e., that two conditions in Definition 4.4 are really equivalent.
- **4.2.** Does the unicity Theorem 4.6 have a converse? That is, can we infer strict convexity from a knowledge that for each $f \in X$ and for each finite-dimensional $U \subset X$ there exists a *unique* element of best approximation?

Hint. Let $\mathbb{X} = \mathbb{R}^2$ with a norm which is not strictly convex, i.e., the set ||x|| = 1 contains a line segment. Find *f* and one-dimensional subspace \mathcal{U}_1 with several b.a. to *f*.

- **4.3.** Fill in the details of the following proof of Theorem 4.2. It is based on the Weierstrass theorem: *A continuous function on a closed bounded set in* \mathbb{R}^n *attains its minimum.*
 - a) Let $f \in \mathbb{X}$, an let $\mathcal{U}_n = \operatorname{span} (g_k)_{k=1}^n$ where g_k are linearly independent.
 - b) For $x = (x_1, ..., x_n)$, the function $G(x) := \|\sum_{k=1}^n x_k g_k\|$ is a continuous function of n real variables x_k , hence, on the unit ball $\sum x_k^2 = 1$, it takes some minimal value $\rho > 0$.
 - c) The function $F(x) := \|f \sum_{k=1}^{n} x_k g_k\|$ is continuous as well, and it follows from (b) that $F(x) \to \infty$ as $x \to \infty$.
 - d) Thus, looking for the infimum of F(x) over $x \in \mathbb{R}^n$, we may restrict ourselves to some ball $B_r := \{x : \sum x_k^2 \le r\}$, this is a bounded closed set in \mathbb{R}^n , hence, on B_r , F(x) attains its minimal value.
- **4.4.** The essence of the example given in Lemma 4.3 is that the linear functional

$$\lambda: c_0 \to \mathbb{R}, \quad \lambda(f):=\sum_{k=1}^{\infty} 2^{-k} \xi_k, \quad f=(\xi_1, \xi_2, \ldots) \in c_0$$

does not take its norm

$$\|\lambda\| := \sup\{|\lambda(f)| : \|f\| = 1\},\$$

i.e., there is no function $f \in c_0$ such that $|\lambda(f)| = ||\lambda|| ||f||$.

- a) Prove that, for any X and any λ in X^* (the space of all linear bounded functionals on X), we have the equality $|\lambda(f)| = ||\lambda|| \operatorname{dist}(f, \ker \lambda)$ for any $f \in X$.
- b) Using (a), even if you have not proved it, prove that if $\lambda : \mathbb{X} \to \mathbb{R}$ does not take its norm, then the subspace $\mathcal{U}_0 := \ker \lambda$ is a non-existence set.
- c) For ℓ_1 , the Banach space of infinite sequences *f* such that

$$f = (\xi_1, \xi_2, \ldots), \quad \sum_{k=1}^{\infty} |\xi_k| < \infty, \quad ||f|| = \sum_k |\xi_k|,$$

construct a functional $\lambda(f) = \sum_{k=1}^{\infty} \lambda_k \xi_k$ which does not take its norm, thus find a subspace of ℓ_1 which is a non-existence set.

4.5. Derive Krein's Theorem 4.13 from Hobby–Rice Theorem 4.12.

Hint. For any $f \in U_n$ consider the function $F = |f| \cdot h$, where *h* is a sign function from Hobby-Rice theorem.