Part III - Lent Term 2005
 Approximation Theory - Lecture 12

12 B-splines

12.1 Splines

Definition 12.1 (Splines) Let $N, k \in \mathbb{N}$, and let Δ_{*} be a knot sequence

$$
\Delta_{*}=\left(a=\tau_{0}<\tau_{1} \cdots<\tau_{N}<\tau_{N+1}=b\right)
$$

The spline space $\mathcal{S}_{k}\left(\Delta_{*}\right)$ of order k (and deficiency 1) is the space of piecewise polynomial functions of degree $\leq k-1$ on Δ_{*} which satisfy $k-1$ continuity conditions at each interior knot τ_{i}, i.e.,

$$
s \in \mathcal{S}_{k}\left(\Delta_{*}\right) \quad \Leftrightarrow \quad \begin{aligned}
& \text { 1) } \quad s \in \mathcal{P}_{k-1}\left[\tau_{i}, \tau_{i+1}\right] \\
& 2) \\
& 2 \in C^{k-2}\left(\tau_{i-1}, \tau_{i+1}\right) .
\end{aligned}
$$

If $s^{(k-1)}$ is continuous at τ_{i}, then s is a polynomial in a neighbourhood of τ_{i}, in this case the breakpoint τ_{i} is inessential.

Example 12.2 So, the splines of order 1 are step functions, those of order 2 are broken lines, and so on. A typical spline of order k is the truncated power

$$
\left(x-\tau_{i}\right)_{+}^{k-1}= \begin{cases}\left(x-\tau_{i}\right)^{(k-1}, & x \geq \tau_{i} \\ 0, & x<\tau_{i}\end{cases}
$$

Definition 12.3 (Basis) A basis for a finite-dimensional space \mathcal{U} is a sequence of elements $\left(f_{i}\right)_{i=1}^{n}$ of \mathcal{U} such that each $f \in \mathcal{U}$ has a unique representation $f=\sum_{i=1}^{n} a_{i} f_{i}$. The number n is the dimension of \mathcal{U}.

Lemma 12.4 Suppose that there are elements $\left(f_{i}\right)_{i=1}^{n}$ of \mathcal{U} and linear functionals $\left(a_{i}\right)_{i=1}^{n}$ on \mathcal{U} such that

$$
\text { 1) } a_{i}\left(f_{j}\right)=\delta_{i j}, \quad \text { 2) } a_{i}(f)=0 \quad \text { all } i \Rightarrow f=0
$$

Then $\left(f_{i}\right)$ is a basis for \mathcal{U}.
Proof. Given f, set $g:=\sum_{i=1}^{n} a_{i}(f) f_{i}$. Then, by (1), $a_{j}(g)=a_{j}(f)$ all j, so that, by (2), $g=f$, i.e.,

$$
f=\sum_{i=1}^{n} a_{i}(f) f_{i}
$$

If $\sum_{i=1}^{n} b_{i} f_{i}$ is another representation, then applying a_{j} to both ones, we obtain $b_{j}=a_{j}(f)$.
Theorem 12.5 The space $\mathcal{S}_{k}\left(\Delta_{*}\right)$ has the basis

$$
\begin{array}{ll}
s_{0 j}(x):=\frac{1}{(k-j)!}(x-a)^{k-j}, & j=1 . . k \\
s_{i}(x):=\frac{1}{(k-1)!}\left(x-\tau_{i}\right)_{+}^{k-1}, & i=1 . . N
\end{array}
$$

with the dual functionals

$$
\begin{array}{ll}
a_{0 j}(s):=s^{(k-j)}(a), & j=1 . . k \\
a_{i}(s):=s^{(k-1)}\left(\tau_{i}+\right)-s^{(k-1)}\left(\tau_{i}-\right), & i=1 . . N
\end{array}
$$

