Part III - Lent Term 2005
Approximation Theory - Lecture 14

14 B-splines (cont.)

14.1 B-splines as basis functions

Definition 14.1 Given $\Delta=\left(t_{i}\right)_{i=1}^{n+k}$, let ω_{i}, ψ_{i} and $\ell_{i}(\cdot, t)$ be polynomials in \mathcal{P}_{k-1} defined as

1) $\omega_{i}(x):=\left(x-t_{i+1}\right) \cdots\left(x-t_{i+k-1}\right)$,
2) $\quad \psi_{i}(x):=\frac{1}{(k-1)!} \omega_{i}(x)$ (to avoid factorials),
3) $\quad \ell_{i}(\cdot, t)$ interpolates $(\cdot-t)_{+}^{k-1}$ on $x=t_{i}, \ldots, t_{i+k-1}$.

Lemma 14.2 (Lee's formula) For any $\Delta=\left(t_{i}\right)_{i=1}^{n+k}$, we have

$$
\begin{equation*}
\omega_{i}(x) N_{i}(t)=\ell_{i+1}(x, t)-\ell_{i}(x, t), \quad \forall x, t \in \mathbb{R} \tag{14.1}
\end{equation*}
$$

Proof. For a fixed t, the difference on the right-hand side of (14.1), as a function of x, is a polynomial of degree $k-1$ that is equal to zero at $x=t_{i+1}, \ldots, t_{i+k-1}$, hence

$$
\ell_{j+1}(\cdot, t)-\ell_{j}(\cdot, t)=c(t) \omega_{i}(\cdot)
$$

The value of the constant $c(t)$ is the leading coefficient of this polynomial, i.e., the difference of leading coefficients of polynomials $\ell_{i+1}(\cdot, t)$ and $\ell_{i}(\cdot, t)$. These are, however, the Lagrange interpolants to $(\cdot-t)_{+}^{k-1}$, therefore their leading coefficients are just corresponding divided differences, hence

$$
c(t)=\left(\left[t_{i+1} \ldots t_{i+k}\right]-\left[t_{i} \ldots t_{i+k-1}\right]\right)(\cdot-t)_{+}^{k-1}=: N_{i}(t) .
$$

Proposition 14.3 (Marsden's identity) For any $k, n \in \mathbb{N}$, and for any knot sequence $\Delta=\left(t_{i}\right)_{i=1}^{n+k}$,

$$
\begin{equation*}
(x-t)^{k-1}=\sum_{i=1}^{n} \omega_{i}(x) N_{i}(t), \quad t_{k} \leq t \leq t_{n+1}, \quad \forall x \in \mathbb{R} \tag{14.2}
\end{equation*}
$$

Proof. Summing both sides of Lee's formula (14.1), we obtain

$$
\sum_{i=1}^{n} \omega_{i}(x) N_{i}(t)=\sum_{i=1}^{n} \ell_{i+1}(x, t)-\ell_{i}(x, t)=\ell_{n+1}(x, t)-\ell_{1}(x, t)
$$

Further arguments are similar to those used for proving $\sum_{i} N_{i} \equiv 1$ in (13.4). We have

$$
\begin{aligned}
\ell_{1}(\cdot, t) & \text { interpolates }(\cdot-t)_{+}^{k-1} \text { at } x=t_{1}, \ldots, t_{k} \\
\ell_{n+1}(\cdot, t) & \text { interpolates }(\cdot-t)_{+}^{k-1} \text { at } x=t_{n+1}, \ldots, t_{n+k}
\end{aligned}
$$

so that
if $t \geq t_{k}, \quad$ then $\quad \ell_{1}(x)=(x-t)_{+}^{k-1}=0 \quad$ at $x=t_{1}, \ldots, t_{k}, \quad$ hence $\ell_{1}(x, t) \equiv 0$; if $t \leq t_{n+1}$, then $\ell_{n+1}(x)=(x-t)_{+}^{k-1}=(x-t)^{k-1}$ at $x=t_{n+1}, \ldots, t_{n+k}$, hence $\ell_{n+1}(x, t) \equiv(x-t)^{k-1}$.

This proves the statement.
Corollary 14.4 The polynomials $\mathcal{P}_{k-1}\left[t_{k}, t_{n+1}\right]$ belong to $\operatorname{span}\left(N_{i}\right)_{i=1}^{n}$

Proof. With $\psi_{i}:=\frac{1}{(k-1)!} \omega_{i}$, the Marsden identity (14.2) takes the form $\frac{(x-t)^{k-1}}{(k-1)!}=\sum_{i=1}^{n} \psi_{i}(x) N_{i}(t)$. On differentiating this relation $m-1$ times with respect to x, and interchanging x and t on the left-hand side, we obtain

$$
\begin{equation*}
\frac{1}{(k-m)!}(t-x)^{k-m}=\sum_{i=1}^{n}(-1)^{k-m} \psi_{i}^{(m-1)}(x) N_{i}(t), \quad m=1, \ldots, k \tag{14.3}
\end{equation*}
$$

In particular, $\left\{(t-a)^{k-m}\right\}_{m=1}^{k}$, hence all polynomials of degree $k-1$, belong to $\operatorname{span}\left(N_{i}\right)_{i=1}^{n}$ on $\left[t_{k}, t_{n+1}\right]$.

Example 14.5 Here are two special cases of (14.3) of particular interest.

