
Part III - Lent Term 2005

Approximation Theory – Lecture 10

10 Degree of trigonometric approximation (cont.)

10.1 Bernstein inequality

Theorem 10.1 (Bernstein [1912]) For any n ∈ N, and for any tn ∈ Tn on [−π, π),

‖t′
n
‖∞ ≤ n ‖tn‖∞ . (10.1)

Proof. We will prove stronger Szego’s inequality:

t′n(ξ)2 + n2tn(ξ)2 ≤ n2 ‖tn‖2 ∀ ξ ∈ T, ∀ tn ∈ Tn .

0) Let tn(ξ) = α and let t′n(ξ) > 0, say. Since Tn is translation-invariant and differentiation
commutes with translation, it is sufficient to prove it with any particular ξ.

1) Set
sn(x) := γ cosnx, γ > ‖tn‖ ,

and let η be the unique point in (−π

n
, 0) at which sn(η) = α. Choose ξ = η, thus

tn(η) = sn(η), sgn t′
n
(η) = sgn s′

n
(η) > 0.

Consider the trig. polynomial qn := sn−tn. At the points tk := πk

n
(extrema of cosnx) qn alternates

in sign, hence it has a zero in each of 2n intervals (tk, tk+1), thus exactly one zero. On (−π

n
, 0) we

have qn(η) = 0 and qn(0) > 0, so that the inequality q′
n
(η) ≤ 0 would give us one more zero on

(η, 0). Hence, 0 < q′
n
(η) := s′

n
(η) − t′

n
(η), i.e.,

0 < t′
n
(η) < s′

n
(η).

This conclusion is known as ”comparison lemma”.
2) Now we have

0 < t′
n
(η) < s′

n
(η) = γn sinnη = n

√

γ2 − γ2 cos2 nη = n
√

γ2 − tn(η)2,

i.e.,
t′
n
(η)2 + n2tn(η)2 < γ2n2.

Letting γ ↘ ‖tn‖ finishes the proof. �

10.2 Inverse theorems

Throughout this section: tn ∈ Tn is the best approximation to a given function f , and En = En(f).

Theorem 10.2 (The first inverse theorem) For any f ∈ C(T), and for any n ∈ N,

ω(f, 1
n
) ≤ cn−1

∑

n

k=0 Ek(f) . (10.2)

Proof. For any δ > 0, and any m, we have

ω(f, δ) ≤ ω(f − t2m , δ) + ω(t2m , δ) ≤ 2E2m + δ ‖t′2m‖ .

where we have used the properties (b), (c), (e) of the modulus of continuity from Lemma 8.2.
1) For the term E2m , due to monotone decrease of Ek, we write a trivial bound

E2m = 2−m
∑2m

k=1 E2m ≤ 2−m
∑2m

k=1 Ek.
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2) The bound for ‖t′2m‖ will depend upon the relations

‖tn+k − tn‖ ≤ 2En, 2s−1E2s ≤ ∑2s

k=2s−1+1 Ek,

and the Bernstein inequality (10.1). So,

‖t′2m‖ = ‖t′2m − t′0‖ ≤ ‖t′2 − t′0‖ +
∑

m−1
s=1 ‖t′2s+1 − t′2s‖

≤ 2 ‖t2 − t0‖ +
∑m−1

s=1 2s+1‖t2s+1 − t2s‖
≤ 4E0 + 8

∑

m−1
s=1 2s−1E2s

≤ 4E0 + 8
∑2m−1

k=2 Ek ≤ 8
∑2m−1

k=0 Ek .

Thus,
ω(f, δ) ≤ 8(δ + 2−m)

∑2m

k=0 Ek(f).

With δ = 1
n

, and m such that 2m ≤ n < 2m+1, the right-hand side is ≤ 8( 1
n

+ 2
n
)
∑

n

k=0 Ek(f). �

Theorem 10.3 Let f ∈C(T) and, for some r ∈ N, let
∑

∞

k=1 kr−1Ek(f) < ∞ . Then f ∈Cr(T) and

En(f (r)) ≤ cr

[

nrEn(f) +
∞
∑

k=n+1

kr−1Ek(f)
]

. (10.3)

This theorem is quite remarkable since it says that even if f is very smooth except on a small
subinterval of T, it will be hard to approximate f well by trig. pols.

Proof. We will use the estimate

(n2s−1)rEn2s = n2s−1(n2s−1)r−1En2s ≤
n2s

∑

k=n2s−1+1

kr−1Ek, s ≥ 1.

Write down the series

f − tn =

∞
∑

s=0

[tn2s+1 − tn2s ]

which converges uniformly in T. The next chain of inequalities shows in particular that the series
∑

∞

s=0[t
(r)
n2s+1 − t

(r)
n2s ] converges uniformly in T, whence f (r) − t

(r)
n exists and is equal to its sum. So,

En(f (r)) ≤ ‖f (r) − t
(r)
n ‖ ≤ ∑

∞

s=0 ‖t
(r)
n2s+1 − t

(r)
n2s‖

≤ (2n)r‖t2n − tn‖ +
∑

∞

s=1(n2s+1)r‖tn2s+1 − tn2s‖
≤ (2n)rEn(f) + 22r+1

∑

∞

s=1(n2s−1)rEn2s(f)

≤ cr[n
rEn(f) +

∑

∞

k=n+1 kr−1Ek(f)].

Theorem 10.4 (The second inverse theorem) We have

ω(f (r), 1
n
) ≤ cr

[

n−1
n

∑

k=0

krEk(f) +

∞
∑

k=n+1

kr−1Ek(f)
]

.

Proof. Combine the estimates (10.2) and (10.3). �
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10.3 Exercises

10.1. Prove the Bernstein inequality for algebraic polynomials

|p′n(x)| ≤ n√
1 − x2

‖pn‖∞ ∀pn ∈ Pn[−1, 1].

Hence derive the Markov inequality

‖p′
n
‖∞ ≤ n2 ‖pn‖∞ ∀pn ∈ Pn[−1, 1].

Remark. Historically, Bernstein proved his inequalities the other way round: he proved
first (rather non-trivially) the algebraic case and then derived the trigonometric version.
Actually his arguments repeated those of A. Markov.

10.2. Complete the proof of Theorem 10.4.

10.3.∗ (Direct theorems) Show that the max-norm of the Fourier operator admits the estimate

‖sn‖∞ =

∫ π

−π

|Dn(t)| dt ≤ c lnn.

Hence deduce that if the function f ∈ C(T) satisfies the condition

ω(f, t) = o(1/ ln 1
t
) ,

then sn(f) converge uniformly to f .
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