
Part III - Lent Term 2005

Approximation Theory – Lecture 12

12 B-splines

12.1 Splines

Definition 12.1 (Splines) Let N, k ∈ N, and let ∆∗ be a knot sequence

∆∗ = (a = τ0 < τ1 · · · < τN < τN+1 = b) .

The spline space Sk(∆∗) of order k (and deficiency 1) is the space of piecewise polynomial func-
tions of degree ≤ k − 1 on ∆∗ which satisfy k − 1 continuity conditions at each interior knot τi,
i.e.,

s ∈ Sk(∆∗) ⇔
1) s ∈ Pk−1[τi, τi+1],

2) s ∈ Ck−2(τi−1, τi+1).

If s(k−1) is continuous at τi, then s is a polynomial in a neighbourhood of τi, in this case the
breakpoint τi is inessential.

Example 12.2 So, the splines of order 1 are step functions, those of order 2 are broken lines, and
so on. A typical spline of order k is the truncated power

(x − τi)
k−1
+ =







(x − τi)
(k−1, x ≥ τi;

0, x < τi.

Definition 12.3 (Basis) A basis for a finite-dimensional space U is a sequence of elements (fi)
n
i=1

of U such that each f ∈ U has a unique representation f =
∑n

i=1 aifi. The number n is the
dimension of U .

Lemma 12.4 Suppose that there are elements (fi)
n
i=1 of U and linear functionals (ai)

n
i=1 on U such that

1) ai(fj) = δij , 2) ai(f) = 0 all i ⇒ f = 0.

Then (fi) is a basis for U .

Proof. Given f , set g :=
∑n

i=1 ai(f)fi. Then, by (1), aj(g) = aj(f) all j, so that, by (2), g = f , i.e.,

f =
∑n

i=1 ai(f)fi .

If
∑n

i=1 bifi is another representation, then applying aj to both ones, we obtain bj = aj(f). �

Theorem 12.5 The space Sk(∆∗) has the basis

s0j(x) := 1
(k−j)! (x − a)k−j , j = 1..k;

si(x) := 1
(k−1)! (x − τi)

k−1
+ , i = 1..N ;

with the dual functionals

a0j(s) := s(k−j)(a), j = 1..k;

ai(s) := s(k−1)(τi+) − s(k−1)(τi−), i = 1..N.

In particular,
dimSk(∆∗) = k + N =: n .
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Proof. The duality ai(sj) = δij is straightforward. Let s ∈ Sk(∆∗). If ai(s) = 0 for i = 1..N ,
then s(k−1) is continuous at each τi, hence (as s(k−1) is piecewise constant) s(k−1) is a constant,
therefore s ∈ Pk−1[a, b]. If also a0j(s) = 0, then all the derivatives of s are zeros, hence s ≡ 0. �

Corollary 12.6 Each s ∈ Sk(∆∗) admits a representation

s(x) = pk−1(x) +
∑N

i=1 ci(x − τi)
k−1
+ . (12.1)

Remark 12.7 The basis of truncated powers is quite inconvenient for numerical computations:
the elements have large support, the basis itself is unstable (it becomes almost linear dependent
when τi → τi+1). Curry and Schoenberg discovery of the basis of B-splines made a revolution.

12.2 Divided differences

Definition 12.8 (Divided difference) Given f ∈ C[a, b] and a sequence of (k+1) points (t0, . . . , tk),
the divided difference f [t0...tk] of order k is the leading coefficient of the Lagrange polynomial
p ∈ Pk which interpolates f at these points (i.e., the coefficient at xk in p(x)). By definition,

f [t0...tk] = 0 if f ∈ Pk−1, and [t0...tk] xk = 1.

Remark 12.9 (Multiple points) If the sequence (ti) has multiple entries, i.e., if

(t0, t1, . . . , tk) :=
(
τ1, . . . , τ1
︸ ︷︷ ︸

m1

, . . . , τ`, . . . , τ`
︸ ︷︷ ︸

m`

)
,

then p ∈ Pk is the Lagrange–Hermite interpolating polynomial to f :

p(s−1)(τi) = f (s−1)(τi), s = 1...mi, i = 1...`,
∑

mi = k + 1.

Properties 12.10 Let us recall some properties of the divided differences.

1) Explicit formula. If all the points (ti) are distinct, then

f [t0...tk] =

k∑

ν=0

f(tν)

ω′(tν)
, ω(x) =

k∏

ν=0

(x − tν).

This follows from the representation of the Lagrange polynomial p(x) =
∑k

ν=0
f(tν)
ω′(tν)

ω(x)
x−tν

by iden-

tifying its leading coefficient.

2) Recurrence relation. The following formula allows to compute the divided difference of any
order k adaptively, starting with the values f [ti] = f(ti):

f [t0...tk] =
f [t1...tk] − f [t0...tk−1]

tk − t0
, ∀ t0 6= tk. (12.2)

This follows from the formula p(x) = x−t0
tk−t0

p0(x)+ tk−x
tk−t0

pk(x), which relates the Lagrange polyno-

mial p of degree k that interpolates f on t = (ti)
k
i=0 with two Lagrange polynomials pj of degree

k − 1 that interpolate f on the sets t \ tj , respectively.

3) Convexity. The previous formula implies that, for t = (t0, ..., tk), we also have

f [t \ tj ] = γf [t \ tk] + (1 − γ)f [t \ t0], tj = γtk + (1 − γ)t0. (12.3)

4) Leibnitz rule. If h = fg, then

h[t0...tk] =

k∑

i=0

f [t0...ti] g[ti...tk] . (12.4)

2



12.3 Exercises

12.1. Let (`i)
n
i=0 be the sequence of Lagrange fundamental polynomials with respect to a sequence

of points (ti)
n
i=0. Find a set of functionals (ai) dual to (`i).

12.2. Prove that each s ∈ Sk(∆∗) can be also written in the form

s(x) = qk−1(x) +

N∑

i=1

bi(τi − x)k−1
+ .

(We use (τi − x)r
+ instead of (x − τi)

r
+ in (12.1).) What is the relation between bi and ci?

12.3. Consider the space S = S2(∆∗) of linear splines on the knot sequence

(τ0, τ1, τ2, τ3, τ4) = (0, 1, 2, 3, 4)

Find the representaion of the form (12.1) for si ∈ S, where si is given by

si(τj) = δij , j = 0..4, i = 2, 3.

12.4. Prove that the Lagrange–Hermite interpolating polynomial exists and is unique.

12.5. Using Rolle’s theorem prove that f [t0...tj ] = 1
j!f

(j)(ξ) for some ξ ∈ [t0, tj ]. Hence, from

formula (12.4), deduce the Leibnitz rule for derivatives: If f, g ∈ Ck[a, b], and h = fg, then

h(k)(x) := [f(x)g(x)](k) =

k∑

i=0

(
k

i

)

f (i)(x)g(k−i)(x).

12.6. Prove the Leibnitz rule by induction. For k = 0, clearly, h[t0] = f [t0]g[t0]. Then

(tk − t0)h[t0...tk] = h[t1...tk] − h[t0...tk−1] = · · ·
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