
Part III - Lent Term 2005

Approximation Theory – Lecture 4

4 Existence and uniqueness of best approximation

4.1 Existence

Lemma 4.1 Let U be a compact set in a metric space X. Then, for every f in X, there exists an element of
best approximation.

Proof. Let d∗ := inf {d(f, u) : u ∈ U}, and let (ui) be a minimizing sequence, i.e., d(f, ui) → d∗. By
the compactness of U , this sequence has at least one limit point u∗ ∈ U , and we may assume that
d(ui, u∗) → 0. By the triangle inequality,

d(f, u∗) ≤ d(f, ui) + d(ui, u∗) → d∗. ¤

Theorem 4.2 Let U be a finite–dimensional subspace of a normed linear space X. Then, for every f in X,
there exists an element of best approximation.

Proof. Let u0 be any element of U , e.g., u0 = 0. The best approximant we seek lies in the set

U0 := {u : u ∈ U , ‖f − u‖ ≤ ‖f − u0‖}.

This set is compact because it is a closed and bounded subset of a finite–dimensional space. There-
fore, by the previous theorem, there is an element u∗ of best approximation from U0 to f . ¤

4.2 Example of nonexistence

The finite-dimensionality hypothesis cannot be dropped as the following example shows.
Let c0 be the Banach space of infinite sequences f such that

f = (ξ1, ξ2, . . .), ξk → 0, ‖f‖ = max |ξk| ,

and let U0 := {u ∈ c0 :
∑

∞

k=1
2−kαk = 0}.

Lemma 4.3 For any f ∈ c0 \ U0, the element of best approximation from U0 to f does not exist.

Proof. Let f ∈ c0 \ U0 and let λ :=
∑

∞

k=1
2−kξk 6= 0.

1) On the one hand, the following elements belong to U0:

u1 = f− 2

1
λ (1, 0, 0, . . .), u2 = f− 4

3
λ (1, 1, 0, 0, . . .), u3 = f− 8

7
λ (1, 1, 1, 0, 0, . . .), etc.,

and ‖f − un‖ = (1 − 1

2n
)−1|λ| ↘ |λ|. Hence, d(f,U0) ≤ |λ|.

2) On the other hand, for any u ∈ U0, we have ‖f − u‖ > |λ| because

|λ| = |

∞
∑

k=1

2−kξk| = |

∞
∑

k=1

2−k(ξk − αk)| ≤

∞
∑

k=1

2−k|ξk − αk| < ‖f − u‖

∞
∑

k=1

2−k = ‖f − u‖,

the last inequality being strict since ξk, αk → 0 implies |ξk − αk| < ‖f − u‖ for k > k0.
3) Thus, for any f ∈ c0 \ U0, one has d(f,U0) = |λ(f)|, but the element of best approximation

does not exist. ¤
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4.3 Uniqueness

Definition 4.4 A normed linear space X is called strictly convex if the unit sphere contains no line
segments on its surface, i.e.,

‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖ 1

2
(x + y)‖ < 1

2
‖x‖ + 1

2
‖y‖ = 1 ∀x, y.

Lemma 4.5 Let U be a subspace of a strictly convex normed linear space X. Then, for each element f ∈ X,
there is at most one element of best approximation.

Proof. Suppose that u1 and u2 are two different best approximations from U to f and ‖f−ui‖ = λ.
Then

‖f − 1

2
(u1 + u2)‖ = ‖ 1

2
(f − u1) + 1

2
(f − u2)‖ < 1

2
‖f − u1‖ + 1

2
‖f − u2‖ = λ,

a contradiction to the definition of best approximation. ¤

Theorem 4.6 Let Un be a finite-dimensional subspace of a strictly convex normed linear space X. Then,
for each f ∈ X, there exists a unique element of best approximation.

Example 4.7 Any Hilbert space with a scalar product (f, g) and the norm ‖f‖ := (f, f)1/2 is strictly convex.
This follows from the identity

‖ 1

2
(f + g)‖2 + ‖ 1

2
(f − g)‖2 = 1

2
‖f‖2 + 1

2
‖g‖2.

Example 4.8 The spaces Lp[a, b] with the norm ‖f‖p := {
R b

a
|f(t)|pdt}1/p are strictly convex if 1 < p < ∞.

Example 4.9 The spaces L1[a, b] and L∞[a, b] := C[a, b] are not strictly convex and examples of some sub-
spaces which provide several b.a.’s to some functions can be easily given.

a) Let X = L1[−1, 1], f(x) = sgn x, U1 = {α}. Then any α ∈ [−1, 1] is a b.a. to f .
b) Let X = C[0, 1], g ≡ 1, U1 = {αx}. Then any αx with α ∈ [0, 2] is a b.a. to g.

However, the nonuniqueness is not guranteed. If in (a) one takes f(x) = sgn (x − x0) with any x0 6= 0, then
a b.a. from U1 is unique.

4.4 Example of nonuniqueness in L1

Lemma 4.10 1) Let f ∈ L1(T). Then, for 0 < k < n, we have
∫ π

−π
f(nx) cos kx

sin kx = 0

2) If also f ⊥ 1, then f(n·) ⊥ Tn−1.

