
Part III - Lent Term 2005

Approximation Theory – Lecture 8

8 Approximation in L1 and L2

8.1 Approximation of continuous functions in L1-norm

Lemma 8.1 Let f, h ∈ C[a, b]. If f has no more than a finite number of roots and if
∫

h sgn f > 0, then,
for some γ,

∫

|f − γh| <
∫

|f | .

Proof. For (xi)
m
1 being the roots of f , define the sets B = ∪(xi − ε, xi + ε) and A = [a, b] \ B, and

then select ε > 0 small enough to ensure that

∫

B
|h| <

∫

A
h sgn f. (8.1)

Since f 6= 0 on A, and the set A is closed, the number δ := minx∈A |f(x)| is positive, hence, if we
choose γ to satisfy 0 < γ‖h‖ < δ, it will follow that sgn (f −γh) = sgn f on A. With that we obtain

∫

A
|f − γh| =

∫

A
(f − γh) sgn f =

∫

A
|f | −

∫

A
γh sgnf, while

∫

B
|f − γh| ≤

∫

B
|f | +

∫

B
γ|h| ,

and summation of integrals on both sides of these relations gives

∫

|f − γh| ≤
∫

|f | −
∫

A γh sgnf +
∫

B γ|h|
(8.1)
<

∫

|f | . �

Theorem 8.2 Let U be a subspace and f an element of C[a, b], and let p∗ ∈ U coincides with f in no more
than a finite number of points. Then

p∗ is a b.a. to f in L1-norm ⇔ sgn (f − p∗) ⊥ U (8.2)

Proof. If the condition fails, then
∫

q sgn (f − p∗) > 0 for some q ∈ U , and by the previous lemma
there is a γ such that

∫

|f − p∗ − γq| <
∫

|f − p∗| .

If the condition is fulfilled, then (no matter in how many points f and p∗ coincide, and whether f
is continuous or not), for any p ∈ U ,

∫

|f − p| ≥

∫

(f − p) sgn (f − p∗) =

∫

(f − p∗) sgn (f − p∗) =

∫

|f − p∗| . �

Theorem 8.3 On the interval [−1, 1], among all polynomials of degree n with leading coefficient an = 1,
the polynomial 1

2n(n+1)T
′
n+1 deviates least from zero, i.e.,

inf
(ai)

‖xn + an−1x
n−1 + · · · + a0‖1 = 1

2n(n+1) ‖T
′
n+1‖1 = 1

2n−1 .

Proof. Let p∗ be the polynomial that interpolates f(x) = xn at the points (xk)n
1 , where xk =

cos πk
n+1 are zeros of T ′

n+1. Comparing the leading coefficients we see that f − p∗ = 1
2n(n+1)T

′
n+1,

therefore
sgn [f(x) − p∗(x)] = sgn cos(n + 1)θ, x = cos θ.

The latter function is orthogonal to Pn−1 on [−1, 1] (exercise), hence by Theorem 8.2 the polyno-
mial p∗ is a best appoximant to f(x) = xn. As to the value of best approximation, it follows from
the relations ‖T ′

n+1‖1 = Var [Tn+1] = 2(n + 1). �

Theorem 8.4 (Jackson [1921]) Let Un be a Chebyshev subspace of C[a, b]. Then each f ∈ C[a, b] pos-
sesses a unique polynomial of best approximation in L1-norm.
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Proof. 1) First of all, for a b.a. p∗ to f from Un, the difference f − p∗ has at least n + 1 zeros on
(a, b). Otherwise, by Lemma 6.2, there exists a polynomial q ∈ Un such that sgn q = sgn (f − p∗),
hence

∫

q sgn (f − p∗) > 0, a contradiction to Theorem 8.2.
2) Assume now that, for a function f , there are two polynomials of best approximation, p and

q. By the triangle inequality, the polynomial r := 1
2 (p + q) is a best approximation, too, whence

∫ (

|f − r| − 1
2 |f − p| − 1

2 |f − q|
)

= 0.

Since the integrand is continious and ≤ 0, it must vanish identically on [a, b], so, at the points
where f(x) = r(x), we have f(x) = p(x) = q(x). But as we showed above, the number of these
points is at least n + 1, hence, by the Haar condition, p and q are identical. �

Remark 8.5 The analogue of the Haar unicity theorem for approximation in L1-norm is not true,
i.e., there are non-Chebyshev subspaces of C[a, b] which provide uniqueness of best approxima-
tion to any f ∈ C[a, b].

8.2 Least squares approximation

Definition 8.6 (Inner product space) A linear space X is called an inner product space if, for every
f and g in X, there is a scalar (f, g), called the scalar product that has the followig properties:

1) (f, g)=(g, f), 2) (f, f) ≥ 0 with equality iff f =g, 3) (f, g) is linear in both f and g.

