10 Degree of trigonometric approximation (cont.)

10.1 Bernstein inequality

Theorem 10.1 (Bernstein [1912]) For any $n \in \mathbb{N}$, and for any $t_{n} \in \mathcal{T}_{n}$ on $[-\pi, \pi)$,

$$
\begin{equation*}
\left\|t_{n}^{\prime}\right\|_{\infty} \leq n\left\|t_{n}\right\|_{\infty} \tag{10.1}
\end{equation*}
$$

Proof. We will prove stronger Szego's inequality:

$$
t_{n}^{\prime}(\xi)^{2}+n^{2} t_{n}(\xi)^{2} \leq n^{2}\left\|t_{n}\right\|^{2} \quad \forall \xi \in \mathbb{T}, \quad \forall t_{n} \in \mathcal{T}_{n}
$$

$0)$ Let $t_{n}(\xi)=\alpha$ and let $t_{n}^{\prime}(\xi)>0$, say. Since \mathcal{T}_{n} is translation-invariant and differentiation commutes with translation, it is sufficient to prove it with any particular ξ.

1) Set

$$
s_{n}(x):=\gamma \cos n x, \quad \gamma>\left\|t_{n}\right\|
$$

and let η be the unique point in $\left(-\frac{\pi}{n}, 0\right)$ at which $s_{n}(\eta)=\alpha$. Choose $\xi=\eta$, thus

$$
t_{n}(\eta)=s_{n}(\eta), \quad \operatorname{sgn} t_{n}^{\prime}(\eta)=\operatorname{sgn} s_{n}^{\prime}(\eta)>0
$$

Consider the trig. polynomial $q_{n}:=s_{n}-t_{n}$. At the points $t_{k}:=\frac{\pi k}{n}$ (extrema of $\left.\cos n x\right) q_{n}$ alternates in sign, hence it has a zero in each of $2 n$ intervals $\left(t_{k}, t_{k+1}\right)$, thus exactly one zero. On $\left(-\frac{\pi}{n}, 0\right)$ we have $q_{n}(\eta)=0$ and $q_{n}(0)>0$, so that the inequality $q_{n}^{\prime}(\eta) \leq 0$ would give us one more zero on $(\eta, 0)$. Hence, $0<q_{n}^{\prime}(\eta):=s_{n}^{\prime}(\eta)-t_{n}^{\prime}(\eta)$, i.e.,

$$
0<t_{n}^{\prime}(\eta)<s_{n}^{\prime}(\eta)
$$

This conclusion is known as "comparison lemma".
2) Now we have

$$
0<t_{n}^{\prime}(\eta)<s_{n}^{\prime}(\eta)=\gamma n \sin n \eta=n \sqrt{\gamma^{2}-\gamma^{2} \cos ^{2} n \eta}=n \sqrt{\gamma^{2}-t_{n}(\eta)^{2}}
$$

i.e.,

$$
t_{n}^{\prime}(\eta)^{2}+n^{2} t_{n}(\eta)^{2}<\gamma^{2} n^{2}
$$

Letting $\gamma \searrow\left\|t_{n}\right\|$ finishes the proof.

10.2 Inverse theorems

Throughout this section: $t_{n} \in \mathcal{T}_{n}$ is the best approximation to a given function f, and $E_{n}=E_{n}(f)$.
Theorem 10.2 (The first inverse theorem) For any $f \in C(\mathbb{T})$, and for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\omega\left(f, \frac{1}{n}\right) \leq c n^{-1} \sum_{k=0}^{n} E_{k}(f) \tag{10.2}
\end{equation*}
$$

Proof. For any $\delta>0$, and any m, we have

$$
\omega(f, \delta) \leq \omega\left(f-t_{2^{m}}, \delta\right)+\omega\left(t_{2^{m}}, \delta\right) \leq 2 E_{2^{m}}+\delta\left\|t_{2^{m}}^{\prime}\right\|
$$

where we have used the properties (b), (c), (e) of the modulus of continuity from Lemma 8.2.

1) For the term $E_{2^{m}}$, due to monotone decrease of E_{k}, we write a trivial bound

$$
E_{2^{m}}=2^{-m} \sum_{k=1}^{2^{m}} E_{2^{m}} \leq 2^{-m} \sum_{k=1}^{2^{m}} E_{k}
$$

2) The bound for $\left\|t_{2^{m}}^{\prime}\right\|$ will depend upon the relations

$$
\left\|t_{n+k}-t_{n}\right\| \leq 2 E_{n}, \quad 2^{s-1} E_{2^{s}} \leq \sum_{k=2^{s-1}+1}^{2^{s}} E_{k},
$$

and the Bernstein inequality (10.1). So,

$$
\begin{array}{rll}
\left\|t_{2^{m}}^{\prime}\right\|=\left\|t_{2^{m}}^{\prime}-t_{0}^{\prime}\right\| & \leq\left\|t_{2}^{\prime}-t_{0}^{\prime}\right\|+\sum_{s=1}^{m-1}\left\|t_{2^{s+1}}^{\prime}-t_{2^{s}}^{\prime}\right\| & \\
& \leq 2\left\|t_{2}-t_{0}\right\|+\sum_{s=1}^{m-1} 2^{s+1}\left\|t_{2^{s+1}}-t_{2 s}\right\| & \\
& \leq 4 E_{0}+8 \sum_{s=1}^{m-1} 2^{s-1} E_{2^{s}} & \leq 8 \sum_{k=0}^{2^{m-1}} E_{k} .
\end{array}
$$

