Part III - Lent Term 2005 Approximation Theory – Lecture 16

16 Dual functionals (cont.)

16.1 Quasi-interpolants and degree of spline approximation

We may reformulate Theorem 15.5 in the following way.

Theorem 16.1 Any spline $s \in S_k(\Delta)$ has the B-spline expansion

$$s(t) = \sum_{i=1}^{n} \mu_i(s) N_i(t), \tag{16.1}$$

where $\mu_i : C[t_i, t_{i+k}] \to \mathbb{R}$ are locally supported dual functionals (15.6) whose norms are uniformly bounded by some constant c_k independently of Δ .

Definition 16.2 (Quasi-interpolant) Given $k, n \in \mathbb{N}$ and Δ , the quasi-interpolant is a mapping $Q : C[a, b] \rightarrow S_k(\Delta)$ given by the formula

$$Q(f,t) := \sum_{i=1}^{n} \mu_i(f) N_i(t).$$
(16.2)

By (16.1), if $s = \sum a_i N_i$, then $\mu_i(s) = a_i$, hence $\mu_i(Q(f)) = \mu_i(f)$ for i = 1, ..., n. The name quasiinterpolant was chosen to emphasize that Q(f) does not actually interpolate f at some nodal points, but matches another information about f (that is enough to reproduce the polynomials).

Lemma 16.3 The mapping Q is a projector from C[a, b] to $S_k(\Delta)$. It satisfies the local estimate

$$\|Q(f)\|_{C[t_j,t_{j+1}]} \le c_k \|f\|_{C[t_{j+1-k},t_{j+k}]}.$$

Proof. It is clear (from (16.1)-(16.2), say) that Q is a projector. For the estimate we employ finiteness of support of B-splines, that they form a partition of unity, and uniform boundedness of dual functionals. For $x \in [t_j, t_{j+1}]$, we obtain

$$\begin{aligned} |Q(f,x)| &:= |\sum_{i=1}^{n} \mu_i(f) N_i(x)| = |\sum_{i=j+1-k}^{j} \mu_i(f) N_i(x)| \\ &\leq \max_{j+1-k \leq i \leq j} |\mu_i(f)| \sum_{i=j+1-k}^{j} |N_i(x)| \leq c_k \max_{j+1-k \leq i \leq j} ||f||_{C[t_i,t_{i+k}]} = c_k ||f||_{C[t_{j+1-k},t_{j+k}]}. \end{aligned}$$

Theorem 16.4 The quasi-interpolant Q admits the estimate

$$\|f - Q(f)\|_{C[t_j, t_{j+1}]} \leq c_k \operatorname{dist}(f, \mathcal{P}_{k-1})_{C[t_{j+1-k}, t_{j+k}]} \leq c'_k |t_{j+k} - t_{j+1-k}|^k \|f^{(k)}\|_{C[t_{j+1-k}, t_{j+k}]}$$

Proof. Since Q(f) is a projector on the space of polynomials with the bounded norm, we may locally apply the Lebesgue inequality. Precisely, f - Q(f) = [I - Q](f - p) for any $p \in \mathcal{P}_{k-1}$, hence

$$\|f - Qf\|_{C[t_j, t_{j+1}]} \le (1 + \|Q\|_{C[t_j, t_{j+1}]}) \operatorname{dist}(f, \mathcal{P}_{k-1})_{C[t_{j+1-k}, t_{j+k}]}.$$

The second estimate is obtained by scaling the Jackson estimate to arbitrary interval (or by Lagrange interpolation, say). \Box

Theorem 16.4 readily provides a direct estimate for $E_{k,\Delta}(f)$, the value of best approximation of f by splines of order k with a knot sequence Δ .

Theorem 16.5 (Direct estimate) For any k, Δ we have

$$E_{k,\Delta}(f) \le c_k |t|^k ||f^{(k)}||_{\infty}, \quad |t| := \max_i |t_{i+1} - t_i|$$
(16.3)

Remark 16.6 (Inverse estimate) However, having $E_{\Delta}(f) = \mathcal{O}(|t|^k)$ is, in general, no guarantee that $f \in W_{\infty}^k$ unless the knot sequences Δ involved are sufficiently generic. Indeed, if every knot sequence contains the point $\frac{1}{2}$, then the function $f(x) = (x - \frac{1}{2})_{+}^{k-1}$ can be approximated without error from $\mathcal{S}_k(\Delta)$ even though f fails to have a kth derivative. What is true, however, is that the estimate $E_{k,\Delta}(f) = \mathcal{O}(|t|^k)$ cannot hold for every knot sequence Δ unless $f \in W_{\infty}^k$. This conclusion can be already reached if $E_{k,\Delta}(f) = \mathcal{O}(|t|^k)$ holds for every *uniform* knot sequence, namely for spline approximation $E_{k,n}(f)$ of order k on the uniform knot sequences with n knots, we have

$$E_{k,n}(f) = \mathcal{O}(n^{-k}) \quad \Leftrightarrow \quad f \in W_{\infty}^k,$$
$$E_{k,n}(f) = o(n^{-k}) \quad \Leftrightarrow \quad f \in \mathcal{P}_{k-1}.$$

The second relation shows the so-called *saturation order*. Thus, no function different from a polynomial of degree k-1 can be approximated by splines of degree k-1 on the uniform meshes with the order better than $O(n^{-k})$. The non-empty class of functions that enjoys this order, W_{∞}^{k} in this case, is called the *saturation class*.