One can deduce the well-known Cauchy-Schwarz and triangle inequalities:

|(f, g)| ≤ (f, f)1/2(g, g)1/2, (f +g, f +g)1/2 ≤ (f, f)1/2 + (g, g)1/2.

Thus, with the choice ‖f‖ = (f, f)1/2, X becomes a normed linear space.

Theorem 8.7 Let X be an inner product space, Un be a subspace. Then u∗∈Un is a best approximation to
f ∈ X if and only if

(f − u∗, v) = 0 ∀v ∈ Un. (8.3)

Proof. If (8.3) holds, then, for any u ∈ Un, letting v := u∗ − u, we find that

‖f − u‖2 = ‖(f − u∗) + v‖2 = ‖f − u∗‖2 + ‖v‖2 > ‖f − u∗‖2,

i.e., u∗ is a b.a. Conversely, if (f − u∗, v) 6= 0 for some v ∈ Un, then with λ = − (f−u∗,v)
‖v‖2 we obtain

‖(f − u∗) + λv‖2 = ‖f − u∗‖2 + 2λ(f − u∗, v) + λ2‖v‖2 = ‖f − u∗‖2 − λ2‖v‖2 < ‖f − u∗‖2,

i.e., u∗ is not optimal. �

Corollary 8.8 If u∗∈Un is a best approximation to f ∈ X, then

‖f − u∗‖2 + ‖u∗‖2 = ‖f‖2, in particular ‖u∗‖ ≤ ‖f‖,

the latter inequality being strict for x ∈ X \ Un.

Method 8.9 If ui is a basis for Un and if we write u∗ =
∑

aiui, then running v in (8.3) through the
basis functions ui we obtain a linear system of equations for determining the coefficients a,

Ga = b, G = [(ui, uj)]
n
i,j=1, b = [(f, ui)]

n
i=1.

These equations are called the normal equations. The matrix G is called the Gram matrix. Since the
system is uniquely solvable, the Gram matrix G is invertible.

Theorem 8.10 On the interval [−1, 1], among all polynomials of degree n with leading coefficient an = 1,
the Legendre polynomial cnPn, where

Pn(x) =
1

2nn!

d

dxn
(x2 − 1)n ,

deviates least from zero, i.e.,

inf
(ai)

‖xn + an−1x
n−1 + · · · + a0‖1 = cn ‖Pn‖2 =

2n(n!)2

(2n)!

1
√

n + 1/2
.
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8.3 Exercises

8.1. Prove the orthogonality condition used in the proof of Theorem 8.3:

∫ 1

−1

p(x) sgn T ′
n+1(x) dx = 0 ∀ p ∈ Pn−1 .

Hint. Make a substitution x = cos θ and use Lemma 4.10.

8.2. Prove the following generalization of Theorem 8.3: if f (n) > 0 on [−1, 1], then p∗, the poly-
nomial of b.a. to f from Pn−1 in L1-norm, is the Lagrange polynomial that interpolates f at
n points (cos πk

n+1 )n
k=1.

8.3. Show that orthogonality condition (8.2) is not necessary, i.e., construct an f ∈ C[a, b] and a
subspace U such that, for the best (unique) approximation p∗, condition (8.2) is not fulfilled.

8.4. Prove that, for any basis (ui) of Un, the Gram matrix G = [(ui, uj)] is positive definite, i.e.,
(Gx, x)`2 > 0 for any nonzero vector x ∈ R

n.

Prove the converse: for any positive definite matrix G ∈ R
n×n, there exists a basis (ui) of Un

such that G = [(ui, uj)].

8.5. Prove that the value of the least squares approximation to f ∈ X from Un = span(ui) is
given by

E(f)2 =
detG(f, u1, ..., un)

det G(u1, ..., un)
,

where G-s the corresponding Gram-matrices.

Hint. We have E(f)2 = (f, f) − (f, u∗) and, if u∗ =
∑

aiui, this is equivalent to

n
∑

i=1

ai(ui, f) = (f, f) − E(f)2.

Join this equation to the normal equations and consider the resulting singular system.

8.6. Deduce from the previous exercise that

detG(u1, ..., un) ≤ (u1, u1) · · · (un, un) ,

and, more generally, that the determinant of any positive definite matrix is not greater that
the product of its diagonal elements. Hence, derive the Hadamard inequality: for any ma-
trix A = (aij)

| detA| ≤

n
∏

i=1

(

n
∑

j=1

|aij |
2
)1/2

.

8.7. Let G be the class of functions g in W k
2 [a, b] such that

g(r)(a) = g(r)(b) = 0, r = 0...k−1 .

Prove that f ∈ L2[a, b] is orthogonal to all polynomials of degree k−1 if and only if f = g(k)

for some g ∈ G. Hence, derive Theorem 8.10.
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