Part III - Lent Term 2005
Approximation Theory — Lecture 10

10 Degree of trigonometric approximation (cont.)

10.1 Bernstein inequality

Theorem 10.1 (Bernstein [1912]) For any n € N, and for any t,, € T,, on [—7,7),
[#lloe < 7 lltnloo - (10.1)
Proof. We will prove stronger Szego’s inequality:
(2 + 0’ (€)? <n? [[tal® VEET, Vitn€T,.

0) Let ¢,,(§) = a and let ¢/,(§) > 0, say. Since 7, is translation-invariant and differentiation
commutes with translation, it is sufficient to prove it with any particular &.
1) Set
sn(r) == ycosnz, > |[tall,

and let 7 be the unique point in (-7, 0) at which s, (1) = a. Choose £ = 7, thus

tn(n) = sn(n), sgnt,(n) =sgns;,(n) > 0.

Consider the trig. polynomial ¢, := s, —t,,. At the points ¢}, := %’“ (extrema of cos nx) g, alternates
in sign, hence it has a zero in each of 2n intervals (t,tx+1), thus exactly one zero. On (—7,0) we

have ¢,(7) = 0 and ¢,(0) > 0, so that the inequality ¢/,(n7) < 0 would give us one more zero on
(n,0). Hence, 0 < ¢, (n) := s.,(n) —t,,(n), i.e.,

0 <t (n) < sp(n).

This conclusion is known as “comparison lemma”.
2) Now we have

0 < t,(n) < si,(n) = ynsinng = ny/9% — 42 cos2nn = ny/7% — £, ()2,

ie.,
t%(ﬁ)z + n2t71(77)2 < '72”2-
Letting v\, ||t,,|| finishes the proof. O

10.2 Inverse theorems

Throughout this section: ¢,, € 7, is the best approximation to a given function f, and E,, = E, (f).
Theorem 10.2 (The first inverse theorem) For any f € C(T), and for any n € N,
W(f 1) < en Y0 Eilf). (10.2)
Proof. For any § > 0, and any m, we have
w(f, ) <w(f —tam,8) +w(tam,d) < 2FE9m + 6 |[thm]| -

where we have used the properties (b), (c), (e) of the modulus of continuity from Lemma 8.2.
1) For the term E5m, due to monotone decrease of Fj, we write a trivial bound

Eogmn =275 Eym <2757 E}.



2) The bound for ||t5. || will depend upon the relations
th+k - tn” S 2En7 2371E23 S Zile—l_j’_l Ek?

and the Bernstein inequality (10.1). So,

[yl = [t — ol < 1t — o]l + 0 [1thoss — the
< 2ta — toll + 75 2 tgers — oo |
< 4By +83 M2 1.
< 4B +8Y2, By < 8Y7, E.

Thus,
iy 2™
w(f,6) <8(6+27") 3o Er(f)-
With § = 1, and m such that 2™ < n < 2™*1, the right-hand side is < 8(% + 2)> " | Ei(f). O

n’

Theorem 10.3 Let f € C(T) and, for somer € N, let "2 | k" ' Ey(f) < oo. Then f€C"(T) and

Eu(f7) < e [0 Bu(f)+ Y K TUE()] (10.3)
k=n+1

This theorem is quite remarkable since it says that even if f is very smooth except on a small
subinterval of T, it will be hard to approximate f well by trig. pols.

Proof. We will use the estimate

n2°
(TL2871)TETL28 — n2871(n2871)7‘71En28 S Z kT*lEk’ s Z 1
k=n2s—141
Write down the series -
[—tn= Z[thSH - tn?s]
s=0

which converges uniformly in T. The next chain of inequalities shows in particular that the series
Yoo [tf;)sH - tggs] converges uniformly in T, whence f(") — t{) exists and is equal to its sum. So,

E (f) < If0 0] < S 16500 — 5.
< (2n)"|ltan — tall + Zzil(n25+l)r||tngs+l — tpos
< @) Ea(f) + 22 0 (021 Epoe (f)
< el Ba(f) + X5 K ER(S)].

Theorem 10.4 (The second inverse theorem) We have

W(fO D) <e[n VKB + Y KB
k=0 k=n+1
Proof. Combine the estimates (10.2) and (10.3). O



10.3 Exercises

10.1. Prove the Bernstein inequality for algebraic polynomials

n
|P;z(95)| < ﬁllpnllm Vpn € Pnl—1,1].

Hence derive the Markov inequality

15l < 22 llpnllec Vpn € Pu[-1,1].

Remark. Historically, Bernstein proved his inequalities the other way round: he proved
first (rather non-trivially) the algebraic case and then derived the trigonometric version.
Actually his arguments repeated those of A. Markov.

10.2. Complete the proof of Theorem 10.4.

10.3.* (Direct theorems) Show that the max-norm of the Fourier operator admits the estimate

nsnuoo:/ Dy (8)]di < clnn,

—T

Hence deduce that if the function f € C(T) satisfies the condition

w(f,t)= 0(1/11"1%)7

then s, (f) converge uniformly to f.



