Part III - Lent Term 2005 Approximation Theory – Lecture 10

10 Degree of trigonometric approximation (cont.)

10.1 Bernstein inequality

Theorem 10.1 (Bernstein [1912]) For any $n \in \mathbb{N}$, and for any $t_n \in \mathcal{T}_n$ on $[-\pi, \pi)$,

$$\|t_n'\|_{\infty} \le n \, \|t_n\|_{\infty} \,. \tag{10.1}$$

Proof. We will prove stronger Szego's inequality:

 $t'_n(\xi)^2 + n^2 t_n(\xi)^2 \le n^2 ||t_n||^2 \quad \forall \xi \in \mathbb{T}, \quad \forall t_n \in \mathcal{T}_n.$

0) Let $t_n(\xi) = \alpha$ and let $t'_n(\xi) > 0$, say. Since \mathcal{T}_n is translation-invariant and differentiation commutes with translation, it is sufficient to prove it with any particular ξ .

1) Set

 $s_n(x) := \gamma \cos nx, \quad \gamma > \|t_n\|,$

and let η be the unique point in $(-\frac{\pi}{n}, 0)$ at which $s_n(\eta) = \alpha$. Choose $\xi = \eta$, thus

$$t_n(\eta) = s_n(\eta), \quad \operatorname{sgn} t'_n(\eta) = \operatorname{sgn} s'_n(\eta) > 0.$$

Consider the trig. polynomial $q_n := s_n - t_n$. At the points $t_k := \frac{\pi k}{n}$ (extrema of $\cos nx$) q_n alternates in sign, hence it has a zero in each of 2n intervals (t_k, t_{k+1}) , thus exactly one zero. On $(-\frac{\pi}{n}, 0)$ we have $q_n(\eta) = 0$ and $q_n(0) > 0$, so that the inequality $q'_n(\eta) \le 0$ would give us one more zero on $(\eta, 0)$. Hence, $0 < q'_n(\eta) := s'_n(\eta) - t'_n(\eta)$, i.e.,

$$0 < t'_n(\eta) < s'_n(\eta)$$

This conclusion is known as "comparison lemma".

2) Now we have

$$0 < t'_{n}(\eta) < s'_{n}(\eta) = \gamma n \sin n\eta = n\sqrt{\gamma^{2} - \gamma^{2} \cos^{2} n\eta} = n\sqrt{\gamma^{2} - t_{n}(\eta)^{2}},$$

i.e.,

$$t'_n(\eta)^2 + n^2 t_n(\eta)^2 < \gamma^2 n^2.$$

Letting $\gamma \searrow ||t_n||$ finishes the proof.

10.2 Inverse theorems

Throughout this section: $t_n \in T_n$ is the best approximation to a given function f, and $E_n = E_n(f)$.

Theorem 10.2 (The first inverse theorem) For any $f \in C(\mathbb{T})$, and for any $n \in \mathbb{N}$,

$$\omega(f, \frac{1}{n}) \le cn^{-1} \sum_{k=0}^{n} E_k(f) \,. \tag{10.2}$$

Proof. For any $\delta > 0$, and any *m*, we have

$$\omega(f,\delta) \le \omega(f - t_{2^m},\delta) + \omega(t_{2^m},\delta) \le 2E_{2^m} + \delta \left\| t'_{2^m} \right\|.$$

where we have used the properties (b), (c), (e) of the modulus of continuity from Lemma 8.2.

1) For the term E_{2^m} , due to monotone decrease of E_k , we write a trivial bound

$$E_{2^m} = 2^{-m} \sum_{k=1}^{2^m} E_{2^m} \le 2^{-m} \sum_{k=1}^{2^m} E_k$$

2) The bound for $||t'_{2^m}||$ will depend upon the relations

$$||t_{n+k} - t_n|| \le 2E_n, \qquad 2^{s-1}E_{2^s} \le \sum_{k=2^{s-1}+1}^{2^s} E_k;$$

and the Bernstein inequality (10.1). So,

$$\begin{aligned} \|t'_{2^m}\| &= \|t'_{2^m} - t'_0\| &\leq \|t'_2 - t'_0\| + \sum_{s=1}^{m-1} \|t'_{2^{s+1}} - t'_{2^s}\| \\ &\leq 2 \|t_2 - t_0\| + \sum_{s=1}^{m-1} 2^{s+1} \|t_{2^{s+1}} - t_{2^s}\| \\ &\leq 4E_0 + 8 \sum_{s=1}^{m-1} 2^{s-1} E_{2^s} \\ &\leq 4E_0 + 8 \sum_{k=2}^{2^{m-1}} E_k &\leq 8 \sum_{k=0}^{2^{m-1}} E_k . \end{aligned}$$

