11 Degree of trigonometric approximation (cont.)

11.1 Approximation of functions from Lipschitz spaces

Definition 11.1 The Lipschitz space $\operatorname{Lip} \alpha, 0<\alpha \leq 1$, consists of all functions $f \in C(\mathbb{T})$ which satisfy

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha},
$$

or, equivalently, $\omega(f, t) \leq M t^{\alpha}$.
Theorem 11.2 Let $f \in C(\mathbb{T})$ and $0<\alpha<1$. Then $E_{n}(f)=\mathcal{O}\left(n^{-\alpha}\right)$ if and only if $f \in \operatorname{Lip} \alpha$.
Proof. If $\omega(f, t) \leq M t^{\alpha}$, then by the first Jackson theorem $\quad E_{n}(f) \leq c \omega\left(f, \frac{1}{n}\right) \leq c^{\prime} n^{-\alpha}$.

$$
\text { If } E_{k}(f) \leq c k^{-\alpha} \text {, then by the first inverse theorem } \quad \omega\left(f, \frac{1}{n}\right) \leq \frac{c}{n} \sum_{k=0}^{n} k^{-\alpha} \leq c n^{-\alpha} \text {. }
$$

Theorem 11.3 Let $0<\alpha<1$. Then $E_{n}(f)=\mathcal{O}\left(n^{-r-\alpha}\right)$ if and only if $f \in C^{r}(\mathbb{T})$ and $f^{(r)} \in \operatorname{Lip} \alpha$.
Proof. The second Jackson plus the second inverse theorems.

11.2 Zygmund classes

For $\alpha=1$ the direct and the inverse estimates do not match. Namely,

$$
\begin{array}{ll}
\text { (a) } \quad \omega(f, \delta)=\mathcal{O}(\delta) \quad \Rightarrow \quad E_{n}(f)=\mathcal{O}\left(\frac{1}{n}\right) \\
\text { (b) } \quad E_{n}(f)=\mathcal{O}\left(\frac{1}{n}\right) \Rightarrow \quad \omega(f, \delta)=\mathcal{O}\left(\delta \ln \frac{1}{\delta}\right) .
\end{array}
$$

Moreover, in (b), it is really the estimate for $\omega(f, \delta)$ that is "bad", not the method of its proof, i.e., there exist functions f with $\omega(f, \delta)=\mathcal{O}\left(\delta \ln \frac{1}{\delta}\right)$ and $E_{n}(f)=\mathcal{O}\left(\frac{1}{n}\right)$ (see Exercise 11.1). It took more than 30 years before A. Zygmund found appropriate characterization of the functions with the approximation order $\mathcal{O}\left(\frac{1}{n}\right)$.
Theorem 11.4 (Zygmund $\left.{ }^{1}[1945]\right)$ Let $f \in C(\mathbb{T})$. Then $E_{n}(f)=\mathcal{O}\left(\frac{1}{n}\right)$ if and only if $\omega_{2}(f, \delta)=\mathcal{O}(\delta)$.
Proof. The Jackson operator (see Exercise 9.3) provides the estimate

$$
E_{n}(f) \leq c \omega_{2}\left(f, \frac{1}{n}\right),
$$

so that if $\omega_{2}(f, t) \leq M t$, then $E_{n}(f) \leq \frac{1}{n}$.
On the other hand, Theorem 10.2 is easily generalized for the r-th modulus of smoothness:

$$
\begin{equation*}
\omega_{r}\left(f, \frac{1}{n}\right) \leq c_{r} n^{-r} \sum_{k=0}^{n} k^{r-1} E_{k}(f) . \tag{11.1}
\end{equation*}
$$

For $r=2$, from $E_{k}(f) \leq \frac{c}{k}$ we obtain $\omega_{2}\left(f, \frac{1}{n}\right) \leq \frac{c}{n^{2}} \sum_{k=0}^{n} 1 \leq \frac{1}{n}$ as required.

