Part III - Lent Term 2005
 Approximation Theory - Lecture 8

8 Approximation in L_{1} and L_{2}

8.1 Approximation of continuous functions in L_{1}-norm

Lemma 8.1 Let $f, h \in C[a, b]$. If f has no more than a finite number of roots and if $\int h \operatorname{sgn} f>0$, then, for some γ,

$$
\int|f-\gamma h|<\int|f|
$$

Proof. For $\left(x_{i}\right)_{1}^{m}$ being the roots of f, define the sets $B=\cup\left(x_{i}-\varepsilon, x_{i}+\varepsilon\right)$ and $A=[a, b] \backslash B$, and then select $\varepsilon>0$ small enough to ensure that

$$
\begin{equation*}
\int_{B}|h|<\int_{A} h \operatorname{sgn} f \tag{8.1}
\end{equation*}
$$

Since $f \neq 0$ on A, and the set A is closed, the number $\delta:=\min _{x \in A}|f(x)|$ is positive, hence, if we choose γ to satisfy $0<\gamma\|h\|<\delta$, it will follow that $\operatorname{sgn}(f-\gamma h)=\operatorname{sgn} f$ on A. With that we obtain

$$
\int_{A}|f-\gamma h|=\int_{A}(f-\gamma h) \operatorname{sgn} f=\int_{A}|f|-\int_{A} \gamma h \operatorname{sgn} f, \quad \text { while } \quad \int_{B}|f-\gamma h| \leq \int_{B}|f|+\int_{B} \gamma|h|
$$ and summation of integrals on both sides of these relations gives

$$
\int|f-\gamma h| \leq \int|f|-\int_{A} \gamma h \operatorname{sgn} f+\int_{B} \gamma|h| \stackrel{(8.1)}{<} \int|f| .
$$

Theorem 8.2 Let U be a subspace and f an element of $C[a, b]$, and let $p^{*} \in U$ coincides with f in no more than a finite number of points. Then

$$
\begin{equation*}
p^{*} \text { is a b.a. to } f \text { in } L_{1} \text {-norm } \Leftrightarrow \operatorname{sgn}\left(f-p^{*}\right) \perp U \tag{8.2}
\end{equation*}
$$

Proof. If the condition fails, then $\int q \operatorname{sgn}\left(f-p^{*}\right)>0$ for some $q \in \mathcal{U}$, and by the previous lemma there is a γ such that

$$
\int\left|f-p^{*}-\gamma q\right|<\int\left|f-p^{*}\right|
$$

If the condition is fulfilled, then (no matter in how many points f and p^{*} coincide, and whether f is continuous or not), for any $p \in \mathcal{U}$,

$$
\int|f-p| \geq \int(f-p) \operatorname{sgn}\left(f-p^{*}\right)=\int\left(f-p^{*}\right) \operatorname{sgn}\left(f-p^{*}\right)=\int\left|f-p^{*}\right|
$$

Theorem 8.3 On the interval $[-1,1]$, among all polynomials of degree n with leading coefficient $a_{n}=1$, the polynomial $\frac{1}{2^{n}(n+1)} T_{n+1}^{\prime}$ deviates least from zero, i.e.,

$$
\inf _{\left(a_{i}\right)}\left\|x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right\|_{1}=\frac{1}{2^{n}(n+1)}\left\|T_{n+1}^{\prime}\right\|_{1}=\frac{1}{2^{n-1}}
$$

Proof. Let p^{*} be the polynomial that interpolates $f(x)=x^{n}$ at the points $\left(x_{k}\right)_{1}^{n}$, where $x_{k}=$ $\cos \frac{\pi k}{n+1}$ are zeros of T_{n+1}^{\prime}. Comparing the leading coefficients we see that $f-p^{*}=\frac{1}{2^{n}(n+1)} T_{n+1}^{\prime}$, therefore

$$
\operatorname{sgn}\left[f(x)-p^{*}(x)\right]=\operatorname{sgn} \cos (n+1) \theta, \quad x=\cos \theta
$$

The latter function is orthogonal to \mathcal{P}_{n-1} on $[-1,1]$ (exercise), hence by Theorem 8.2 the polynomial p^{*} is a best appoximant to $f(x)=x^{n}$. As to the value of best approximation, it follows from the relations $\left\|T_{n+1}^{\prime}\right\|_{1}=\operatorname{Var}\left[T_{n+1}\right]=2(n+1)$.

