Part III - Lent Term 2005
 Approximation Theory - Lecture 5

5 Best approximation in $C[a, b]$

5.1 Characterization

Theorem 5.1 (Kolmogorov ${ }^{1}$ [1948]) Let \mathcal{U} be a linear subspace of $C(K)$. An element $p^{*} \in \mathcal{U}$ is a best approximation to $f \in C(K)$ if and only if

$$
\begin{equation*}
\max _{x \in \mathcal{Z}}\left[f(x)-p^{*}(x)\right] q(x) \geq 0 \quad \forall q \in \mathcal{U} \tag{5.1}
\end{equation*}
$$

where \mathcal{Z} is the set of all points for which $\left|f(x)-p^{*}(x)\right|=\left\|f-p^{*}\right\|$.
Proof. 1) Suppose that condition (5.1) is fulfilled. Take any $p \in \mathcal{U}$ and set $q=p^{*}-p$. We see that there is a point $x_{0} \in \mathcal{Z}$ such that $\left[f\left(x_{0}\right)-p^{*}\left(x_{0}\right)\right] q\left(x_{0}\right) \geq 0$ Then

$$
\begin{aligned}
\left|f\left(x_{0}\right)-p\left(x_{0}\right)\right|^{2} & =\left|f\left(x_{0}\right)-p^{*}\left(x_{0}\right)+q\left(x_{0}\right)\right|^{2} \\
& =\left|f\left(x_{0}\right)-p^{*}\left(x_{0}\right)\right|^{2}+2\left[f\left(x_{0}\right)-p^{*}\left(x_{0}\right)\right] q\left(x_{0}\right)+\left|q\left(x_{0}\right)\right|^{2} \\
& \geq\left|f\left(x_{0}\right)-p^{*}\left(x_{0}\right)\right|^{2}=\left\|f-p^{*}\right\|^{2},
\end{aligned}
$$

i.e., any $p \in \mathcal{U}$ approximates f not better than p^{*}.
2) Conversely, if (5.1) is not true, then there exists a q such that

$$
\max _{x \in \mathcal{Z}}\left[f(x)-p^{*}(x)\right] q(x)=-2 \varepsilon
$$

for some $\varepsilon>0$. By continuity, there is an open subset G of K such that

$$
G \supset \mathcal{Z}, \quad\left[f(x)-p^{*}(x)\right] q(x)<-\varepsilon \quad \text { on } \quad G
$$

Let us see how f is approximated by $p:=p^{*}-\lambda q$. Set $m=\|q\|$ and $E(f)=\left\|f-p^{*}\right\|$.
a) For $x \in G$, we have

$$
\begin{aligned}
|f(x)-p(x)|^{2} & =\left|f(x)-p^{*}(x)+\lambda q(x)\right|^{2} \\
& =\left|f(x)-p^{*}(x)\right|^{2}+2 \lambda\left[f(x)-p^{*}(x)\right] q(x)+\lambda^{2}|q(x)|^{2} \\
& <E(f)^{2}-2 \lambda \varepsilon+\lambda^{2} m^{2}
\end{aligned}
$$

If we take $\lambda<\varepsilon / m^{2}$, then we obtain that $|f(x)-p(x)|^{2}<E(f)^{2}-\lambda \varepsilon$ on G.
b) On the complement $F=K \backslash G$, we have $\left|f(x)-p^{*}(x)\right|<E(f)$. But F is closed, hence there is also a $\delta>0$ such that $\left|f(x)-p^{*}(x)\right| \leq E(f)-2 \delta$ on F. Taking $\lambda<\delta / m$, we obtain

$$
|f(x)-p(x)| \leq\left|f(x)-p^{*}(x)\right|+\lambda|q(x)| \leq E(f)-2 \delta+\lambda m<E(f)-\delta \quad \text { on } \quad F .
$$

