Part III - Lent Term 2005
Approximation Theory — Lecture 12

12 B-splines

12.1 Splines
Definition 12.1 (Splines) Let N,k € N, and let A, be a knot sequence
A*:(a:7'0<’7'1-'-<7']\] <TN+1:b).

The spline space Si(A.) of order k (and deficiency 1) is the space of piecewise polynomial func-
tions of degree < k — 1 on A, which satisfy £ — 1 continuity conditions at each interior knot 7;,
ie.,

1 € Pr— iy 11 )
s€Sk(AL) & ) 8 k[T T
2) se€C* (11, Tip1).

If s5=1) is continuous at 7;, then s is a polynomial in a neighbourhood of 7;, in this case the
breakpoint 7; is inessential.

Example 12.2 So, the splines of order 1 are step functions, those of order 2 are broken lines, and
so on. A typical spline of order k is the truncated power

(k=1 >
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Definition 12.3 (Basis) A basis for a finite-dimensional space I is a sequence of elements (f;)?_;
of U such that each f € U has a unique representation f = >, a;f;. The number n is the
dimension of Y.

Lemma 12.4 Suppose that there are elements ( f;)}'_, of U and linear functionals (a;)}_, on U such that
1) ai(f;) = dij, 2) ai(f)=0 alli = f=0.
Then (f;) is a basis for U.
Proof. Given f,set g :== >, a;(f)f;- Then, by (1), a;(g) = a;(f) all j, so that, by (2), g = f, i.e.,
f= Z?:l a;(f)fi-
If -7 | b; f; is another representation, then applying a; to both ones, we obtain b; = a;(f). O

Theorem 12.5 The space Si,(A.) has the basis

s0j(2) = gy (@ —a)¥ 9, j =1k
si(w) := ﬁ(l’—ﬁh , 1=1.N;
with the dual functionals
ag;(s) := s+~ (a), j=1.k
ai(s) = sFV(r;4) — s+=V(;—), i=1.N.

In particular,



Proof. The duality a;(s;) = ¢;; is straightforward. Let s € Si(A,). If a;(s) = 0 fori = 1..N,
then s*~1 is continuous at each 7;, hence (as sk=1) jg piecewise constant) s*=1 is a constant,
therefore s € Py_1[a, b]. If also ag;(s) = 0, then all the derivatives of s are zeros, hence s =0. O

Corollary 12.6 Each s € Si(A.) admits a representation

s(a) = pe-1(z) + X, cilz — )i (12.1)

Remark 12.7 The basis of truncated powers is quite inconvenient for numerical computations:
the elements have large support, the basis itself is unstable (it becomes almost linear dependent
when 7; — 7;11). Curry and Schoenberg discovery of the basis of B-splines made a revolution.

12.2 Divided differences

Definition 12.8 (Divided difference) Given f € Cfa,b] and a sequence of (k+1) points (to, . .., tx),
the divided difference f[to...tx] of order k is the leading coefficient of the Lagrange polynomial
p € Pi, which interpolates f at these points (i.e., the coefficient at 2 in p(z)). By definition,

f[tg...tk] =0 if fePr_;, and [to...tk] xk =1.
Remark 12.9 (Multiple points) If the sequence (¢;) has multiple entries, i.e., if
(to,t1y.. . tg) = (7'1,...,71,...,7'@,...,7'g),
——— ———
mi my

then p € Py, is the Lagrange-Hermite interpolating polynomial to f:

pCV(r) = fE (), s=1.my, i=1..4, Zm¢=k+l.

Properties 12.10 Let us recall some properties of the divided differences.
1) Explicit formula. If all the points (¢;) are distinct, then

k

k
fltote] = j/((iu)), wa) = [[@ - t).
v=0 v

v=0

This follows from the representation of the Lagrange polynomial p(z) = ZIZ 0 w,(( ) ;J(w) by iden-
tifying its leading coefficient.

2) Recurrence relation. The following formula allows to compute the divided difference of any
order k adaptively, starting with the values f[t;] = f(¢;):

f[tl...tk] — f[to...tkfl]

f[to...tk] = t—to

. Vit # te (12.2)

This follows from the formula p(z) = £=%p(z)+ tt;“ —Pk(2), which relates the Lagrange polyno-

tr—to
mial p of degree k that interpolates f on ¢ = (¢;)¥_, with two Lagrange polynomials p; of degree

k — 1 that interpolate f on the sets ¢ \ t;, respectively.

3) Convexity. The previous formula implies that, for ¢ = (%, ..., tx), we also have
NG =S\ te] + (L =) f[E N o], 5 =7tk + (1= 7)o (12.3)

4) Leibnitz rule. If h = fg, then

hlto...ty] = Z flto-.-t:] glti-..tx] - (12.4)



12.3 Exercises

12.1.

12.2.

12.3.

12.4.
12.5.

12.6.

Let (¢;)1_, be the sequence of Lagrange fundamental polynomials with respect to a sequence
of points (t;)7,. Find a set of functionals (a;) dual to (¢;).

Prove that each s € Sk (A.) can be also written in the form

N

s(z) = qr-1(z) + Z bi(r; —x)kt.
i=1
(We use (7; — z), instead of (x — 7;), in (12.1).) What is the relation between b; and ¢;?
Consider the space § = S2(A,) of linear splines on the knot sequence
(10,71, 72,73, 72) = (0,1,2,3,4)
Find the representaion of the form (12.1) for s; € S, where s; is given by
si(m;) =06y, j=0.4, i=2,3.
Prove that the Lagrange-Hermite interpolating polynomial exists and is unique.

Using Rolle’s theorem prove that f[to...t;] = % O (&) for some ¢ € [to,t;]. Hence, from
formula (12.4), deduce the Leibnitz rule for derivatives: If f,g € C*[a,b], and h = fg, then

k
W) = ] ® =3 (5) 703" @)

=0

Prove the Leibnitz rule by induction. For k = 0, clearly, h[to] = f[to]g[to]. Then

(tk — to)h[to...tk] = h[tl...tk] — h[to...tkfl] =