In particular,

$$
\operatorname{dim} \mathcal{S}_{k}\left(\Delta_{*}\right)=k+N=: n
$$

Proof. The duality $a_{i}\left(s_{j}\right)=\delta_{i j}$ is straightforward. Let $s \in \mathcal{S}_{k}\left(\Delta_{*}\right)$. If $a_{i}(s)=0$ for $i=1 . . N$, then $s^{(k-1)}$ is continuous at each τ_{i}, hence (as $s^{(k-1)}$ is piecewise constant) $s^{(k-1)}$ is a constant, therefore $s \in \mathcal{P}_{k-1}[a, b]$. If also $a_{0 j}(s)=0$, then all the derivatives of s are zeros, hence $s \equiv 0$.

Corollary 12.6 Each $s \in \mathcal{S}_{k}\left(\Delta_{*}\right)$ admits a representation

$$
\begin{equation*}
s(x)=p_{k-1}(x)+\sum_{i=1}^{N} c_{i}\left(x-\tau_{i}\right)_{+}^{k-1} \tag{12.1}
\end{equation*}
$$

Remark 12.7 The basis of truncated powers is quite inconvenient for numerical computations: the elements have large support, the basis itself is unstable (it becomes almost linear dependent when $\tau_{i} \rightarrow \tau_{i+1}$). Curry and Schoenberg discovery of the basis of B-splines made a revolution.

12.2 Divided differences

Definition 12.8 (Divided difference) Given $f \in C[a, b]$ and a sequence of $(k+1)$ points $\left(t_{0}, \ldots, t_{k}\right)$, the divided difference $f\left[t_{0} \ldots t_{k}\right]$ of order k is the leading coefficient of the Lagrange polynomial $p \in \mathcal{P}_{k}$ which interpolates f at these points (i.e., the coefficient at x^{k} in $\left.p(x)\right)$. By definition,

$$
f\left[t_{0} \ldots t_{k}\right]=0 \quad \text { if } \quad f \in \mathcal{P}_{k-1}, \quad \text { and } \quad\left[t_{0} \ldots t_{k}\right] x^{k}=1
$$

Remark 12.9 (Multiple points) If the sequence $\left(t_{i}\right)$ has multiple entries, i.e., if

$$
\left(t_{0}, t_{1}, \ldots, t_{k}\right):=(\underbrace{\tau_{1}, \ldots, \tau_{1}}_{m_{1}}, \ldots, \underbrace{\tau_{\ell}, \ldots, \tau_{\ell}}_{m_{\ell}})
$$

then $p \in \mathcal{P}_{k}$ is the Lagrange-Hermite interpolating polynomial to f :

$$
p^{(s-1)}\left(\tau_{i}\right)=f^{(s-1)}\left(\tau_{i}\right), \quad s=1 \ldots m_{i}, \quad i=1 \ldots \ell, \quad \sum m_{i}=k+1
$$

Properties 12.10 Let us recall some properties of the divided differences.

1) Explicit formula. If all the points $\left(t_{i}\right)$ are distinct, then

$$
f\left[t_{0} \ldots t_{k}\right]=\sum_{\nu=0}^{k} \frac{f\left(t_{\nu}\right)}{\omega^{\prime}\left(t_{\nu}\right)}, \quad \omega(x)=\prod_{\nu=0}^{k}\left(x-t_{\nu}\right)
$$

This follows from the representation of the Lagrange polynomial $p(x)=\sum_{\nu=0}^{k} \frac{f\left(t_{\nu}\right)}{\omega^{\prime}\left(t_{\nu}\right)} \frac{\omega(x)}{x-t_{\nu}}$ by identifying its leading coefficient.
2) Recurrence relation. The following formula allows to compute the divided difference of any order k adaptively, starting with the values $f\left[t_{i}\right]=f\left(t_{i}\right)$:

$$
\begin{equation*}
f\left[t_{0} \ldots t_{k}\right]=\frac{f\left[t_{1} \ldots t_{k}\right]-f\left[t_{0} \ldots t_{k-1}\right]}{t_{k}-t_{0}}, \quad \forall t_{0} \neq t_{k} \tag{12.2}
\end{equation*}
$$