16.2 B-spline basis condition number

Definition 16.7 Let $\Phi = (\phi_i)$ be a basis for a subspace \mathcal{U} in $L_p[a, b]$. The number

$$\kappa_p := \sup_{a} \frac{\|a\|_{\ell_p}}{\|\sum_i a_i u_i\|_{L_p}} \cdot \sup_{b} \frac{\|\sum_i b_i u_i\|_{L_p}}{\|b\|_{\ell_p}}$$

is called the *p*-condition number of Φ . It measures the extent to which the relative changes in the coordinates of an element of \mathcal{U} may be close to the resulting relative change in an element itself. For the spline space $S_k(\Delta)$ we define its L_p -normalized basis (\widehat{N}_i) as

$$\widehat{N}_i := \left(\frac{k}{|I_i|}\right)^{1/p} N_i = M_i^{1/p} N_i^{1-1/p}$$

Theorem 16.8 The B-spline basis p-condition number κ_p is bounded undependently of Δ . Precisely, there exists a number d_k such that

$$d_k^{-1} \|a\|_{\ell_p} \le \|\sum_i a_i \widehat{N}_i\|_{L_p} \le \|a\|_{\ell_p}.$$
(16.4)

Proof. (*Upper estimate.*) We use the known relations $\sum_i |N_i| \equiv 1$ and $\int_a^b |M_i| = 1$, and Hölder inequality: $\sum |a_i b_i| \leq ||a||_{\ell_p} ||b||_{\ell_q}$ where 1/p + 1/q = 1. So,

$$\begin{split} \|\sum a_i \widehat{N}_i\|_{L_p} &= \|\sum a_i M_i^{1/p} N_i^{1/q}\|_{L_p} \le \|(\sum |a_i|^p M_i)^{1/p} \cdot (\sum N_i)^{1/q}\|_{L_p} \\ &\le \|(\sum |a_i|^p M_i)^{1/p}\|_{L_p} = \|\sum |a_i|^p M_i\|_{L_1}^{1/p} = (\sum |a_i|^p)^{1/p} =: \|a\|_{\ell_p} \end{split}$$

(*Lower estimate.*) Let $s = \sum a_i \widehat{N}_i$. To get an ℓ_p -bound for the coefficients (a_i) , we rewrite this *p*-normalized B-spline expansion in terms of the standard (N_i) , i.e., $s = \sum a_i (\frac{k}{|I_i|})^{1/p} N_i$, and apply then the bound for the functionals (μ_i) dual to (N_i) :

$$|a_i|(\frac{k}{|I_i|})^{1/p} = |\mu_i(s)| \le d_k(\frac{1}{|I_i|})^{1/p} ||s||_{L_p(I_i)}$$

This results in the inequalities $|a_i|^p \leq d_k^p k^{-1} \int_{I_i} |s|^p$ and summing them up gives

$$||a||_{\ell_p}^p = \sum |a_i|^p \le d_k^p k^{-1} \sum \int_{I_i} |s|^p = d_k^p \int_a^b |s|^p = d_k^p ||s||_{L_p[a,b]}^p$$

(The last but one equality is because every interval $[t_j, t_{j+1}]$ is covered by k intervals $I_i = [t_i, t_{i+k}]$.) **Remark 16.9** A basis ϕ that satisfies the inequalities

$$c_2 \|a\|_{\ell_2} \le \|\sum_i a_i \phi_i\|_{L_2} \le c_1 \|a\|_{\ell_2}$$

is called a Riesz basis.

16.3 Exercises

16.1. Prove that the quasi-interpolation by *linear* splines

$$Q(f,x) = \sum_{i=1}^{n} f(t_{i+1}) N_i(x)$$

(which is now a true interpolation) satisfies the estimate

$$||f - Q(f)|| \le \frac{1}{8} |t|^2 ||f''||$$

Hint. Do not use Theorem 16.4.

16.2. The Schoenberg spline operator $S : C[a, b] \to S_k(\Delta)$ is given by the formula

$$S(f,t) := S_{\Delta}(f,t) := \sum_{i} f(t_i^*) N_i(t), \qquad t_i^* = \frac{t_{i+1} + \dots + t_{i+k-1}}{k-1}$$
(1)

[compare with the formula (14.4)]. Prove that

$$||f - S(f)||_{C[t_j, t_{j+1}]} \le 2 \operatorname{dist}(f, \mathcal{P}_1)_{C[t_{j+1-k}, t_{j+k}]},$$

hence derive that

$$||f - S(f)|| \le c_k |t|^2 ||f''||,$$

and try to minimize the constant c_k uch as possible.

16.3.* Prove that the quasi-interpolant Q is a bounded operator in L_p -norm, namely that

$$\|Q(f)\|_{L_p[a,b]} \le d_k \|f\|_{L_p[a,b]}.$$

Hint. Write Q(f) in the form

$$Q(f,t) := \sum_{i=1}^{n} \widehat{\mu}_i(f) \widehat{N}_i(t),$$

where (\widehat{N}_i) is the L_p -normalized B-spline basis, and use the estimates from the proof of Theorem 16.8

$$||f - S(f)|| \le c_k |t|^2 ||f|^2$$

 $|c_k|$ as much as possible