Theorem 8.4 (Jackson [1921]) Let \mathcal{U}_{n} be a Chebyshev subspace of $C[a, b]$. Then each $f \in C[a, b]$ possesses a unique polynomial of best approximation in L_{1}-norm.

Proof. 1) First of all, for a b.a. p^{*} to f from \mathcal{U}_{n}, the difference $f-p^{*}$ has at least $n+1$ zeros on (a, b). Otherwise, by Lemma 6.2, there exists a polynomial $q \in \mathcal{U}_{n}$ such that $\operatorname{sgn} q=\operatorname{sgn}\left(f-p^{*}\right)$, hence $\int q \operatorname{sgn}\left(f-p^{*}\right)>0$, a contradiction to Theorem 8.2.
2) Assume now that, for a function f, there are two polynomials of best approximation, p and q. By the triangle inequality, the polynomial $r:=\frac{1}{2}(p+q)$ is a best approximation, too, whence

$$
\int\left(|f-r|-\frac{1}{2}|f-p|-\frac{1}{2}|f-q|\right)=0
$$

Since the integrand is continious and ≤ 0, it must vanish identically on $[a, b]$, so, at the points where $f(x)=r(x)$, we have $f(x)=p(x)=q(x)$. But as we showed above, the number of these points is at least $n+1$, hence, by the Haar condition, p and q are identical.

Remark 8.5 The analogue of the Haar unicity theorem for approximation in L_{1}-norm is not true, i.e., there are non-Chebyshev subspaces of $C[a, b]$ which provide uniqueness of best approximation to any $f \in C[a, b]$.

8.2 Least squares approximation

Definition 8.6 (Inner product space) A linear space \mathbb{X} is called an inner product space if, for every f and g in \mathbb{X}, there is a scalar (f, g), called the scalar product that has the followig properties:

1) $(f, g)=(g, f), \quad 2)(f, f) \geq 0$ with equality iff $f=g, \quad 3)(f, g)$ is linear in both f and g.

One can deduce the well-known Cauchy-Schwarz and triangle inequalities:

$$
|(f, g)| \leq(f, f)^{1 / 2}(g, g)^{1 / 2}, \quad(f+g, f+g)^{1 / 2} \leq(f, f)^{1 / 2}+(g, g)^{1 / 2}
$$

Thus, with the choice $\|f\|=(f, f)^{1 / 2}, \mathbb{X}$ becomes a normed linear space.
Theorem 8.7 Let \mathbb{X} be an inner product space, \mathcal{U}_{n} be a subspace. Then $u^{*} \in \mathcal{U}_{n}$ is a best approximation to $f \in \mathbb{X}$ if and only if

$$
\begin{equation*}
\left(f-u^{*}, v\right)=0 \quad \forall v \in \mathcal{U}_{n} \tag{8.3}
\end{equation*}
$$

Proof. If (8.3) holds, then, for any $u \in \mathcal{U}_{n}$, letting $v:=u^{*}-u$, we find that

$$
\|f-u\|^{2}=\left\|\left(f-u^{*}\right)+v\right\|^{2}=\left\|f-u^{*}\right\|^{2}+\|v\|^{2}>\left\|f-u^{*}\right\|^{2}
$$

i.e., u^{*} is a b.a. Conversely, if $\left(f-u^{*}, v\right) \neq 0$ for some $v \in \mathcal{U}_{n}$, then with $\lambda=-\frac{\left(f-u^{*}, v\right)}{\|v\|^{2}}$ we obtain

$$
\left\|\left(f-u^{*}\right)+\lambda v\right\|^{2}=\left\|f-u^{*}\right\|^{2}+2 \lambda\left(f-u^{*}, v\right)+\lambda^{2}\|v\|^{2}=\left\|f-u^{*}\right\|^{2}-\lambda^{2}\|v\|^{2}<\left\|f-u^{*}\right\|^{2}
$$

i.e., u^{*} is not optimal.

