Part III - Lent Term 2005
 Approximation Theory - Lecture 15

15 Dual functionals

15.1 Construction

In this section, given a knot-sequence $\left(t_{i}\right)_{i=1}^{n+k}$ and the B-splines $\left(N_{i}\right)_{i=1}^{n}$, we construct a sequence of dual functionals $\left(\mu_{i}\right)$ such that

$$
\mu_{i}\left(N_{j}\right)=\delta_{i j}
$$

We will seek such functionals in the form

$$
\mu_{i}(f)=\int_{a}^{b} f(t) \phi_{i}(t) d t
$$

and moreover we will require later from a function ϕ_{i} to have support in $\left[t_{i}, t_{i+k}\right]$, so that the range of integration in the right-hand side will be actually $\int_{t^{t}}^{t_{i+k}}$. To proceed further, we recall that the B-spline $M_{j}=c N_{j}$ is the Peano kernel in the integral representation of the divided difference $\left[t_{j} \ldots t_{j+k}\right]$, i.e., for any $h \in C^{k}[a, b]$,

$$
\int_{a}^{b} M_{j}(t) h^{(k)}(t)=k!h\left[t_{j} \ldots t_{j+k}\right] .
$$

So, it make sense to consider ϕ_{i} in the form $\phi_{i}=h_{i}^{(k)}$, and then look for a particular h_{i} whose divided differences vanish for all sets $\left[t_{j} \ldots t_{j+k}\right]$ but one.

Lemma 15.1 Given $\Delta=\left(t_{i}\right)$, let h_{i} be a function such that $h_{i} \in C^{k}[a, b]$ and

$$
\begin{equation*}
h_{i}\left(t_{j}\right)=0 \quad t_{j} \leq t_{i+k-1} ; \quad h_{i}\left(t_{j}\right)=\psi_{i}\left(t_{j}\right) \quad t_{j} \geq t_{i+1} \tag{15.1}
\end{equation*}
$$

Then the functional $\mu_{i}: C[a, b] \rightarrow \mathbb{R}$ given by the rule

$$
\mu_{i}(f):=\int_{a}^{b} \phi_{i}(t) f(t) d t, \quad \phi_{i}=h_{i}^{(k)}
$$

satisfies $\mu_{i}\left(N_{j}\right)=\delta_{i j}$.
Proof. We have

$$
\mu_{i}\left(N_{j}\right)=\int_{a}^{b} N_{j}(t) h_{i}^{(k)}(t) d t=c_{j} \frac{1}{k!} \int_{a}^{b} M_{j}(t) h_{i}^{(k)}(t) d t=c_{j} h_{i}\left[t_{j} \ldots t_{j+k}\right]
$$

where $c_{j}=\left(t_{j+k}-t_{j}\right)(k-1)$!. But, due to definition (15.1), all the divided differences $h_{i}\left[t_{j} \ldots t_{j+k}\right]$ vanish except that for $j=i$. Indeed, if $t_{j} \leq t_{i-1}$, or $t_{j} \geq t_{i+1}$, then the values $h_{i}\left(t_{j}\right), \ldots, h_{i}\left(t_{j+k}\right)$ coincide with the values of an algebraic polynomial p of degree $k-1$, namely $p \equiv 0$ or $p=\psi_{i}$, respectively, hence the corresponding divided difference of order k is zero. For $j=i$ we have

$$
\left(t_{i+k}-t_{i}\right) h_{i}\left[t_{i} \ldots t_{i+k}\right]=h_{i}\left[t_{i+1} \ldots t_{i+k}\right]-h_{i}\left[t_{i} \ldots t_{i+k-1}\right]=\psi_{i}\left[t_{i+1} \ldots t_{i+k}\right]=1 /(k-1)!
$$

whence $c_{i} h_{i}\left[t_{i} \ldots t_{i+k}\right]=1$.
Remark 15.2 The simplest way to construct a function h_{i} satisfying (15.1) is to set

$$
\begin{equation*}
h_{i}(x) \equiv 0, \quad x \leq \eta_{i} ; \quad h_{i}(x)=\psi_{i}(x), \quad x \geq \xi_{i}, \quad \eta_{i}, \xi_{i} \in\left[t_{i}, t_{i+k}\right] \tag{15.2}
\end{equation*}
$$

and then to blend smoothly the values in between by posing the conditions

$$
\begin{equation*}
h_{i}^{(m-1)}\left(\eta_{i}\right)=0, \quad h_{i}^{(m-1)}\left(\xi_{i}\right)=\psi_{i}^{(m-1)}\left(\xi_{i}\right), \quad m=1, \ldots, k \tag{15.3}
\end{equation*}
$$

(and adding the conditions $h_{i}(x)=0$ at $x=t_{i+1}, \ldots, t_{i+k-1}$, when necessary). This construction will also provide

$$
\operatorname{supp} \phi_{i}=\operatorname{supp} h_{i}^{(k)}=\left[\eta_{i}, \xi_{i}\right] \subset\left[t_{i}, t_{i+k}\right]
$$

because by (15.2) the function h_{i} coincide with a polynomial of degree $k-1$ on either side of $\left[t_{i}, t_{i+k}\right]$.
Lemma 15.3 Let $p \in \mathcal{P}_{k-1}$. Then the functional μ_{i} defined by (15.3) satisfies

$$
\begin{equation*}
\mu_{i}(p)=\sum_{m=1}^{k}(-1)^{k-m} \psi_{i}^{(m-1)}(\xi) p^{(k-m)}(\xi)=: \lambda_{i}(p, \xi) \tag{15.4}
\end{equation*}
$$

Proof. Integrating by parts gives

$$
\mu_{i}(f)=\int_{\eta}^{\xi} p(t) h^{(k)}(t) d t=\left[p(t) h^{(k-1)}(t)-p^{\prime}(t) h^{(k-2)}(t)+\cdots+(-1)^{k-1} p^{(k-1)}(t) h(t)\right]_{t=\eta}^{t=\xi}
$$

where the integral remainder vanishes because $p^{(k)} \equiv 0$. It remains to notice that, by definition, at ξ all derivatives of h coincide with those of ψ, while at η they are equal to zero.
Remark 15.4 The functionals $\lambda_{i}(f, x)$ defined by (15.4) are called the de Boor-Fix functionals.