This follows from the formula $p(x)=\frac{x-t_{0}}{t_{k}-t_{0}} p_{0}(x)+\frac{t_{k}-x}{t_{k}-t_{0}} p_{k}(x)$, which relates the Lagrange polynomial p of degree k that interpolates f on $t=\left(t_{i}\right)_{i=0}^{k}$ with two Lagrange polynomials p_{j} of degree $k-1$ that interpolate f on the sets $t \backslash t_{j}$, respectively.
3) Convexity. The previous formula implies that, for $t=\left(t_{0}, \ldots, t_{k}\right)$, we also have

$$
\begin{equation*}
f\left[t \backslash t_{j}\right]=\gamma f\left[t \backslash t_{k}\right]+(1-\gamma) f\left[t \backslash t_{0}\right], \quad t_{j}=\gamma t_{k}+(1-\gamma) t_{0} \tag{12.3}
\end{equation*}
$$

4) Leibnitz rule. If $h=f g$, then

$$
\begin{equation*}
h\left[t_{0} \ldots t_{k}\right]=\sum_{i=0}^{k} f\left[t_{0} \ldots t_{i}\right] g\left[t_{i} \ldots t_{k}\right] \tag{12.4}
\end{equation*}
$$

12.3 Exercises

12.1. Let $\left(\ell_{i}\right)_{i=0}^{n}$ be the sequence of Lagrange fundamental polynomials with respect to a sequence of points $\left(t_{i}\right)_{i=0}^{n}$. Find a set of functionals $\left(a_{i}\right)$ dual to $\left(\ell_{i}\right)$.
12.2. Prove that each $s \in \mathcal{S}_{k}\left(\Delta_{*}\right)$ can be also written in the form

$$
s(x)=q_{k-1}(x)+\sum_{i=1}^{N} b_{i}\left(\tau_{i}-x\right)_{+}^{k-1} .
$$

(We use $\left(\tau_{i}-x\right)_{+}^{r}$ instead of $\left(x-\tau_{i}\right)_{+}^{r}$ in (12.1).) What is the relation between b_{i} and c_{i} ?
12.3. Consider the space $\mathcal{S}=\mathcal{S}_{2}\left(\Delta_{*}\right)$ of linear splines on the knot sequence

$$
\left(\tau_{0}, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(0,1,2,3,4)
$$

Find the representaion of the form (12.1) for $s_{i} \in \mathcal{S}$, where s_{i} is given by

$$
s_{i}\left(\tau_{j}\right)=\delta_{i j}, \quad j=0 . .4, \quad i=2,3
$$

12.4. Prove that the Lagrange-Hermite interpolating polynomial exists and is unique.
12.5. Using Rolle's theorem prove that $f\left[t_{0} \ldots t_{j}\right]=\frac{1}{j!} f^{(j)}(\xi)$ for some $\xi \in\left[t_{0}, t_{j}\right]$. Hence, from formula (12.4), deduce the Leibnitz rule for derivatives: If $f, g \in C^{k}[a, b]$, and $h=f g$, then

$$
h^{(k)}(x):=[f(x) g(x)]^{(k)}=\sum_{i=0}^{k}\binom{k}{i} f^{(i)}(x) g^{(k-i)}(x) .
$$

12.6. Prove the Leibnitz rule by induction. For $k=0$, clearly, $h\left[t_{0}\right]=f\left[t_{0}\right] g\left[t_{0}\right]$. Then

$$
\left(t_{k}-t_{0}\right) h\left[t_{0} \ldots t_{k}\right]=h\left[t_{1} \ldots t_{k}\right]-h\left[t_{0} \ldots t_{k-1}\right]=\cdots
$$