[^0]
11.3 Approximation by algebraic polynomials

Set $I=[-1,1]$. If $f \in C(I)$, then $\widetilde{f}(\theta):=f(\cos \theta)$ is a 2π-periodic even continuous function and

$$
\begin{equation*}
\|f\|_{C(I)}=\|\widetilde{f}\|_{C(\mathbb{T})} \tag{11.2}
\end{equation*}
$$

Moreover, 1) if $p_{n} \in \mathcal{P}_{n}$, then $\widetilde{p}_{n}(\theta)=\sum_{k=0}^{n} a_{k} \cos k \theta$
2) if $t_{n}(\theta)=\sum_{k=0}^{n} a_{k} \cos k \theta$, then there exists an alg. pol. $p_{n} \in \mathcal{P}_{n}$ such that $t_{n}=\widetilde{p}$.

Lemma 11.5 Let $f \in C(I)$ and $g=\widetilde{f}$. Then

$$
\begin{equation*}
\omega(g, t) \leq \omega(f, t) \tag{11.3}
\end{equation*}
$$

Proof. We require the elementary inequality

$$
|\cos \theta-\cos \xi| \leq|\theta-\xi|
$$

For any $t>0$, it provides inclusion of the sets $\{(\theta, \xi):|\theta-\xi|<t\} \subset\{(\theta, \xi):|\cos \theta-\cos \xi|<t\}$. Then

$$
\begin{aligned}
\omega(g, t) & :=\sup _{|\theta-\xi| \leq t}|g(\theta)-g(\xi)|=\sup _{|\theta-\xi| \leq t}|f(\cos \theta)-f(\cos \xi)| \\
& \leq \sup _{|\cos \theta-\cos \xi| \leq t}|f(\cos \theta)-f(\cos \xi)|=\sup _{|x-y| \leq t}|f(x)-f(y)| \leq \omega(f, t)
\end{aligned}
$$

Theorem 11.6 (The first Jackson theorem) If $f \in C(I)$, then

$$
E_{n}(f) \leq c \omega\left(f, \frac{1}{n}\right) .
$$

Proof. Let $t_{n} \in \mathcal{T}_{n}$ be the best trigonometric approximation to $g(\theta):=\widetilde{f}(\theta):=f(\cos \theta)$. Then t_{n} is an even trigonometric polynomial, and with $p_{n} \in \mathcal{P}_{n}$ such that $t_{n}(\theta)=p(\cos \theta)$, making use of (11.2)-(11.3), we obtain

$$
E_{n}(f) \leq\left\|f-p_{n}\right\|_{C(I)}=\left\|\tilde{f}-\widetilde{p}_{n}\right\|_{C(T)}=:\left\|g-t_{n}\right\|=\widetilde{E}_{n}(g) \leq c \omega\left(g, \frac{1}{n}\right) \leq c \omega\left(f, \frac{1}{n}\right)
$$

Theorem 11.7 (The second Jackson theorem) If $f \in C^{(r)}(I)$ and $n \geq r-1$, then

$$
\begin{equation*}
E_{n}(f) \leq c_{r} n^{-r} \omega\left(f^{(r)}, \frac{1}{n}\right) \tag{11.4}
\end{equation*}
$$

Proof. Exercise.

11.4 Exercises

11.1. Verify that, for $f(x)=x \ln \frac{\pi}{|x|}$, where $x \in[-\pi, \pi]$, and for δ small enough, we have

$$
\omega(f, \delta)=\delta \ln \frac{1}{\delta}, \quad \omega_{2}(f, \delta)=\left|\Delta_{\delta}^{2} f(0)\right|=M \delta .
$$

11.2. Prove the inverse estimate (11.1).
11.3. Prove the estimate (11.4). Show in between that

$$
E_{n}(f) \leq c n^{-1} E_{n-1}\left(f^{\prime}\right) .
$$

11.4. Prove that for $f(x)=\sqrt{1-x^{2}}, x \in[-1,1]$, and its algebraic approximation we have

$$
\omega(f, \delta)=\mathcal{O}\left(\delta^{1 / 2}\right), \quad \text { but } \quad E_{n}(f)=\mathcal{O}\left(\frac{1}{n}\right)
$$

This shows in particular that the inverse theorems in the form they were given for the trigonometric approximation are not valid for the algebraic case.
11.5. For the Weierstrass function

$$
f(x):=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \cos 3^{k} x,
$$

find the order of its modulus of continuity $\omega(f, t)$.

[^0]: ${ }^{1}$ Antoni Zygmund (1900-1992), Polish mathematician, since 1940 worked in USA, his "Trigonometric Series" is a classic that is still the definitive work on the subject.