15.2 Boundedness of the functionals μ_{i}

Take $\left[\eta_{i}, \xi_{i}\right]=\left[t_{i}, t_{i+k}\right]$. The simplest way to construct a function h_{i} satisfying (15.2)-(15.3) is to set

$$
h_{i}(x):=g_{i}(x) \psi_{i}(x)
$$

where $g_{i} \in C^{k}[a, b]$ is obtained from any fixed function g by the formula

$$
g_{i}(x)=g\left(\frac{x-t_{i}}{t_{i+k}-t_{i}}\right), \quad g(x)= \begin{cases}0, & k \text {-fold at } x=0 \tag{15.5}\\ 1, & k \text {-fold at } x=1\end{cases}
$$

(Fulfillment of (15.3) can be verified by using the Leibnitz rule).
Theorem 15.5 The functionals

$$
\mu_{i}(f)=\int_{t_{i}}^{t_{i+k}} \phi_{i}(t) f(t) d t, \quad \phi_{i}:=\left[g_{i} \psi_{i}\right]^{(k)}
$$

form a dual basis to the B-spline basis $\left(N_{i}\right)$, and they admit the estimate

$$
\left|\mu_{i}(f)\right| \leq c_{k}\left|I_{i}\right|^{-1 / p}\|f\|_{L_{p}\left(I_{i}\right)}, \quad I_{i}=\left[t_{i}, t_{i+k}\right]
$$

In particular, they are bounded linear functionals on $C\left(I_{i}\right)$.
Proof. From the Leibnitz rule, we find

$$
\left|\phi_{i}(x)\right|:=\left[g_{i}(x) \psi_{i}(x)\right]^{(k)} \leq 2^{k} \max _{0 \leq m \leq k}\left|g_{i}^{(m)}(x)\right|\left|\psi_{i}^{(k-m)}(x)\right|
$$

The first factor, as a derivative of a composite function, admits the estimate

$$
\left|g_{i}^{(m)}(x)\right|=\left|g^{(m)}(x)\right|\left|t_{i+k}-t_{i}\right|^{-m} \leq c_{k}\left|t_{i+k}-t_{i}\right|^{-m}
$$

where the constant c_{k} is a bound for the first k derivatives of the function g. The second factor is a polynomial of degree $m-1$ with leading coefficient $a_{m-1}=\frac{1}{(m-1)!}$ and with all its zeros, say x_{j}, lying inside $\left[t_{i}, t_{i+k}\right]$. Hence,

$$
\left|\psi_{i}^{(k-m)}(x)\right|=a_{m-1}\left|\left(x-x_{1}\right) \cdots\left(x-x_{m-1}\right)\right| \leq\left|t_{i+k}-t_{i}\right|^{m-1}
$$

Therefore $\left\|\phi_{i}\right\|_{L_{\infty}\left(I_{i}\right)} \leq c_{k}\left|I_{i}\right|^{-1}$, and

$$
\left\|\phi_{i}\right\|_{L_{q}\left(I_{i}\right)} \leq\left|I_{i}\right|^{1 / q}\left\|\phi_{i}\right\|_{L_{\infty}\left(I_{i}\right)} \leq c_{k}\left|I_{i}\right|^{1 / q-1}=c_{k}\left|I_{i}\right|^{-1 / p}, \quad 1 / p+1 / q=1
$$

By Hölder inequality $\left|\int \phi f\right| \leq\|\phi\|_{q}\|f\|_{p}$, whence the statement.

15.3 Exercises

15.1. For some functions f, g and for some $x \in \mathbb{R}$, define the functional

$$
\lambda(f, g, x):=\sum_{m=1}^{k}(-1)^{k-m} g^{(m-1)}(x) f^{(k-m)}(x),
$$

whenever the right-hand side exists. If we take $g(x)=\psi_{i}(x)$, then we obtain the de Boor-Fix functional $\lambda_{i}(f, x):=\lambda\left(\psi_{i}, f, x\right)$ (see formula 15.4).
Prove that, for any two polynomials $p, q \in \mathcal{P}_{k-1}$, the functional $\lambda(p, q, x)$ is independent of x, i.e.,

$$
\lambda(p, q, x) \equiv \operatorname{const}(p, q) .
$$

15.2. Prove that the formula (15.4) remains valid for splines in $\mathcal{S}_{k}(\Delta)$, i.e., that the functional μ_{i} defined by (15.3) also satisfies

$$
\mu_{i}(s)=\sum_{m=1}^{k}(-1)^{k-m} \psi_{i}^{(m-1)}(\xi) s^{(k-m)}(\xi)=: \lambda_{i}(s, \xi), \quad \forall \xi \in\left[t_{i}, t_{i+k}\right] .
$$

15.3. Derive formula (15.4) from identities (14.3).

Hint. Put identities (14.3) in the Taylor expansion of $p(t)$ at x

$$
p(t)=\sum_{j=0}^{k-1} \frac{1}{j!}(t-x)^{j} p^{(j)}(x)=\sum_{m=1}^{k} p^{(k-m)}(x) \frac{(t-x)^{k-m}}{(k-m)!}=\cdots=
$$

