Part III - Lent Term 2005 Approximation Theory – Lecture 15

15 Dual functionals

15.1 Construction

In this section, given a knot-sequence $(t_i)_{i=1}^{n+k}$ and the B-splines $(N_i)_{i=1}^n$, we construct a sequence of dual functionals (μ_i) such that

$$\mu_i(N_j) = \delta_{ij} \, .$$

We will seek such functionals in the form

$$\mu_i(f) = \int_a^b f(t)\phi_i(t) \, dt,$$

and moreover we will require later from a function ϕ_i to have support in $[t_i, t_{i+k}]$, so that the range of integration in the right-hand side will be actually $\int_{t_i}^{t_{i+k}}$. To proceed further, we recall that the B-spline $M_j = cN_j$ is the Peano kernel in the integral representation of the divided difference $[t_j...t_{j+k}]$, i.e., for any $h \in C^k[a, b]$,

$$\int_{a}^{b} M_{j}(t)h^{(k)}(t) = k! h[t_{j}...t_{j+k}]$$

So, it make sense to consider ϕ_i in the form $\phi_i = h_i^{(k)}$, and then look for a particular h_i whose divided differences vanish for all sets $[t_j...t_{j+k}]$ but one.

Lemma 15.1 *Given* $\Delta = (t_i)$ *, let* h_i *be a function such that* $h_i \in C^k[a, b]$ *and*

$$h_i(t_j) = 0 \quad t_j \le t_{i+k-1}; \qquad h_i(t_j) = \psi_i(t_j) \quad t_j \ge t_{i+1}.$$
 (15.1)

Then the functional $\mu_i : C[a, b] \to \mathbb{R}$ given by the rule

$$\mu_i(f) := \int_a^b \phi_i(t) f(t) \, dt, \quad \phi_i = h_i^{(k)}$$

satisfies $\mu_i(N_j) = \delta_{ij}$.

Proof. We have

$$\mu_i(N_j) = \int_a^b N_j(t) h_i^{(k)}(t) \, dt = c_j \, \frac{1}{k!} \int_a^b M_j(t) h_i^{(k)}(t) \, dt = c_j \, h_i[t_j \dots t_{j+k}],$$

where $c_j = (t_{j+k} - t_j)(k-1)!$. But, due to definition (15.1), all the divided differences $h_i[t_j...t_{j+k}]$ vanish except that for j = i. Indeed, if $t_j \le t_{i-1}$, or $t_j \ge t_{i+1}$, then the values $h_i(t_j), ..., h_i(t_{j+k})$ coincide with the values of an algebraic polynomial p of degree k - 1, namely $p \equiv 0$ or $p = \psi_i$, respectively, hence the corresponding divided difference of order k is zero. For j = i we have

$$(t_{i+k} - t_i) h_i[t_i \dots t_{i+k}] = h_i[t_{i+1} \dots t_{i+k}] - h_i[t_i \dots t_{i+k-1}] = \psi_i[t_{i+1} \dots t_{i+k}] = 1/(k-1)!$$

whence $c_i h_i [t_i \dots t_{i+k}] = 1$.

Remark 15.2 The simplest way to construct a function h_i satisfying (15.1) is to set

$$h_i(x) \equiv 0, \quad x \le \eta_i; \qquad h_i(x) = \psi_i(x), \quad x \ge \xi_i, \qquad \eta_i, \xi_i \in [t_i, t_{i+k}],$$
 (15.2)

and then to blend smoothly the values in between by posing the conditions

$$h_i^{(m-1)}(\eta_i) = 0, \quad h_i^{(m-1)}(\xi_i) = \psi_i^{(m-1)}(\xi_i), \quad m = 1, ..., k,$$
 (15.3)

(and adding the conditions $h_i(x) = 0$ at $x = t_{i+1}, ..., t_{i+k-1}$, when necessary). This construction will also provide

$$\operatorname{upp} \phi_i = \operatorname{supp} h_i^{(k)} = [\eta_i, \xi_i] \subset [t_i, t_{i+k}]$$

because by (15.2) the function h_i coincide with a polynomial of degree k - 1 on either side of $[t_i, t_{i+k}]$.

Lemma 15.3 Let $p \in \mathcal{P}_{k-1}$. Then the functional μ_i defined by (15.3) satisfies

 $\mathbf{S1}$

$$\mu_i(p) = \sum_{m=1}^k (-1)^{k-m} \psi_i^{(m-1)}(\xi) p^{(k-m)}(\xi) =: \lambda_i(p,\xi),$$
(15.4)

Proof. Integrating by parts gives

$$\mu_i(f) = \int_{\eta}^{\xi} p(t)h^{(k)}(t) dt = \left[p(t)h^{(k-1)}(t) - p'(t)h^{(k-2)}(t) + \dots + (-1)^{k-1}p^{(k-1)}(t)h(t) \right]_{t=\eta}^{t=\xi},$$

where the integral remainder vanishes because $p^{(k)} \equiv 0$. It remains to notice that, by definition, at ξ all derivatives of h coincide with those of ψ , while at η they are equal to zero.

