13 B-splines (cont.)

13.1 Basic properties of B-splines

Definition 13.1 (Curry, Schoenberg $\left.{ }^{1}[1966]\right)$ Given $k, n \in \mathbb{N}$, and a knot sequence

$$
\Delta=\left\{a \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n+k}=b\right\}, \quad t_{i}<t_{i+k}
$$

the B-spline sequences $\left(M_{i}\right)_{i=1}^{n}$ and $\left(N_{i}\right)_{i=1}^{n}$ of order k are defined as

$$
\begin{array}{rlrl}
M_{i}(t) & : & k\left[t_{i} \ldots t_{i+k}\right](\cdot-t)_{+}^{k-1} & \\
\left(\text { Normalization } \int M_{i}(t) d t=1\right), \tag{13.1}\\
N_{i}(t) & := & \left(t_{i+k}-t_{i}\right)\left[t_{i} \ldots t_{i+k}\right](\cdot-t)_{+}^{k-1} & \\
M_{i}(t) & = & \frac{k}{t_{i+k-t_{i}}} N_{i}(t) & \\
\text { (Normalization } \left.\sum_{i} N_{i} \equiv 1\right) \\
\text { (Relation). }
\end{array}
$$

Properties 13.2 B-splines have the following properties.

1) Spline structure. B-spline M_{i} is indeed a spline, i.e., a piecewise polynomial function of order k with the knots t_{i}, \ldots, t_{i+k}. In particular, when this knots are distinct, we have the explicit representation

$$
\begin{equation*}
M_{i}(t)=k \sum_{\nu=i}^{i+k} \frac{\left(t_{\nu}-t\right)_{+}^{k-1}}{\omega^{\prime}\left(t_{\nu}\right)} \tag{13.2}
\end{equation*}
$$

which shows that $M_{i} \in \mathcal{S}_{k}(\Delta) \subset C^{k-2}[a, b]$. (If a knot t_{j} appears m times in the sequence $\left(t_{i} \ldots t_{i+k}\right)$, then $M_{i} \in C^{k-1-m}$ in a neighbourhood of t_{j}.) This follows from the formula for divided diffrences.
2) Finite support. B-splines have a finite support

$$
\operatorname{supp} M_{i}=\left[t_{i}, t_{i+k}\right],
$$

because if $t \geq t_{i+k}$, then $(x-t)_{+}^{k-1}=0 \quad$ at $x=t_{i}, \ldots, t_{i+k}$, hence $\left[t_{i} \ldots t_{i+k}\right](x-t)_{+}^{k-1}=0$;
and if $t \leq t_{i}, \quad$ then $(x-t)_{+}^{k-1}=(x-t)^{k-1}$ at $x=t_{i}, \ldots, t_{i+k}$, hence $\left[t_{i} \ldots t_{i+k}\right](x-t)_{+}^{k-1}=0$.
3) Peano kernel for divided difference. If $f \in C^{k}[a, b]$, then taking the Taylor formula

$$
f(x)=p_{k-1}(x)+\frac{1}{(k-1)!} \int_{a}^{b}(x-t)_{+}^{k-1} f^{(k)}(t) d t
$$

and applying divided differences to both sides, we obtain

$$
\begin{equation*}
f\left[t_{i} \ldots t_{i+k}\right]=\frac{1}{k!} \int_{a}^{b} M_{i}(t) f^{(k)}(t) d t \tag{13.3}
\end{equation*}
$$

i.e., B-spline M_{j} is the Peano kernel in the integral representation of the functional $\left[t_{i} \ldots t_{i+k}\right]$.
4) B-splines normalization. For any Δ, the B-splines obey the following normalization conditions

$$
\begin{equation*}
\text { a) } \int_{a}^{b} M_{i}(t) d t=1 \quad \text { b) } \sum_{i} N_{i}(t) \equiv 1, \quad t \in\left[t_{k}, t_{n+1}\right] \tag{13.4}
\end{equation*}
$$

[^0]4a) The first condition follows from (13.3) if we take $f(x)=x^{k}$.
4b) For the second one, we use definition of N_{i} and properties of divided differrences. So,

$$
N_{i}(t):=\left(t_{i+k}-t_{i}\right)\left[t_{i} \ldots t_{i+k}\right](\cdot-t)_{+}^{k-1}=\left(\left[t_{i+1} \ldots t_{i+k}\right]-\left[t_{i} \ldots t_{i+k-1}\right]\right)(\cdot-t)_{+}^{k-1}
$$

thus

$$
\sum_{i=1}^{n} N_{i}(t)=\left(\left[t_{n+1} \ldots t_{n+k}\right]-\left[t_{1} \ldots t_{k}\right]\right)(x-t)_{+}^{k-1}
$$

If $t \geq t_{k}, \quad$ then $(x-t)_{+}^{k-1}=0 \quad$ at $x=t_{1}, \ldots, t_{k}, \quad$ hence $\quad\left[t_{1} \ldots t_{k}\right](x-t)_{+}^{k-1}=0$. If $t \leq t_{n+1}$, then $(x-t)_{+}^{k-1}=(x-t)^{k-1}$ at $x=t_{n+1}, \ldots, t_{n+k}$, hence $\left[t_{n+1} \ldots t_{n+k}\right](x-t)_{+}^{k-1}=1$,
5) Recurrence relation (de Boor ${ }^{2}$ [1972]). The following formula relates two adjacent B-splines of order $k-1$ with the supports $\left[t_{i}, t_{i+k-1}\right]$ and $\left[t_{i+1}, t_{i+k}\right]$ with that of oder k with the overlapping support $\left[t_{i}, t_{i+k}\right]$

$$
\begin{equation*}
\frac{1}{k} M_{i, k}(t)=\frac{1}{k-1}\left[\frac{t-t_{i}}{t_{i+k}-t_{i}} M_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i}} M_{i+1, k-1}(t)\right] \tag{13.5}
\end{equation*}
$$