1) For $m=k$, as $\psi_{i}^{(k-1} \equiv 1$, we are getting the already familiar equality

$$
1 \equiv \sum_{i=1}^{n} N_{i}(t), \quad t \in\left[t_{k}, t_{n+1}\right]
$$

which reminds once again that the B-splines $\left(N_{i}\right)$ form a partition of unity,
2) For $m=k-1$, we obtain the following relation

$$
t-x=\sum_{i=1}^{n}(-1)\left[x-\frac{t_{i+1}+\cdots+t_{i+k-1}}{k-1}\right] N_{i}(t)
$$

which implies that for all linear polynomials $p(t)=a_{1} t+a_{0}$, with the notation $t_{i}^{*}:=\frac{t_{i+1}+\cdots+t_{i+k-1}}{k-1}$, we have the equality

$$
\begin{equation*}
p(t)=\sum_{i=1}^{n} p\left(t_{i}^{*}\right) N_{i}(t), \quad \forall p \in \mathcal{P}_{1} \tag{14.4}
\end{equation*}
$$

Corollary 14.6 If t_{j} are distinct, then the truncated power $\left(t-t_{j}\right)_{+}^{k-1}$ belongs to span $\left(N_{i}\right)_{i=1}^{n}$
Proof. In (14.3), take $x=t_{j}$ and $m=1$. If $t_{i}<t_{j}<t_{i+k}$, then $\psi_{i}\left(t_{j}\right)=0$, hence

$$
\frac{1}{(k-1)!}\left(t-t_{j}\right)^{k-1}=\left(\sum_{i+k \leq j}+\sum_{i \geq j}\right)(-1)^{k-1} \psi_{i}\left(t_{j}\right) N_{i}(t)
$$

For $t \geq t_{j}$, since the B-splines $\left(N_{i}\right)_{i+k \leq j}$ have supports to the left of t_{j}, the first sum vanishes. On the other hand, the remaining second sum vanishes for $t \leq t_{j}$. Hence,

$$
\frac{1}{(k-1)!}\left(t-t_{j}\right)_{+}^{k-1}=\sum_{i \geq j}(-1)^{k-1} \psi_{i}\left(t_{j}\right) N_{i}(t)
$$

Theorem 14.7 The B-spline sequence $\left(N_{i}\right)_{i=1}^{n}$ on Δ forms a basis for the space $\mathcal{S}_{k}\left(\Delta_{*}\right)$ where

$$
\begin{aligned}
& \Delta_{*}: \\
& \Delta: \quad t_{1} \leq \cdots \leq \tau_{0}<\tau_{1} \leq \cdots<\tau_{N}<\tau_{N+1}=b \\
& \Delta=t_{k}<t_{k+1}<\cdots<t_{n}<t_{n+1}=b \leq t_{n+1} \leq \cdots \leq t_{n+k}
\end{aligned}
$$

Proof. We have just proved that each element of the basis of truncated powers

$$
\begin{array}{ll}
s_{0 j}(x):=\frac{1}{(k-j)!}(x-a)^{k-j}, & j=1 \ldots k \\
s_{i}(x):=\frac{1}{(k-1)!}\left(x-\tau_{i}\right)_{+}^{k-j}, & i=1 \ldots N
\end{array}
$$

(which is a basis by Theorem 12.5) is spanned by $\left(N_{i}\right)_{i=1}^{n}$. Since the number of functions in both sequences is equal (to $n=N+k$), the B-spline sequence is a basis, too.

14.2 Exercises

14.1. More about B-splines. From the definition (13.1), derive that

$$
N_{i, k}^{\prime}(t)=M_{i, k-1}(t)-M_{i+1, k-1}(t)
$$

whence, using the recurrence relation (13.6), show that

$$
N_{i, k}^{(m)}(t)=\frac{k-m}{k}\left[\frac{t-t_{i}}{t_{i+k-1}-t_{0}} N_{i, k-1}^{(m)}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{1}} N_{i+1, k-1}^{(m)}(t)\right]
$$

14.2. Let $\left(t_{i}\right)$ be the integer knot sequence, i.e., $t_{i}=i$. Prove that

$$
N_{i}^{(k-1)}(t)=\mathrm{const}(-1)^{m}\binom{k-1}{m}, \quad t \in\left(t_{i+m}, t_{i+m+1}\right)
$$

Of course, you need to take only one particular i, say $i=0$, since the corresponding B-spline sequence $\left(N_{i}\right)$ is shift invariant, i.e., $N_{i}(t)=N_{i-1}(t-1)$.
14.3. Denote by $t_{i}^{(r)}$ the elementary symmetric f-ns of $k-1$ variables $t_{i+1}, . ., t_{i+k-1}$ of degree r,

$$
\begin{aligned}
& t_{i}^{(0)}=1 \\
& t_{i}^{(1)}=t_{i+1}+\cdots+t_{i+k-1} \\
& t_{i}^{(2)}=t_{i+1} t_{i+2}+t_{i+1} t_{i+3}+\cdots t_{i+k-2} t_{i+k-1} \\
& \cdots \\
& t_{i}^{(k-1)}=t_{i+1} t_{i+2} \cdots t_{i+k-1}
\end{aligned}
$$

Derive from the Marsden identity that monomials $(\cdot)^{r}$ have the representation

$$
t^{r}=\sum_{i=1}^{n}\binom{k-1}{r}^{-1} t_{i}^{(r)} N_{i}(t)
$$

