
Part III - Lent Term 2005

Approximation Theory – Lecture 16

16 Dual functionals (cont.)

16.1 Quasi-interpolants and degree of spline approximation

We may reformulate Theorem 15.5 in the following way.

Theorem 16.1 Any spline s ∈ Sk(∆) has the B-spline expansion

s(t) =
∑n

i=1 µi(s)Ni(t), (16.1)

where µi : C[ti, ti+k] → R are locally supported dual functionals (15.6) whose norms are uniformly
bounded by some constant ck independently of ∆.

Definition 16.2 (Quasi–interpolant) Given k, n ∈ N and ∆, the quasi-interpolant is a mapping
Q : C[a, b]→Sk(∆) given by the formula

Q(f, t) :=
∑n

i=1 µi(f)Ni(t). (16.2)

By (16.1), if s =
∑

aiNi, then µi(s) = ai, hence µi(Q(f)) = µi(f) for i = 1, ..., n. The name quasi-
interpolant was chosen to emphasize that Q(f) does not actually interpolate f at some nodal
points, but matches another information about f (that is enough to reproduce the polynomials).

Lemma 16.3 The mapping Q is a projector from C[a, b] to Sk(∆). It satisfies the local estimate

‖Q(f)‖C[tj,tj+1] ≤ ck‖f‖C[tj+1−k,tj+k].

Proof. It is clear (from (16.1)-(16.2), say) that Q is a projector. For the estimate we employ finite-
ness of support of B-splines, that they form a partition of unity, and uniform boundedness of dual
functionals. For x ∈ [tj , tj+1], we obtain

|Q(f, x)| := |

n∑

i=1

µi(f)Ni(x)| =
∣∣

j∑

i=j+1−k

µi(f)Ni(x)
∣∣

≤ max
j+1−k≤i≤j

|µi(f)|

j∑

i=j+1−k

|Ni(x)| ≤ ck max
j+1−k≤i≤j

‖f‖C[ti,ti+k] = ck‖f‖C[tj+1−k,tj+k].

Theorem 16.4 The quasi-interpolant Q admits the estimate

‖f − Q(f)‖C[tj,tj+1] ≤ ck dist(f,Pk−1)C[tj+1−k,tj+k] ≤ c′k |tj+k − tj+1−k|
k‖f (k)‖C[tj+1−k,tj+k]

Proof. Since Q(f) is a projector on the space of polynomials with the bounded norm, we may
locally apply the Lebesgue inequality. Precisely, f −Q(f) = [I−Q](f −p) for any p ∈ Pk−1, hence

‖f − Qf‖C[tj,tj+1] ≤ (1 + ‖Q‖C[tj,tj+1]) dist(f,Pk−1)C[tj+1−k,tj+k] .

The second estimate is obtained by scaling the Jackson estimate to arbitrary interval (or by La-
grange interpolation, say). �

Theorem 16.4 readily provides a direct estimate for Ek,∆(f), the value of best approximation of f
by splines of order k with a knot sequence ∆.

Theorem 16.5 (Direct estimate) For any k, ∆ we have

Ek,∆(f) ≤ ck|t|
k‖f (k)‖∞, |t| := max

i
|ti+1 − ti| (16.3)
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Remark 16.6 (Inverse estimate) However, having E∆(f) = O(|t|k) is, in general, no guarantee
that f ∈ W k

∞ unless the knot sequences ∆ involved are sufficiently generic. Indeed, if every
knot sequence contains the point 1

2 , then the function f(x) = (x − 1
2 )k−1

+ can be approximated
without error from Sk(∆) even though f fails to have a kth derivative. What is true, however, is
that the estimate Ek,∆(f) = O(|t|k) cannot hold for every knot sequence ∆ unless f ∈ W k

∞. This
conclusion can be already reached if Ek,∆(f) = O(|t|k) holds for every uniform knot sequence,
namely for spline approximation Ek,n(f) of order k on the uniform knot sequences with n knots, we have

Ek,n(f) = O(n−k) ⇔ f ∈ W k
∞,

Ek,n(f) = o(n−k) ⇔ f ∈ Pk−1.

The second relation shows the so-called saturation order. Thus, no function different from a poly-
nomial of degree k−1 can be approximated by splines of degree k−1 on the uniform meshes with
the order better than O(n−k). The non-empty class of functions that enjoys this order, W k

∞ in this
case, is called the saturation class.