Proof. Since cos kx
sin kx are linear combination of eimx with 0 < |m| < n, it will be enough to prove that

I :=
∫ π

−π
f(nx)eimxdx = 0. Setting x = t + 2π/n, and using the equality

∫

T
g =

∫

T+α
g, we obtain

I =

∫ π

−π

f(nx)eimxdx =

∫ π−2π/n

−π−2π/n

f(nt+2π)eimt+2imπ/ndt = e2imπ/n

∫ π

−π

f(nt)eimtdt = e2imπ/nI.

Since 0 < |m| < n, we have e2iπm/n 6= 1, hence I = 0. ¤

Lemma 4.11 For F (x) = sgn sinnx, any s ∈ Tn−1 with ‖s‖∞ < 1 is a polynomial of b.a. to F in L1(T).

Proof. By previous lemma, F ⊥ Tn−1. Then, for any s ∈ Tn−1,
∫

T

|F (x) − s(x)| dx ≥
∣

∣

∣

∫

T

[F (x) − s(x)] sgn sin nx dx
∣

∣

∣
=

∣

∣

∣

∫

T

F (x) sgn sin nx dx
∣

∣

∣
= 2π.

If |s(x)|<1= |F (x)|, then sgn [F (x)−s(x)]=sgn F (x)=sgn sinnx, and the first inequality becomes
equality. ¤

This example has a remarkable generalization.

Theorem 4.12 (Hobby–Rice) For any n-dimensional subspace Un of L1[a, b] there exists a sign function h with n

breakpoints such that h ⊥ Un.

Theorem 4.13 (Krein1[1938]) No finite-dimensional subspace of L1[a, b] is a unicity space, i.e., for any Un in
L1[a, b] there exists a function f ∈ L1[a, b] that has several b.a.

1Mark Krein (1907-1989), Russian mathematician, one of the recipients of prestigious Wolf Prize in mathematics ”for
his fundamental contributions to functional analysis and its applications”.
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4.5 Exercises

4.1. Prove that the equality ‖x‖ = ‖y‖ = ‖ 1

2
x + 1

2
y‖ = 1 implies that ‖αx + (1−α)y‖ = 1 for any

α ∈ [0, 1], i.e., that two conditions in Definition 4.4 are really equivalent.

4.2. Does the unicity Theorem 4.6 have a converse? That is, can we infer strict convexity from a
knowledge that for each f ∈ X and for each finite-dimensional U ⊂ X there exists a unique
element of best approximation?

Hint. Let X = R
2 with a norm which is not strictly convex, i.e., the set ‖x‖ = 1 contains a

line segment. Find f and one-dimensional subspace U1 with several b.a. to f .

4.3. Fill in the details of the following proof of Theorem 4.2. It is based on the Weierstrass theo-
rem: A continuous function on a closed bounded set in R

n attains its minimum.

a) Let f ∈ X, an let Un = span (gk)n
k=1

where gk are linearly indepdendent.

b) For x = (x1, . . . , xn), the function G(x) := ‖
∑n

k=1
xkgk‖ is a continuous function of n

real variables xk, hence, on the unit ball
∑

x2
k = 1, it takes some minimal value ρ > 0.

c) The function F (x) := ‖f −
∑n

k=1
xkgk‖ is continuous as well, and it follows from (b)

that F (x) → ∞ as x → ∞.

d) Thus, looking for the infimum of F (x) over x ∈ R
n, we may restrict ourselves to some

ball Br := {x :
∑

x2
k ≤ r}, this is a bounded closed set in R

n, hence, on Br, F (x) attains
its minimal value.

4.4. The essence of the example given in Lemma 4.3 is that the linear functional

λ : c0 → R, λ(f) :=
∑

∞

k=1
2−kξk, f = (ξ1, ξ2, . . .) ∈ c0

does not take its norm
‖λ‖ := sup {|λ(f)| : ‖f‖ = 1},

i.e., there is no function f ∈ c0 such that |λ(f)| = ‖λ‖ ‖f‖.

a) Prove that, for any X and any λ in X
∗ (the space of all linear bounded functionals on

X), we have the equality |λ(f)| = ‖λ‖dist(f, ker λ) for any f ∈ X.

b) Using (a), even if you have not proved it, prove that if λ : X → R does not take its
norm, then the subspace U0 := ker λ is a non-existence set.

c) For `1, the Banach space of infinite sequences f such that

f = (ξ1, ξ2, . . .),
∑

∞

k=1
|ξk| < ∞, ‖f‖ =

∑

k |ξk|,

construct a functional λ(f) =
∑

∞

k=1
λkξk which does not take its norm, thus find a

subspace of `1 which is a non-existence set.

4.5. Derive Krein’s Theorem 4.13 from Hobby–Rice Theorem 4.12.

Hint. For any f ∈ Un consider the function F = |f | ·h, where h is a sign function from
Hobby-Rice theorem.
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