Part III - Lent Term 2005 Approximation Theory – Lecture 12

12 **B-splines**

12.1 Splines

Definition 12.1 (Splines) Let $N, k \in \mathbb{N}$, and let Δ_* be a knot sequence

$$\Delta_* = \left(a = \tau_0 < \tau_1 \cdots < \tau_N < \tau_{N+1} = b\right).$$

The spline space $S_k(\Delta_*)$ of order k (and deficiency 1) is the space of piecewise polynomial functions of degree $\leq k - 1$ on Δ_* which satisfy k - 1 continuity conditions at each interior knot τ_i , i.e.,

$$s \in \mathcal{S}_k(\Delta_*) \quad \Leftrightarrow \quad \begin{array}{c} 1) \quad s \in \mathcal{P}_{k-1}[\tau_i, \tau_{i+1}], \\ 2) \quad s \in C^{k-2}(\tau_{i-1}, \tau_{i+1}). \end{array}$$

If $s^{(k-1)}$ is continuous at τ_i , then *s* is a polynomial in a neighbourhood of τ_i , in this case the breakpoint τ_i is inessential.

Example 12.2 So, the splines of order 1 are step functions, those of order 2 are broken lines, and so on. A typical spline of order *k* is the truncated power

$$(x - \tau_i)_+^{k-1} = \begin{cases} (x - \tau_i)^{(k-1)}, & x \ge \tau_i; \\ 0, & x < \tau_i. \end{cases}$$

Definition 12.3 (Basis) A basis for a finite-dimensional space \mathcal{U} is a sequence of elements $(f_i)_{i=1}^n$ of \mathcal{U} such that each $f \in \mathcal{U}$ has a unique representation $f = \sum_{i=1}^n a_i f_i$. The number n is the dimension of \mathcal{U} .

Lemma 12.4 Suppose that there are elements $(f_i)_{i=1}^n$ of \mathcal{U} and linear functionals $(a_i)_{i=1}^n$ on \mathcal{U} such that

1) $a_i(f_j) = \delta_{ij}$, 2) $a_i(f) = 0$ all $i \Rightarrow f = 0$.

Then (f_i) is a basis for \mathcal{U} .

Proof. Given f, set $g := \sum_{i=1}^{n} a_i(f) f_i$. Then, by (1), $a_j(g) = a_j(f)$ all j, so that, by (2), g = f, i.e.,

$$f = \sum_{i=1}^{n} a_i(f) f_i \, .$$

If $\sum_{i=1}^{n} b_i f_i$ is another representation, then applying a_j to both ones, we obtain $b_j = a_j(f)$. \Box

Theorem 12.5 *The space* $S_k(\Delta_*)$ *has the basis*

$$s_{0j}(x) := \frac{1}{(k-j)!} (x-a)^{k-j}, \quad j = 1..k;$$

$$s_i(x) := \frac{1}{(k-1)!} (x-\tau_i)^{k-1}_+, \quad i = 1..N;$$

with the dual functionals

$$\begin{aligned} a_{0j}(s) &:= s^{(k-j)}(a), & j = 1..k; \\ a_i(s) &:= s^{(k-1)}(\tau_i +) - s^{(k-1)}(\tau_i -), & i = 1..N. \end{aligned}$$

In particular,

$$\dim \mathcal{S}_k(\Delta_*) = k + N =: n \,.$$

Proof. The duality $a_i(s_j) = \delta_{ij}$ is straightforward. Let $s \in S_k(\Delta_*)$. If $a_i(s) = 0$ for i = 1..N, then $s^{(k-1)}$ is continuous at each τ_i , hence (as $s^{(k-1)}$ is piecewise constant) $s^{(k-1)}$ is a constant, therefore $s \in \mathcal{P}_{k-1}[a, b]$. If also $a_{0j}(s) = 0$, then all the derivatives of s are zeros, hence $s \equiv 0$. \Box

Corollary 12.6 *Each* $s \in S_k(\Delta_*)$ *admits a representation*

$$s(x) = p_{k-1}(x) + \sum_{i=1}^{N} c_i (x - \tau_i)_+^{k-1}.$$
(12.1)

Remark 12.7 The basis of truncated powers is quite inconvenient for numerical computations: the elements have large support, the basis itself is unstable (it becomes almost linear dependent when $\tau_i \rightarrow \tau_{i+1}$). Curry and Schoenberg discovery of the basis of B-splines made a revolution.

12.2 Divided differences

Definition 12.8 (Divided difference) Given $f \in C[a, b]$ and a sequence of (k+1) points (t_0, \ldots, t_k) , the divided difference $f[t_0...t_k]$ of order k is the leading coefficient of the Lagrange polynomial $p \in \mathcal{P}_k$ which interpolates f at these points (i.e., the coefficient at x^k in p(x)). By definition,

$$f[t_0...t_k] = 0$$
 if $f \in \mathcal{P}_{k-1}$, and $[t_0...t_k] x^k = 1$.