Thus,

$$\omega(f,\delta) \le 8(\delta + 2^{-m}) \sum_{k=0}^{2^m} E_k(f).$$

With $\delta = \frac{1}{n}$, and m such that $2^m \le n < 2^{m+1}$, the right-hand side is $\le 8(\frac{1}{n} + \frac{2}{n})\sum_{k=0}^{n} E_k(f)$. \Box

Theorem 10.3 Let $f \in C(\mathbb{T})$ and, for some $r \in \mathbb{N}$, let $\sum_{k=1}^{\infty} k^{r-1}E_k(f) < \infty$. Then $f \in C^r(\mathbb{T})$ and

$$E_n(f^{(r)}) \le c_r \left[n^r E_n(f) + \sum_{k=n+1}^{\infty} k^{r-1} E_k(f) \right].$$
(10.3)

This theorem is quite remarkable since it says that even if f is very smooth *except on a small subinterval of* \mathbb{T} , it will be hard to approximate f well by trig. pols.

Proof. We will use the estimate

$$(n2^{s-1})^r E_{n2^s} = n2^{s-1} (n2^{s-1})^{r-1} E_{n2^s} \le \sum_{k=n2^{s-1}+1}^{n2^s} k^{r-1} E_k, \quad s \ge 1.$$

Write down the series

$$f - t_n = \sum_{s=0}^{\infty} [t_{n2^{s+1}} - t_{n2^s}]$$

which converges uniformly in \mathbb{T} . The next chain of inequalities shows in particular that the series $\sum_{s=0}^{\infty} [t_{n2^{s+1}}^{(r)} - t_{n2^s}^{(r)}]$ converges uniformly in \mathbb{T} , whence $f^{(r)} - t_n^{(r)}$ exists and is equal to its sum. So,

$$\begin{aligned} E_n(f^{(r)}) &\leq \|f^{(r)} - t_n^{(r)}\| &\leq \sum_{s=0}^{\infty} \|t_{n2^{s+1}}^{(r)} - t_{n2^s}^{(r)}\| \\ &\leq (2n)^r \|t_{2n} - t_n\| + \sum_{s=1}^{\infty} (n2^{s+1})^r \|t_{n2^{s+1}} - t_{n2^s}\| \\ &\leq (2n)^r E_n(f) + 2^{2r+1} \sum_{s=1}^{\infty} (n2^{s-1})^r E_{n2^s}(f) \\ &\leq c_r [n^r E_n(f) + \sum_{k=n+1}^{\infty} k^{r-1} E_k(f)]. \end{aligned}$$

Theorem 10.4 (The second inverse theorem) We have

$$\omega(f^{(r)}, \frac{1}{n}) \le c_r \Big[n^{-1} \sum_{k=0}^n k^r E_k(f) + \sum_{k=n+1}^\infty k^{r-1} E_k(f) \Big].$$

Proof. Combine the estimates (10.2) and (10.3).

L			
L		1	
7			

10.3 Exercises

10.1. Prove the Bernstein inequality for algebraic polynomials

$$|p'_n(x)| \le \frac{n}{\sqrt{1-x^2}} ||p_n||_{\infty} \quad \forall p_n \in \mathcal{P}_n[-1,1].$$

Hence derive the Markov inequality

$$\|p'_n\|_{\infty} \le n^2 \|p_n\|_{\infty} \quad \forall p_n \in \mathcal{P}_n[-1,1].$$

Remark. Historically, Bernstein proved his inequalities the other way round: he proved first (rather non-trivially) the algebraic case and then derived the trigonometric version. Actually his arguments repeated those of A. Markov.

10.2. Complete the proof of Theorem 10.4.

10.3.* (Direct theorems) Show that the max-norm of the Fourier operator admits the estimate

$$||s_n||_{\infty} = \int_{-\pi}^{\pi} |D_n(t)| dt \le c \ln n.$$

Hence deduce that if the function $f \in C(\mathbb{T})$ satisfies the condition

$$\omega(f,t) = o(1/\ln\frac{1}{t}),$$

then $s_n(f)$ converge uniformly to f.