Part III - Lent Term 2005 Approximation Theory – Lecture 14

14 B-splines (cont.)

14.1 B-splines as basis functions

Definition 14.1 Given $\Delta = (t_i)_{i=1}^{n+k}$, let ω_i , ψ_i and $\ell_i(\cdot, t)$ be polynomials in \mathcal{P}_{k-1} defined as

- 1) $\omega_i(x) := (x t_{i+1}) \cdots (x t_{i+k-1}),$
- 2) $\psi_i(x) := \frac{1}{(k-1)!} \omega_i(x)$ (to avoid factorials),
- 3) $\ell_i(\cdot, t)$ interpolates $(\cdot t)^{k-1}_+$ on $x = t_i, ..., t_{i+k-1}$.

Lemma 14.2 (Lee's formula) For any $\Delta = (t_i)_{i=1}^{n+k}$, we have

$$\omega_i(x)N_i(t) = \ell_{i+1}(x,t) - \ell_i(x,t), \quad \forall x,t \in \mathbb{R}.$$
(14.1)

Proof. For a fixed t, the difference on the right-hand side of (14.1), as a function of x, is a polynomial of degree k - 1 that is equal to zero at $x = t_{i+1}, ..., t_{i+k-1}$, hence

$$\ell_{j+1}(\cdot, t) - \ell_j(\cdot, t) = c(t)\omega_i(\cdot) \, .$$

The value of the constant c(t) is the leading coefficient of this polynomial, i.e., the difference of leading coefficients of polynomials $\ell_{i+1}(\cdot, t)$ and $\ell_i(\cdot, t)$. These are, however, the Lagrange interpolants to $(\cdot - t)^{k-1}_+$, therefore their leading coefficients are just corresponding divided differences, hence

$$c(t) = ([t_{i+1}...t_{i+k}] - [t_i...t_{i+k-1}])(\cdot - t)_+^{k-1} =: N_i(t).$$

Proposition 14.3 (Marsden's identity) For any $k, n \in \mathbb{N}$, and for any knot sequence $\Delta = (t_i)_{i=1}^{n+k}$,

$$(x-t)^{k-1} = \sum_{i=1}^{n} \omega_i(x) N_i(t), \quad t_k \le t \le t_{n+1}, \quad \forall x \in \mathbb{R}.$$
 (14.2)

Proof. Summing both sides of Lee's formula (14.1), we obtain

$$\sum_{i=1}^{n} \omega_i(x) N_i(t) = \sum_{i=1}^{n} \ell_{i+1}(x,t) - \ell_i(x,t) = \ell_{n+1}(x,t) - \ell_1(x,t).$$

Further arguments are similar to those used for proving $\sum_i N_i \equiv 1$ in (13.4). We have

$$\ell_1(\cdot, t) \quad \text{interpolates } (\cdot - t)_+^{k-1} \text{ at } x = t_1, ..., t_k$$
$$\ell_{n+1}(\cdot, t) \quad \text{interpolates } (\cdot - t)_+^{k-1} \text{ at } x = t_{n+1}, ..., t_{n+k};$$

so that

if
$$t \ge t_k$$
, then $\ell_1(x) = (x-t)_+^{k-1} = 0$ at $x = t_1, ..., t_k$, hence $\ell_1(x, t) \equiv 0$;
if $t \le t_{n+1}$, then $\ell_{n+1}(x) = (x-t)_+^{k-1} = (x-t)^{k-1}$ at $x = t_{n+1}, ..., t_{n+k}$, hence $\ell_{n+1}(x, t) \equiv (x-t)^{k-1}$.

This proves the statement.

Corollary 14.4 The polynomials $\mathcal{P}_{k-1}[t_k, t_{n+1}]$ belong to $\operatorname{span}(N_i)_{i=1}^n$

Proof. With $\psi_i := \frac{1}{(k-1)!} \omega_i$, the Marsden identity (14.2) takes the form $\frac{(x-t)^{k-1}}{(k-1)!} = \sum_{i=1}^n \psi_i(x) N_i(t)$. On differentiating this relation m-1 times with respect to x, and interchanging x and t on the left-hand side, we obtain

$$\frac{1}{(k-m)!}(t-x)^{k-m} = \sum_{i=1}^{n} (-1)^{k-m} \psi_i^{(m-1)}(x) N_i(t), \quad m = 1, \dots, k.$$
(14.3)

In particular, $\{(t-a)^{k-m}\}_{m=1}^k$, hence all polynomials of degree k-1, belong to $\operatorname{span}(N_i)_{i=1}^n$ on $[t_k, t_{n+1}]$.

Example 14.5 Here are two special cases of (14.3) of particular interest.