Thus,

$$
\omega(f, \delta) \leq 8\left(\delta+2^{-m}\right) \sum_{k=0}^{2^{m}} E_{k}(f)
$$

With $\delta=\frac{1}{n}$, and m such that $2^{m} \leq n<2^{m+1}$, the right-hand side is $\leq 8\left(\frac{1}{n}+\frac{2}{n}\right) \sum_{k=0}^{n} E_{k}(f)$.
Theorem 10.3 Let $f \in C(\mathbb{T})$ and, for some $r \in \mathbb{N}$, let $\sum_{k=1}^{\infty} k^{r-1} E_{k}(f)<\infty$. Then $f \in C^{r}(\mathbb{T})$ and

$$
\begin{equation*}
E_{n}\left(f^{(r)}\right) \leq c_{r}\left[n^{r} E_{n}(f)+\sum_{k=n+1}^{\infty} k^{r-1} E_{k}(f)\right] . \tag{10.3}
\end{equation*}
$$

This theorem is quite remarkable since it says that even if f is very smooth except on a small subinterval of \mathbb{T}, it will be hard to approximate f well by trig. pols.
Proof. We will use the estimate

$$
\left(n 2^{s-1}\right)^{r} E_{n 2^{s}}=n 2^{s-1}\left(n 2^{s-1}\right)^{r-1} E_{n 2^{s}} \leq \sum_{k=n 2^{s-1}+1}^{n 2^{s}} k^{r-1} E_{k}, \quad s \geq 1 .
$$

Write down the series

$$
f-t_{n}=\sum_{s=0}^{\infty}\left[t_{n 2^{s+1}}-t_{n 2^{s}}\right]
$$

which converges uniformly in \mathbb{T}. The next chain of inequalities shows in particular that the series $\sum_{s=0}^{\infty}\left[t_{n 2^{s+1}}^{(r)}-t_{n 2^{s}}^{(r)}\right]$ converges uniformly in \mathbb{T}, whence $f^{(r)}-t_{n}^{(r)}$ exists and is equal to its sum. So,

$$
\begin{aligned}
E_{n}\left(f^{(r)}\right) \leq\left\|f^{(r)}-t_{n}^{(r)}\right\| & \leq \sum_{s=0}^{\infty}\left\|t_{n_{2}^{s+1}}^{(r)}-t_{n 2^{s}}^{(r)}\right\| \\
& \leq(2 n)^{r}\left\|t_{2 n}-t_{n}\right\|+\sum_{s=1}^{\infty}\left(n 2^{s+1}\right)^{r}\left\|t_{n 2^{s+1}}-t_{n 2^{s}}\right\| \\
& \leq(2 n)^{r} E_{n}(f)+2^{2 r+1} \sum_{s=1}^{\infty}\left(n 2^{s-1}\right)^{r} E_{n 2^{s}}(f) \\
& \leq c_{r}\left[n^{r} E_{n}(f)+\sum_{k=n+1}^{\infty} k^{r-1} E_{k}(f)\right] .
\end{aligned}
$$

Theorem 10.4 (The second inverse theorem) We have

$$
\omega\left(f^{(r)}, \frac{1}{n}\right) \leq c_{r}\left[n^{-1} \sum_{k=0}^{n} k^{r} E_{k}(f)+\sum_{k=n+1}^{\infty} k^{r-1} E_{k}(f)\right] .
$$

Proof. Combine the estimates (10.2) and (10.3).

10.3 Exercises

10.1. Prove the Bernstein inequality for algebraic polynomials

$$
\left|p_{n}^{\prime}(x)\right| \leq \frac{n}{\sqrt{1-x^{2}}}\left\|p_{n}\right\|_{\infty} \quad \forall p_{n} \in \mathcal{P}_{n}[-1,1] .
$$

Hence derive the Markov inequality

$$
\left\|p_{n}^{\prime}\right\|_{\infty} \leq n^{2}\left\|p_{n}\right\|_{\infty} \quad \forall p_{n} \in \mathcal{P}_{n}[-1,1] .
$$

Remark. Historically, Bernstein proved his inequalities the other way round: he proved first (rather non-trivially) the algebraic case and then derived the trigonometric version. Actually his arguments repeated those of A. Markov.
10.2. Complete the proof of Theorem 10.4.
10.3.* (Direct theorems) Show that the max-norm of the Fourier operator admits the estimate

$$
\left\|s_{n}\right\|_{\infty}=\int_{-\pi}^{\pi}\left|D_{n}(t)\right| d t \leq c \ln n .
$$

Hence deduce that if the function $f \in C(\mathbb{T})$ satisfies the condition

$$
\omega(f, t)=o\left(1 / \ln \frac{1}{t}\right),
$$

then $s_{n}(f)$ converge uniformly to f.

