
Part III - Lent Term 2005

Approximation Theory – Lecture 14

14 B-splines (cont.)

14.1 B-splines as basis functions

Definition 14.1 Given ∆ = (ti)
n+k
i=1 , let ωi, ψi and `i(·, t) be polynomials in Pk−1 defined as

1) ωi(x) := (x−ti+1) · · · (x−ti+k−1),

2) ψi(x) := 1
(k−1)!ωi(x) (to avoid factorials),

3) `i(·, t) interpolates (· − t)k−1
+ on x = ti, ..., ti+k−1.

Lemma 14.2 (Lee’s formula) For any ∆ = (ti)
n+k
i=1 , we have

ωi(x)Ni(t) = `i+1(x, t) − `i(x, t), ∀x, t ∈ R . (14.1)

Proof. For a fixed t, the difference on the right-hand side of (14.1), as a function of x, is a polyno-
mial of degree k − 1 that is equal to zero at x = ti+1, ..., ti+k−1, hence

`j+1(·, t) − `j(·, t) = c(t)ωi(·) .

The value of the constant c(t) is the leading coefficient of this polynomial, i.e., the difference of
leading coefficients of polynomials `i+1(·, t) and `i(·, t). These are, however, the Lagrange inter-
polants to (·−t)k−1

+ , therefore their leading coefficients are just corresponding divided differences,
hence

c(t) = ([ti+1...ti+k] − [ti...ti+k−1])(· − t)k−1
+ =: Ni(t).

Proposition 14.3 (Marsden’s identity) For any k, n ∈ N, and for any knot sequence ∆ = (ti)
n+k
i=1 ,

(x− t)k−1 =

n
∑

i=1

ωi(x)Ni(t), tk ≤ t ≤ tn+1, ∀x ∈ R. (14.2)

Proof. Summing both sides of Lee’s formula (14.1), we obtain

n
∑

i=1

ωi(x)Ni(t) =

n
∑

i=1

`i+1(x, t) − `i(x, t) = `n+1(x, t) − `1(x, t).

Further arguments are similar to those used for proving
∑

iNi ≡ 1 in (13.4). We have

`1(·, t) interpolates (· − t)k−1
+ at x = t1, ..., tk

`n+1(·, t) interpolates (· − t)k−1
+ at x = tn+1, ..., tn+k;

so that

if t ≥ tk, then `1(x) = (x−t)k−1
+ = 0 at x = t1, ..., tk, hence `1(x, t) ≡ 0;

if t ≤ tn+1, then `n+1(x) = (x−t)k−1
+ =(x−t)k−1 at x = tn+1, ..., tn+k, hence `n+1(x, t) ≡ (x−t)k−1.

This proves the statement. �

Corollary 14.4 The polynomials Pk−1[tk, tn+1] belong to span(Ni)
n
i=1
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Proof. With ψi := 1
(k−1)!ωi, the Marsden identity (14.2) takes the form (x−t)k−1

(k−1)! =
∑n

i=1 ψi(x)Ni(t).

On differentiating this relation m − 1 times with respect to x, and interchanging x and t on the
left-hand side, we obtain

1

(k −m)!
(t− x)k−m =

n
∑

i=1

(−1)k−mψ
(m−1)
i (x)Ni(t), m = 1, ..., k. (14.3)

In particular, {(t − a)k−m}k
m=1, hence all polynomials of degree k − 1, belong to span(Ni)

n
i=1 on

[tk, tn+1].

Example 14.5 Here are two special cases of (14.3) of particular interest.

1) For m = k, as ψ
(k−1
i ≡ 1, we are getting the already familiar equality

1 ≡

n
∑

i=1

Ni(t), t ∈ [tk, tn+1],

which reminds once again that the B-splines (Ni) form a partition of unity,
2) For m = k − 1, we obtain the following relation

t− x =

n
∑

i=1

(−1)

[

x−
ti+1 + · · · + ti+k−1

k − 1

]

Ni(t),

which implies that for all linear polynomials p(t) = a1t+a0, with the notation t∗i := ti+1+ ···+ti+k−1

k−1 ,
we have the equality

p(t) =

n
∑

i=1

p(t∗i )Ni(t), ∀p ∈ P1. (14.4)

Corollary 14.6 If tj are distinct, then the truncated power (t− tj)
k−1
+ belongs to span(Ni)

n
i=1

Proof. In (14.3), take x = tj and m = 1. If ti < tj < ti+k, then ψi(tj) = 0, hence

1

(k − 1)!
(t− tj)

k−1 =
(

∑

i+k≤j

+
∑

i≥j

)

(−1)k−1ψi(tj)Ni(t).

For t ≥ tj , since the B-splines (Ni)i+k≤j have supports to the left of tj , the first sum vanishes. On
the other hand, the remaining second sum vanishes for t ≤ tj . Hence,

1

(k − 1)!
(t− tj)

k−1
+ =

∑

i≥j

(−1)k−1ψi(tj)Ni(t).

Theorem 14.7 The B-spline sequence (Ni)
n
i=1 on ∆ forms a basis for the space Sk(∆∗) where

∆∗ : a = τ0 < τ1 < · · · < τN < τN+1 = b

∆ : t1 ≤ · · · ≤ tk−1 ≤ a = tk < tk+1 < · · · < tn < tn+1 = b ≤ tn+1 ≤ · · · ≤ tn+k

Proof. We have just proved that each element of the basis of truncated powers

s0j(x) := 1
(k−j)! (x− a)k−j , j = 1...k ;

si(x) := 1
(k−1)! (x− τi)

k−j
+ , i = 1...N ;

(which is a basis by Theorem 12.5) is spanned by (Ni)
n
i=1. Since the number of functions in both

sequences is equal (to n = N + k), the B-spline sequence is a basis, too. �
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14.2 Exercises

14.1. More about B-splines. From the definition (13.1), derive that

N ′
i,k(t) = Mi,k−1(t) −Mi+1,k−1(t)

whence, using the recurrence relation (13.6), show that

N
(m)
i,k (t) =

k −m

k

[

t− ti

ti+k−1 − t0
N

(m)
i,k−1(t) +

ti+k − t

ti+k − t1
N

(m)
i+1,k−1(t)

]

.

14.2. Let (ti) be the integer knot sequence, i.e., ti = i. Prove that

N
(k−1)
i (t) = const (−1)m

(

k − 1

m

)

, t ∈ (ti+m, ti+m+1)

Of course, you need to take only one particular i, say i = 0, since the corresponding B-spline
sequence (Ni) is shift invariant, i.e., Ni(t) = Ni−1(t− 1).

14.3. Denote by t
(r)
i the elementary symmetric f-ns of k−1 variables ti+1, .., ti+k−1 of degree r,

t
(0)
i = 1,

t
(1)
i = ti+1 + · · · + ti+k−1,

t
(2)
i = ti+1ti+2 + ti+1ti+3 + · · · ti+k−2ti+k−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t
(k−1)
i = ti+1ti+2 · · · ti+k−1.

Derive from the Marsden identity that monomials (·)r have the representation

tr =
∑n

i=1

(

k−1
r

)−1
t
(r)
i Ni(t).
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