For the proof, we notice that

$$
(x-t)_{+}^{k-1}=(x-t) \cdot(x-t)_{+}^{k-2}
$$

so it make sense to find a relation between the following Lagrange polynomials:

$$
\begin{array}{lll}
p_{0} \in \mathcal{P}_{k-1} & \text { that interpolates } f(x) & \text { on }\left(t_{0}, t_{1}, \ldots t_{k-1}\right) \\
p_{1} \in \mathcal{P}_{k-1} & \text { that interpolates } f(x) & \text { on }\left(t_{1}, \ldots t_{k-1}, t_{k}\right) \\
p \in \mathcal{P}_{k} & \text { that interpolates }(x-t) f(x) & \text { on }\left(t_{0}, t_{1}, \ldots t_{k-1}, t_{k}\right)
\end{array}
$$

Since

$$
x-t=\gamma_{t}\left(x-t_{k}\right)+\left(1-\gamma_{t}\right)\left(x-t_{0}\right), \quad \gamma_{t}=\frac{t-t_{0}}{t_{k}-t_{0}}, \quad 1-\gamma_{t}=\frac{t_{k}-t}{t_{k}-t_{0}}
$$

it follows that

$$
p(x)=\gamma_{t}\left(x-t_{k}\right) p_{0}(x)+\left(1-\gamma_{t}\right)\left(x-t_{0}\right) p_{1}(x)
$$

Hence, for the divided differences (as they are the leading coefficients) we obtain

$$
\left[t_{0} \ldots t_{k}\right](\cdot-t) f=\gamma_{t}\left[t_{0} \ldots t_{k-1}\right] f+\left(1-\gamma_{t}\right)\left[t_{1} \ldots t_{k}\right] f
$$

so substituting $f(x)=(x-t)_{+}^{k-2}$ and using the definition of the B-splines M we derive (13.5).
From (13.5), using the relation (13.1) between two types of B-splines, one obtains the recurrence formula for N_{i} which is used more often and have a bit different form

$$
\begin{equation*}
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t) \tag{13.6}
\end{equation*}
$$

Notice that that the values at the denominators are the lengths of the corresponding supports.
5) Positivity. Since $N_{i, 1}$ is just a step function with support on $\left[t_{i}, t_{i+1}\right]$, namely

$$
N_{i, 1}:=\chi_{\left[t_{i}, t_{i+1}\right]}= \begin{cases}1, & x \in\left[t_{i}, t_{i+1}\right) \tag{13.7}\\ 0, & \text { otherwise }\end{cases}
$$

the recurrence (13.6) provides immediately finiteness of support of B-splines and their positivity

$$
\operatorname{supp} N_{i, k}=\left[t_{i}, t_{i+k}\right], \quad N_{i, k}>0 \quad \text { on } \quad\left(t_{i}, t_{i+k}\right),
$$

as well as a piecewise polynomial structure. Notice, however, that the continuity conditions at knots do not follow immediately and require additional proof. One can start with (13.6)-(13.7) as a definition of B-splines, and then derive all further properties.

[^1]
13.2 Exercises

13.1. We will write $N_{i}(x)=N\left(x ; t_{i}, \ldots t_{i+k}\right)$ to make the dependence on knots explicit. Using the recurrence relation (13.6), prove that, for the so-called Bernstein knots

$$
\Delta=\left\{t_{-k}=\cdots=t_{-1}=0<1=t_{1}=\cdots=t_{k}\right\}
$$

the corresponding B-splines are

$$
N_{i, k}(x):=N(x ; \underbrace{0 \ldots 0}_{k+1-i}, \underbrace{1 \ldots 1}_{i})=\binom{k-1}{i-1} x^{i-1}(1-x)^{k-i}, \quad i=1, \ldots, k,
$$

i.e., $\left(N_{i, k}\right)$ are the Bernstein basis polynomials (used in the proof of Korovkin theorem). You may assume without the proof that, for all k,

$$
N_{1, k}(x)=(1-x)^{k-1}, \quad N_{k, k}(x)=x^{k}
$$

13.2 Let $t_{k-i}=\cos \frac{\pi i}{k}, i=0 \ldots k$, i.e., t_{k-i} are the points of equioscillation of the Chebyshev polynomial T_{k}. Prove that the spline $M(x):=M\left(x ; t_{0}, \ldots, t_{k}\right)$ is the so-called perfect spline, i.e.,

$$
\left|M^{(k-1)}(x)\right|=\mathrm{const}
$$

Hint. From the formula (15.2) find the value $c_{\nu}:=M_{i}^{(k-1)}(x), x \in\left[t_{\nu}, t_{\nu+1}\right)$. You may need the formula

$$
\left(x^{2}-1\right) T_{n}^{\prime \prime}(x)+x T_{n}^{\prime}(x)=n^{2} T_{n}(x)
$$

[^0]: ${ }^{1}$ Isaaac Schoenberg (1903-1990), the father of the spline theory, it was his paper of 1946 where the word spline appeared, in 1930 married E. Landau's daughter Charlotte in Berlin, this was not his only mathematical connection by marriage since his sister married Hans Rademacher.

[^1]: ${ }^{2}$ Carl de Boor, b.1937, another father of spline theory, his web-site at www.cs.wisc.edu/~ deboor/deboor.html is worth of visiting, actually the spline part of this course follows his notes.

