Part III - Lent Term 2005
Approximation Theory — Lecture 16

16 Dual functionals (cont.)

16.1 Quasi-interpolants and degree of spline approximation

We may reformulate Theorem 15.5 in the following way.

Theorem 16.1 Any spline s € Si(A) has the B-spline expansion

s(t) = >0y pi(s)Ni(t), (16.1)

where pi; : Clti,tirx] — R are locally supported dual functionals (15.6) whose norms are uniformly
bounded by some constant c;, independently of A.

Definition 16.2 (Quasi-interpolant) Given k,n € N and A, the quasi-interpolant is a mapping
Q : Cla,b]— Sk(A) given by the formula

Q(f 1) =321y i (F)Ni(t). (16.2)

By (16.1),if s = > a;N;, then p;(s) = a;, hence p;(Q(f)) = pi(f) fori =1, ..., n. The name quasi-
interpolant was chosen to emphasize that Q(f) does not actually interpolate f at some nodal
points, but matches another information about f (that is enough to reproduce the polynomials).

Lemma 16.3 The mapping Q is a projector from C|a, b] to Si(A). It satisfies the local estimate

||Q(f)||c[tj,tj+1] < ck||f||c[tj+1—k,tj+k]'

Proof. It is clear (from (16.1)-(16.2), say) that () is a projector. For the estimate we employ finite-
ness of support of B-splines, that they form a partition of unity, and uniform boundedness of dual
functionals. For = € [t;,;41], we obtain
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Theorem 16.4 The quasi-interpolant @) admits the estimate

1f = QNNletttye < crdist(f, Pro1)ete o wtyin] < vk = il 1 F om0ty

Proof. Since Q(f) is a projector on the space of polynomials with the bounded norm, we may
locally apply the Lebesgue inequality. Precisely, f —Q(f) = [I — Q](f —p) for any p € Pi_1, hence

Hf - QfHC[tj,tHl} < (1 + ||Q||C[tjvtj+1]) dist(f, Pkfl)c[tﬁl,k,tﬁk} .

The second estimate is obtained by scaling the Jackson estimate to arbitrary interval (or by La-
grange interpolation, say). O

Theorem 16.4 readily provides a direct estimate for Ej a(f), the value of best approximation of f
by splines of order k£ with a knot sequence A.

Theorem 16.5 (Direct estimate) For any k, A we have

Era(f) < clt 1 fPloo, |t == m?X|fi+1 — ti] (16.3)



Remark 16.6 (Inverse estimate) However, having Ea(f) = O(]t|¥) is, in general, no guarantee
that f € WX unless the knot sequences A involved are sufficiently %eneric. Indeed, if every
knot sequence contains the point 3, then the function f(z) = (z — %)%~' can be approximated
without error from S;(A) even though f fails to have a kth derivative. What is true, however, is
that the estimate Ex A (f) = O(|t|*) cannot hold for every knot sequence A unless f € Wk . This
conclusion can be already reached if Ex a(f) = O(|t|¥) holds for every uniform knot sequence,

namely for spline approximation Ey, »,(f) of order k on the uniform knot sequences with n knots, we have
Bn(f) =0(n™") & feWl,
Epn(f)=o0(n7%) & fePpa.

The second relation shows the so-called saturation order. Thus, no function different from a poly-
nomial of degree k—1 can be approximated by splines of degree k—1 on the uniform meshes with
the order better than O(n ). The non-empty class of functions that enjoys this order, W% in this
case, is called the saturation class.

16.2 B-spline basis condition number
Definition 16.7 Let ® = (¢;) be a basis for a subspace U in L,[a, b]. The number
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is called the p-condition number of ®. It measures the extent to which the relative changes in the
coordinates of an element of I/ may be close to the resulting relative change in an element itself.

~

For the spline space S;,(A) we define its L,-normalized basis (V;) as

Ni = (\él)l/pNi = Mil/pNilil/p'

Theorem 16.8 The B-spline basis p-condition number r,, is bounded undependently of A. Precisely, there
exists a number d;, such that ~
dtllalle, <1525 @iz, < llalle,- (16:4)

Proof. (Upper estimate.) We use the known relations ), |N;| = 1 and f; |M;| = 1, and Holder
inequality: 3 [a;b;| < ||al|¢,||b|le, where 1/p+1/q = 1. So,
IS ailillz, = X ad"N e, < [[(lail? M)/ (S NV |,
1
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(Lower estimate.) Let s = 3" a;N;. To get an £,-bound for the coefficients (ai)k, we rewrite this p-

normalized B-spline expansion in terms of the standard (XV;), i.e., s = > a;( 1A )1/ PN;, and apply
then the bound for the functionals (;) dual to (NV;):
lail ()P = [pa(s)] < die() P lIs L)

This results in in the inequalities |a;[? < d{k~! [ 7, |s|P and summing them up gives

b
lally, = S lailP < a2k 'y / s = [ 1o = sl
i a

(The last but one equality is because every interval [¢;, t;41] is covered by k intervals I; = [t;, tiyx].)

Remark 16.9 A basis ¢ that satisfies the inequalities

callalles < 11D aidillza < e llalle,
A

is called a Riesz basis.



16.3 Exercises

16.1.

16.2.

16.3.”

Prove that the quasi-interpolation by linear splines
Q(f,2) =Y ftis1)Ni(x)

(which is now a true interpolation) satisfies the estimate

If = QNI < £t 11l
Hint. Do not use Theorem 16.4.

The Schoenberg spline operator S : Cla, b] — Si(A) is given by the formula
S(fot) = Sa(f,t) =Y FUNit), = et (1)

[compare with the formula (14.4)]. Prove that

1f = SNt t401 < 2dist(f, Pty 4 iotyonl »
hence derive that
If = SN < en ltPIFN

and try to minimize the constant ¢, as much as possible.

Prove that the quasi-interpolant () is a bounded operator in L,-norm, namely that

1QUN Ly as) < drllfllz,a.) -
Hint. Write Q(f) in the form

n

QUf.t) =D fu(f)Ni(t),

=1

where (N;) is the L,normalized B-spline basis, and use the estimates from the proof of
Theorem 16.8