1) For m = k, as $\psi_i^{(k-1)} \equiv 1$, we are getting the already familiar equality

$$1 \equiv \sum_{i=1}^{n} N_i(t), \quad t \in [t_k, t_{n+1}],$$

which reminds once again that the B-splines (N_i) form a partition of unity,

2) For m = k - 1, we obtain the following relation

$$t - x = \sum_{i=1}^{n} (-1) \left[x - \frac{t_{i+1} + \dots + t_{i+k-1}}{k-1} \right] N_i(t),$$

which implies that for all *linear* polynomials $p(t) = a_1 t + a_0$, with the notation $t_i^* := \frac{t_{i+1} + \dots + t_{i+k-1}}{k-1}$, we have the equality

$$p(t) = \sum_{i=1}^{n} p(t_i^*) N_i(t), \qquad \forall p \in \mathcal{P}_1.$$
(14.4)

Corollary 14.6 If t_j are distinct, then the truncated power $(t - t_j)_+^{k-1}$ belongs to span $(N_i)_{i=1}^n$

Proof. In (14.3), take $x = t_j$ and m = 1. If $t_i < t_j < t_{i+k}$, then $\psi_i(t_j) = 0$, hence

$$\frac{1}{(k-1)!}(t-t_j)^{k-1} = \left(\sum_{i+k \le j} + \sum_{i \ge j}\right)(-1)^{k-1}\psi_i(t_j)N_i(t).$$

For $t \ge t_j$, since the B-splines $(N_i)_{i+k \le j}$ have supports to the left of t_j , the first sum vanishes. On the other hand, the remaining second sum vanishes for $t \le t_j$. Hence,

$$\frac{1}{(k-1)!}(t-t_j)_+^{k-1} = \sum_{i \ge j} (-1)^{k-1} \psi_i(t_j) N_i(t).$$

Theorem 14.7 The B-spline sequence $(N_i)_{i=1}^n$ on Δ forms a basis for the space $\mathcal{S}_k(\Delta_*)$ where

 $\Delta_*: \qquad a = \tau_0 < \tau_1 < \dots < \tau_N < \tau_{N+1} = b$ $\Delta: \quad t_1 \le \dots \le t_{k-1} \le a = t_k < t_{k+1} < \dots < t_n < t_{n+1} = b \le t_{n+1} \le \dots \le t_{n+k}$

Proof. We have just proved that each element of the basis of truncated powers

$$s_{0j}(x) := \frac{1}{(k-j)!} (x-a)^{k-j}, \quad j = 1...k;$$

$$s_i(x) := \frac{1}{(k-1)!} (x-\tau_i)^{k-j}_+, \quad i = 1...N;$$

(which is a basis by Theorem 12.5) is spanned by $(N_i)_{i=1}^n$. Since the number of functions in both sequences is equal (to n = N + k), the B-spline sequence is a basis, too.

14.2 Exercises

14.1. More about B-splines. From the definition (13.1), derive that

$$N_{i,k}'(t) = M_{i,k-1}(t) - M_{i+1,k-1}(t)$$

whence, using the recurrence relation (13.6), show that

$$N_{i,k}^{(m)}(t) = \frac{k-m}{k} \left[\frac{t-t_i}{t_{i+k-1}-t_0} N_{i,k-1}^{(m)}(t) + \frac{t_{i+k}-t}{t_{i+k}-t_1} N_{i+1,k-1}^{(m)}(t) \right].$$

14.2. Let (t_i) be the integer knot sequence, i.e., $t_i = i$. Prove that

$$N_i^{(k-1)}(t) = \operatorname{const}(-1)^m \binom{k-1}{m}, \quad t \in (t_{i+m}, t_{i+m+1})$$

Of course, you need to take only one particular *i*, say i = 0, since the corresponding B-spline sequence (N_i) is *shift invariant*, i.e., $N_i(t) = N_{i-1}(t-1)$.

14.3. Denote by $t_i^{(r)}$ the elementary symmetric f-ns of k-1 variables $t_{i+1}, ..., t_{i+k-1}$ of degree r,

 $\begin{aligned} t_i^{(0)} &= 1, \\ t_i^{(1)} &= t_{i+1} + \dots + t_{i+k-1}, \\ t_i^{(2)} &= t_{i+1}t_{i+2} + t_{i+1}t_{i+3} + \dots + t_{i+k-2}t_{i+k-1}, \\ \dots \\ t_i^{(k-1)} &= t_{i+1}t_{i+2} \cdots + t_{i+k-1}. \end{aligned}$

Derive from the Marsden identity that monomials $(\cdot)^r$ have the representation

$$t^{r} = \sum_{i=1}^{n} {\binom{k-1}{r}}^{-1} t_{i}^{(r)} N_{i}(t).$$