Remark 12.9 (Multiple points) If the sequence (t_i) has multiple entries, i.e., if

$$(t_0, t_1, \dots, t_k) := \left(\underbrace{\tau_1, \dots, \tau_1}_{m_1}, \dots, \underbrace{\tau_\ell, \dots, \tau_\ell}_{m_\ell}\right),$$

then $p \in \mathcal{P}_k$ is the Lagrange–Hermite interpolating polynomial to f:

$$p^{(s-1)}(\tau_i) = f^{(s-1)}(\tau_i), \quad s = 1...m_i, \quad i = 1...\ell, \quad \sum m_i = k+1.$$

Properties 12.10 Let us recall some properties of the divided differences.

1) *Explicit formula*. If all the points (t_i) are distinct, then

$$f[t_0...t_k] = \sum_{\nu=0}^k \frac{f(t_{\nu})}{\omega'(t_{\nu})}, \quad \omega(x) = \prod_{\nu=0}^k (x - t_{\nu}).$$

This follows from the representation of the Lagrange polynomial $p(x) = \sum_{\nu=0}^{k} \frac{f(t_{\nu})}{\omega'(t_{\nu})} \frac{\omega(x)}{x-t_{\nu}}$ by identifying its leading coefficient.

2) *Recurrence relation*. The following formula allows to compute the divided difference of any order k adaptively, starting with the values $f[t_i] = f(t_i)$:

$$f[t_0...t_k] = \frac{f[t_1...t_k] - f[t_0...t_{k-1}]}{t_k - t_0}, \quad \forall \ t_0 \neq t_k.$$
(12.2)

This follows from the formula $p(x) = \frac{x-t_0}{t_k-t_0}p_0(x) + \frac{t_k-x_0}{t_k-t_0}p_k(x)$, which relates the Lagrange polynomial p of degree k that interpolates f on $t = (t_i)_{i=0}^k$ with two Lagrange polynomials p_j of degree k-1 that interpolate f on the sets $t \setminus t_j$, respectively.

3) *Convexity.* The previous formula implies that, for $t = (t_0, ..., t_k)$, we also have

$$f[t \setminus t_j] = \gamma f[t \setminus t_k] + (1 - \gamma) f[t \setminus t_0], \quad t_j = \gamma t_k + (1 - \gamma) t_0.$$
(12.3)

4) Leibnitz rule. If h = fg, then

$$h[t_0...t_k] = \sum_{i=0}^k f[t_0...t_i] g[t_i...t_k].$$
(12.4)

12.3 Exercises

- **12.1.** Let $(\ell_i)_{i=0}^n$ be the sequence of Lagrange fundamental polynomials with respect to a sequence of points $(t_i)_{i=0}^n$. Find a set of functionals (a_i) dual to (ℓ_i) .
- **12.2.** Prove that each $s \in S_k(\Delta_*)$ can be also written in the form

$$s(x) = q_{k-1}(x) + \sum_{i=1}^{N} b_i (\tau_i - x)_+^{k-1}$$

(We use $(\tau_i - x)_+^r$ instead of $(x - \tau_i)_+^r$ in (12.1).) What is the relation between b_i and c_i ?

12.3. Consider the space $S = S_2(\Delta_*)$ of linear splines on the knot sequence

$$(\tau_0, \tau_1, \tau_2, \tau_3, \tau_4) = (0, 1, 2, 3, 4)$$

Find the representation of the form (12.1) for $s_i \in S$, where s_i is given by

$$s_i(\tau_j) = \delta_{ij}, \quad j = 0..4, \quad i = 2, 3.$$

- **12.4.** Prove that the Lagrange–Hermite interpolating polynomial exists and is unique.
- **12.5.** Using Rolle's theorem prove that $f[t_0...t_j] = \frac{1}{j!}f^{(j)}(\xi)$ for some $\xi \in [t_0, t_j]$. Hence, from formula (12.4), deduce the Leibnitz rule for derivatives: *If* $f, g \in C^k[a, b]$, *and* h = fg, *then*

$$h^{(k)}(x) := [f(x)g(x)]^{(k)} = \sum_{i=0}^{k} \binom{k}{i} f^{(i)}(x)g^{(k-i)}(x).$$

12.6. Prove the Leibnitz rule by induction. For k = 0, clearly, $h[t_0] = f[t_0]g[t_0]$. Then

$$(t_k - t_0)h[t_0...t_k] = h[t_1...t_k] - h[t_0...t_{k-1}] = \cdots$$