16.2 B-spline basis condition number

Definition 16.7 Let Φ = (φi) be a basis for a subspace U in Lp[a, b]. The number

κp := sup
a

‖a‖`p

‖
∑

i aiui‖Lp

· sup
b

‖
∑

i biui‖Lp

‖b‖`p

is called the p-condition number of Φ. It measures the extent to which the relative changes in the
coordinates of an element of U may be close to the resulting relative change in an element itself.

For the spline space Sk(∆) we define its Lp-normalized basis (N̂i) as

N̂i := ( k
|Ii|

)1/pNi = M
1/p
i N

1−1/p
i .

Theorem 16.8 The B-spline basis p-condition number κp is bounded undependently of ∆. Precisely, there
exists a number dk such that

d−1
k ‖a‖`p

≤ ‖
∑

i aiN̂i‖Lp
≤ ‖a‖`p

. (16.4)

Proof. (Upper estimate.) We use the known relations
∑

i |Ni| ≡ 1 and
∫ b

a
|Mi| = 1, and Hölder

inequality:
∑

|aibi| ≤ ‖a‖`p
‖b‖`q

where 1/p + 1/q = 1. So,

‖
∑

aiN̂i‖Lp
= ‖

∑
aiM

1/p
i N

1/q
i ‖Lp

≤ ‖ (
∑

|ai|
pMi)

1/p ·(
∑

Ni)
1/q ‖Lp

≤ ‖ (
∑

|ai|
pMi)

1/p ‖Lp
= ‖

∑
|ai|

pMi ‖
1/p
L1

= (
∑

|ai|
p )1/p =: ‖a‖`p

(Lower estimate.) Let s =
∑

aiN̂i. To get an `p-bound for the coefficients (ai), we rewrite this p-
normalized B-spline expansion in terms of the standard (Ni), i.e., s =

∑
ai(

k
|Ii|

)1/pNi, and apply

then the bound for the functionals (µi) dual to (Ni):

|ai|(
k

|Ii|
)1/p = |µi(s)| ≤ dk( 1

|Ii|
)1/p‖s‖Lp(Ii)

This results in in the inequalities |ai|
p ≤ dp

kk−1
∫

Ii
|s|p and summing them up gives

‖a‖p
`p

=
∑

|ai|
p ≤ dp

kk−1
∑∫

Ii

|s|p = dp
k

∫ b

a

|s|p = dp
k‖s‖

p
Lp[a,b] .

(The last but one equality is because every interval [tj , tj+1] is covered by k intervals Ii = [ti, ti+k].)

Remark 16.9 A basis φ that satisfies the inequalities

c2 ‖a‖`2 ≤ ‖
∑

i

aiφi‖L2
≤ c1 ‖a‖`2

is called a Riesz basis.
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16.3 Exercises

16.1. Prove that the quasi-interpolation by linear splines

Q(f, x) =

n∑

i=1

f(ti+1)Ni(x)

(which is now a true interpolation) satisfies the estimate

‖f − Q(f)‖ ≤ 1
8 |t|

2 ‖f ′′‖ .

Hint. Do not use Theorem 16.4.

16.2. The Schoenberg spline operator S : C[a, b] → Sk(∆) is given by the formula

S(f, t) := S∆(f, t) :=
∑

i

f(t∗i )Ni(t), t∗i = ti+1+ ···+ti+k−1

k−1 (1)

[compare with the formula (14.4)]. Prove that

‖f − S(f)‖C[tj,tj+1] ≤ 2dist(f,P1)C[tj+1−k,tj+k] ,

hence derive that
‖f − S(f)‖ ≤ ck |t|

2‖f ′′‖ ,

and try to minimize the constant ck as much as possible.

16.3.∗ Prove that the quasi-interpolant Q is a bounded operator in Lp-norm, namely that

‖Q(f)‖Lp[a,b] ≤ dk‖f‖Lp[a,b] .

Hint. Write Q(f) in the form

Q(f, t) :=

n∑

i=1

µ̂i(f)N̂i(t),

where (N̂i) is the Lp-normalized B-spline basis, and use the estimates from the proof of
Theorem 16.8
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