Remark 15.4 The functionals $\lambda_i(f, x)$ defined by (15.4) are called the de Boor-Fix functionals.

15.2 Boundedness of the functionals μ_i

Take $[\eta_i, \xi_i] = [t_i, t_{i+k}]$. The simplest way to construct a function h_i satisfying (15.2)-(15.3) is to set

$$h_i(x) := g_i(x)\psi_i(x),$$

where $g_i \in C^k[a, b]$ is obtained from any fixed function g by the formula

$$g_i(x) = g(\frac{x - t_i}{t_{i+k} - t_i}), \quad g(x) = \begin{cases} 0, & k \text{-fold at } x = 0; \\ 1, & k \text{-fold at } x = 1. \end{cases}$$
(15.5)

(Fulfillment of (15.3) can be verified by using the Leibnitz rule).

Theorem 15.5 The functionals

$$\mu_i(f) = \int_{t_i}^{t_{i+k}} \phi_i(t) f(t) \, dt, \quad \phi_i := [g_i \psi_i]^{(k)},$$

form a dual basis to the B-spline basis (N_i) , and they admit the estimate

$$|\mu_i(f)| \le c_k |I_i|^{-1/p} ||f||_{L_p(I_i)}, \quad I_i = [t_i, t_{i+k}].$$

In particular, they are bounded linear functionals on $C(I_i)$.

Proof. From the Leibnitz rule, we find

$$|\phi_i(x)| := [g_i(x)\psi_i(x)]^{(k)} \le 2^k \max_{0 \le m \le k} |g_i^{(m)}(x)| |\psi_i^{(k-m)}(x)|.$$

The first factor, as a derivative of a composite function, admits the estimate

$$|g_i^{(m)}(x)| = |g^{(m)}(x)| |t_{i+k} - t_i|^{-m} \le c_k |t_{i+k} - t_i|^{-m},$$

where the constant c_k is a bound for the first k derivatives of the function g. The second factor is a polynomial of degree m - 1 with leading coefficient $a_{m-1} = \frac{1}{(m-1)!}$ and with all its zeros, say x_j , lying inside $[t_i, t_{i+k}]$. Hence,

$$|\psi_i^{(k-m)}(x)| = a_{m-1}|(x-x_1)\cdots(x-x_{m-1})| \le |t_{i+k}-t_i|^{m-1}.$$

Therefore $\|\phi_i\|_{L_{\infty}(I_i)} \leq c_k |I_i|^{-1}$, and

$$|\phi_i||_{L_q(I_i)} \le |I_i|^{1/q} ||\phi_i||_{L_\infty(I_i)} \le c_k |I_i|^{1/q-1} = c_k |I_i|^{-1/p}, \quad 1/p + 1/q = 1.$$

By Hölder inequality $|\int \phi f| \le ||\phi||_q ||f||_p$, whence the statement.

15.3 Exercises

15.1. For some functions f, g and for some $x \in \mathbb{R}$, define the functional

$$\lambda(f,g,x) := \sum_{m=1}^{k} (-1)^{k-m} g^{(m-1)}(x) f^{(k-m)}(x),$$

whenever the right-hand side exists. If we take $g(x) = \psi_i(x)$, then we obtain the de Boor–Fix functional $\lambda_i(f, x) := \lambda(\psi_i, f, x)$ (see formula 15.4).

Prove that, for any two polynomials $p, q \in \mathcal{P}_{k-1}$, the functional $\lambda(p, q, x)$ is independent of x, i.e.,

$$\lambda(p, q, x) \equiv \operatorname{const}(p, q).$$

15.2. Prove that the formula (15.4) remains valid for splines in $S_k(\Delta)$, i.e., that the functional μ_i defined by (15.3) also satisfies

$$\mu_i(s) = \sum_{m=1}^k (-1)^{k-m} \psi_i^{(m-1)}(\xi) s^{(k-m)}(\xi) =: \lambda_i(s,\xi), \quad \forall \xi \in [t_i, t_{i+k}].$$

15.3. Derive formula (15.4) from identities (14.3).

Hint. Put identities (14.3) in the Taylor expansion of p(t) at x

$$p(t) = \sum_{j=0}^{k-1} \frac{1}{j!} (t-x)^j p^{(j)}(x) = \sum_{m=1}^k p^{(k-m)}(x) \frac{(t-x)^{k-m}}{(k-m)!} = \dots =$$