Example 5.2 For $f \in C[a, b]$ and $\mathcal{U}=\mathcal{P}_{0}$ (the constant functions), the best approximation is given by

$$
p^{*}(x)=\frac{1}{2}(\max f+\min f)
$$

[^0]
5.2 Chebyshev alternation theorem

Theorem 5.3 (Chebyshev $\left.{ }^{2}[1854]\right)$ A polynomial $p^{*} \in \mathcal{P}_{n}$ is the best approximant to $f \in C[a, b]$ if and only if there exist $(n+2)$ points $a \leq t_{1}<\cdots<t_{n+2} \leq b$ such that

$$
\begin{equation*}
f\left(t_{i}\right)-p^{*}\left(t_{i}\right)=(-1)^{i} \gamma, \quad|\gamma|=\left\|f-p^{*}\right\|, \tag{5.2}
\end{equation*}
$$

i.e., if and only if the difference $f(x)-p^{*}(x)$ takes consecutively its maximal value with alternating signs at least $(n+2)$ times.
Proof. 1) Assume that the difference $f-p^{*}$ takes the value $\left\|f-p^{*}\right\|$ with alternating signs in $m \leq n+1$ points. Set

$$
\mathcal{Z}=\left\{x \in[a, b]:\left|f(x)-p^{*}(x)\right|=\left\|f-p^{*}\right\|\right\}, \quad \mathcal{Z}_{ \pm}=\left\{x \in[a, b]: f(x)-p^{*}(x)= \pm\left\|f-p^{*}\right\|\right\} .
$$

Then there exists an ordered set of m disjoint intervals $\left(K_{i}\right)$ which contains both \mathcal{Z}_{-}and \mathcal{Z}_{+}and such that, on adjacent intervals, the points from \mathcal{Z} belongs to \mathcal{Z}_{-}and \mathcal{Z}_{+}alternatively. Select any points z_{k} between adjacent sets K_{i} :

$$
K_{1}<z_{1}<K_{2}<\cdots<z_{m-1}<K_{m}
$$

and take the polynomial

$$
q(x)=\prod_{i=1}^{m-1}\left(x-z_{i}\right), \quad m-1 \leq n .
$$

This q is in \mathcal{P}_{n}, it alternates in sign on adjacent $K_{i} \mathrm{~s}$, and for this q (or for $-q$) we obtain

$$
\left[f(x)-p^{*}(x)\right] q(x)<0 \quad \text { on } \quad \mathcal{Z},
$$

so that, by Theorem 5.1, p^{*} is not a best approximant.
2) If p^{*} is a polynomial that satisfies (5.2), then, for any $q \in \mathcal{P}_{n}$, the condition

$$
\left[f\left(t_{i}\right)-p^{*}\left(t_{i}\right)\right] q\left(t_{i}\right)<0, \quad i=1, \ldots, n+2,
$$

would force q to change its sign in $(n+2)$ points, hence to have $n+1$ zero, which is impossible. Thus

$$
\max _{x \in\left(t_{i}\right)}\left[f(x)-p^{*}(x)\right] q(x) \geq 0, \quad \forall q \in \mathcal{P}_{n},
$$

so that, by Kolmogorov Theorem, p^{*} is a best approximant.
Theorem 5.4 A polynomial $p^{*} \in \mathcal{T}_{n}$ is the best approximant to $f \in C(\mathbb{T})$ if and only if there exist $(2 n+2)$ points $-\pi<t_{1}<\cdots<t_{2 n+2} \leq \pi$ such that

$$
f\left(t_{i}\right)-p^{*}\left(t_{i}\right)=(-1)^{i} \gamma, \quad|\gamma|=\left\|f-p^{*}\right\| .
$$

Proof. The proof is essentially the same. 1) We notice that, due to periodicity, the difference $|f-p|$ can take its maximal value with alternating signs only even number of times, say 2 m . Therefore, if $2 m \leq 2 n$, there are $2 m$ points z_{k} such that

$$
K_{1}<z_{1}<K_{2}<\cdots<z_{2 m-1}<K_{2 m}<z_{2 m}<K_{1}+2 \pi
$$

The polynomial $q \in \mathcal{T}_{m}$ (that violates the Kolmogorov criteria) is then defined as

$$
q(x)=\prod_{i=1}^{m} \sin \frac{x-z_{2 i-1}}{2} \sin \frac{x-z_{2 i}}{2}=\prod_{i=1}^{m}\left(a_{i}+\cos \left(x-b_{i}\right) .\right.
$$

2) For sufficiency, we use the fact that any $q \in \mathcal{T}_{n}$ can have no more than $2 n$ zeros on the period.
Remark 5.5 For $\mathcal{U}=\mathcal{P}_{n}$ or \mathcal{T}_{n}, the number of points required in alternation theorem is equal to $\operatorname{dim}(\mathcal{U})+1$.
[^1]
5.3 Exercises