Corollary 8.8 If $u^{*} \in \mathcal{U}_{n}$ is a best approximation to $f \in \mathbb{X}$, then

$$
\left\|f-u^{*}\right\|^{2}+\left\|u^{*}\right\|^{2}=\|f\|^{2}, \quad \text { in particular } \quad\left\|u^{*}\right\| \leq\|f\|,
$$

the latter inequality being strict for $x \in \mathbb{X} \backslash \mathcal{U}_{n}$.
Method 8.9 If u_{i} is a basis for \mathcal{U}_{n} and if we write $u^{*}=\sum a_{i} u_{i}$, then running v in (8.3) through the basis functions u_{i} we obtain a linear system of equations for determining the coefficients a,

$$
G a=b, \quad G=\left[\left(u_{i}, u_{j}\right)\right]_{i, j=1}^{n}, \quad b=\left[\left(f, u_{i}\right)\right]_{i=1}^{n}
$$

These equations are called the normal equations. The matrix G is called the Gram matrix. Since the system is uniquely solvable, the Gram matrix G is invertible.
Theorem 8.10 On the interval $[-1,1]$, among all polynomials of degree n with leading coefficient $a_{n}=1$, the Legendre polynomial $c_{n} P_{n}$, where

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

deviates least from zero, i.e.,

$$
\inf _{\left(a_{i}\right)}\left\|x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right\|_{1}=c_{n}\left\|P_{n}\right\|_{2}=\frac{2^{n}(n!)^{2}}{(2 n)!} \frac{1}{\sqrt{n+1 / 2}}
$$

8.3 Exercises

8.1. Prove the orthogonality condition used in the proof of Theorem 8.3:

$$
\int_{-1}^{1} p(x) \operatorname{sgn} T_{n+1}^{\prime}(x) d x=0 \quad \forall p \in \mathcal{P}_{n-1}
$$

Hint. Make a substitution $x=\cos \theta$ and use Lemma 4.10.
8.2. Prove the following generalization of Theorem 8.3: if $f^{(n)}>0$ on $[-1,1]$, then p^{*}, the polynomial of b.a. to f from \mathcal{P}_{n-1} in L_{1}-norm, is the Lagrange polynomial that interpolates f at n points $\left(\cos \frac{\pi k}{n+1}\right)_{k=1}^{n}$.
8.3. Show that orthogonality condition (8.2) is not necessary, i.e., construct an $f \in C[a, b]$ and a subspace U such that, for the best (unique) approximation p^{*}, condition (8.2) is not fulfilled.
8.4. Prove that, for any basis $\left(u_{i}\right)$ of \mathcal{U}_{n}, the Gram matrix $G=\left[\left(u_{i}, u_{j}\right)\right]$ is positive definite, i.e., $(G x, x)_{\ell_{2}}>0$ for any nonzero vector $x \in \mathbb{R}^{n}$.
Prove the converse: for any positive definite matrix $G \in \mathbb{R}^{n \times n}$, there exists a basis $\left(u_{i}\right)$ of \mathcal{U}_{n} such that $G=\left[\left(u_{i}, u_{j}\right)\right]$.
8.5. Prove that the value of the least squares approximation to $f \in \mathbb{X}$ from $\mathcal{U}_{n}=\operatorname{span}\left(u_{i}\right)$ is given by

$$
E(f)^{2}=\frac{\operatorname{det} G\left(f, u_{1}, \ldots, u_{n}\right)}{\operatorname{det} G\left(u_{1}, \ldots, u_{n}\right)}
$$

where G-s the corresponding Gram-matrices.
Hint. We have $E(f)^{2}=(f, f)-\left(f, u^{*}\right)$ and, if $u^{*}=\sum a_{i} u_{i}$, this is equivalent to

$$
\sum_{i=1}^{n} a_{i}\left(u_{i}, f\right)=(f, f)-E(f)^{2}
$$

Join this equation to the normal equations and consider the resulting singular system.
8.6. Deduce from the previous exercise that

$$
\operatorname{det} G\left(u_{1}, \ldots, u_{n}\right) \leq\left(u_{1}, u_{1}\right) \cdots\left(u_{n}, u_{n}\right)
$$

and, more generally, that the determinant of any positive definite matrix is not greater that the product of its diagonal elements. Hence, derive the Hadamard inequality: for any ma$\operatorname{trix} A=\left(a_{i j}\right)$

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

8.7. Let G be the class of functions g in $W_{2}^{k}[a, b]$ such that

$$
g^{(r)}(a)=g^{(r)}(b)=0, \quad r=0 \ldots k-1
$$

Prove that $f \in L_{2}[a, b]$ is orthogonal to all polynomials of degree $k-1$ if and only if $f=g^{(k)}$ for some $g \in G$. Hence, derive Theorem 8.10.