5.1. For the complex valued continuous functions, Kolmogorov criterion takes the form

$$
p^{*} \text { is a b.a. to } f \quad \Leftrightarrow \quad \max _{x \in \mathcal{Z}} \operatorname{Re}\left[f(x)-p^{*}(x)\right] \overline{q(x)} \geq 0 \quad \forall q \in \mathcal{U} \text {. }
$$

Check the "real" proof to find the changes.
5.2. Apply Kolmogorov criterion to prove the following statements:
(a) $K=[-1,1]$,
$f(x)=x^{3}$,
$\mathcal{U}=\operatorname{span}\left\{1, x^{2}\right\}$
$\Rightarrow \quad p^{*}(x)=\left(1-x^{2}\right) ;$
(b) $K=[-1,1]^{2}$,
$f(x, y)=x y$,
$\mathcal{U}=\operatorname{span}\{1, x, y\} \quad \Rightarrow \quad p^{*} \equiv 0 ;$
(c) $K=\{|x|+|y| \leq 1\}, \quad f(x, y)=x^{2}+y^{2}, \quad \mathcal{U}=\operatorname{span}\{1, x, y, x y\} \quad \Rightarrow \quad p^{*}(x, y)=\frac{1}{2}+2 x y$;
(d) $K=\{z \in \mathbb{C}:|z| \leq 1\}, \quad f(z)=z^{n}, \quad \mathcal{U}=\mathcal{P}_{n-1} \quad \Rightarrow \quad p^{*} \equiv 0$.

For the cases (a) and (c), find another b.a. to f.
5.3. For \mathcal{T}_{n-1}, the space of trig. polynomials of degree $n-1$, find the value and the polynomial of best approximation to $f(x)=a \cos n x+b \sin n x$.
5.4. Let

$$
f(x)=\sum_{k=0}^{\infty} a_{k} \cos 3^{k} x, \quad a_{k}>0, \quad \sum_{k=0}^{\infty} a_{k}<\infty .
$$

Prove that, for $3^{m} \leq n<3^{m+1}$, the polynomial

$$
t_{n}(x)=s_{3^{m}}(f, x)=\sum_{k=0}^{m} a_{k} \cos 3^{k} x
$$

(which is a partial Fourier series to f) is the b.a. to f from \mathcal{T}_{n} and find the value of $E_{n}(f)$.
5.5. Use the previous result to prove the lethargy theorem: For any sequence $\varepsilon_{n} \searrow 0$, there exists an $f \in C(\mathbb{T})$ such that $E_{n}(f) \geq \varepsilon_{n}$ all n. (Hint. Set $a_{k}:=\varepsilon_{k-1}-\varepsilon_{k}$.)
5.6. Prove de La Valle-Poussin theorem: If $p \in \mathcal{P}_{n}$ is a polynomial such that

$$
f\left(t_{i}\right)-p\left(t_{i}\right)=(-1)^{i} \varepsilon_{i}, \quad \operatorname{sgn} \varepsilon_{i}=\mathrm{const},
$$

at $n+2$ consecutive points, then $E_{n}(f) \geq \min _{i}\left|\varepsilon_{i}\right|$.
Use this theorem to establish the sufficiency half of the alternation theorem.
5.7. Let $f \in C[a, b]$, and let $p, q \in \mathcal{P}_{n+1}$ be alg. polinomials of degree $n+1$ determined by the condition

$$
p\left(t_{i}\right)=f\left(t_{i}\right), \quad q\left(t_{i}\right)=(-1)^{i}, \quad \text { where } \quad a \leq t_{1}<\cdots<t_{n+2} \leq b
$$

Prove that the polynomial $r:=p-\lambda q$, where λ is chosen so that r belongs to \mathcal{P}_{n}, is the best approximation to f on $\left(t_{i}\right)$ and find the error.

Remark. This is a practical method for constructing the b.a. on the set of $n+2$ points.

[^0]: ${ }^{1}$ Andrey Kolmogorov (or, Kolmogoroff), 1903-1987, Russian mathematician, made fundamental contributions to probability, topology, functional analysis, mechanics, etc., etc. In short: one of the greatest mathematician of the 20-th century.

[^1]: ${ }^{2}$ Pafnutij Chebyshev (or Tchebycheff, or Tschebyshev, or Chebyshov, or ...), 1821-1894, great Russian mathematician, got his international fame by proving the Bertrand postulate: there is always a prime between n and $2 n$, almost proved the prime number theorem showing that $\lim _{x \rightarrow \infty} \pi(x) \frac{\ln x}{x}=1$ if the limit exists.

