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1. IntroductionLet fN̂jg be the B-spline basis of order k on a feasible knot sequence t = ftjg,tj < tj+k, normalized with respect to the Lp-norm (1 � p � 1), i.e.N̂j(x) = (k=(tj+k � tj))1=pNj(x);where fNjg are the B-splines forming a partition of unity.The condition number of fN̂jg is de�ned as�k;p;t := sup(b) k(b)klpkP bjN̂jkLp sup(b) kP bjN̂jkLpk(b)klp= sup(b) k(b)klpkP bjN̂jkLp ;where the Lp-norm is taken with respect to the smallest interval containing theknots ftig.Set �k;p := supt �k;p;t;de�ning thus the worst B-spline condition number.C.de Boor [1] proved that(1:1) �k;p � 2k 9k�1;and conjectured that �k;p � 2k:This conjecture was supported by the lower bound of T.Lyche [4]�k;1 � (k � 1)k�1 2k�3=2and by recent numerical computations [2]. However, the poor upper estimate (1.1)remained unchanged.Here we proveTheorem 1. �k;p < k1=2 4k:2. PreliminariesFollowing de Boor [1], we will introduce here some related constants which ma-jorize �k;p for all p 2 [1;1]. More details on the problems relevant to �k;p can befound in [1],[2],[5].Recall that Nj(t) := (tj+k � tj) [ tj; tj+1; : : : ; tj+k] (� � t)k�1+ ;so that suppNj = (tj ; tj+k); Nj � 0; XNj = 1:Lemma A. Let Hi be the class of functions hi 2 L1 such that1) supp hi � [ti; ti+k]2) R hiNj = �ij:2



and let Dk = supt supi infhi2Hi f(ti+k � ti)khik1g :Then �k;p � Dk:Set  i(x) = 1(k � 1)! k�1Y�=1(x� ti+�):The following lemma shows how the functions hi 2 Hi could be constructed.Lemma B. Let Fi be the class of functions fi such that1) fi 2W k1[ti; ti+k];2) fi = 8><>: 0; k-fold at ti;0 =  i; 8tj 2 (ti; ti+k); i; k-fold at ti+k;and let F (k)i = ff (k)i : fi 2 Fig. ThenF (k)i � Hi:Further, an easy way for obtaining fi 2 Fi is to set fi = gi i with appropriatesmoothing function gi. We formulate it asLemma C. Let Gi be the class of functions gi such that1) gi i 2 W k1[ti; ti+k];2) gi i = ( 0; k-fold at ti; i; k-fold at ti+k;and let G(k)i = f(gi i)(k) : gi 2 Gig. ThenG(k)i � F (k)i :We summarize Lemmas A-C as follows.Corollary. LetBk = supt supi infgi2Gi n(ti+k � ti)k(gi i)(k)k1o :Then �k;p � Bk:Finally, due to the local character of all the statements, we reformulate the�nal result making the linear transform [ti; ti+k] ! [0; 1], eliminating thereby thereference to the meshes t.Denote by �k�1 the set of algebraic polynomials ! of degree k� 1 with all theirzeros lying in [0; 1] and higher derivative equal 1, i.e. of the form!(x) = 1(k � 1)! k�1Y1 (x� ti); ti 2 [0; 1]:3



Lemma D. For ! 2 �k�1 given, let G! be the class of functions g such that1) g! 2W k1[0; 1]2) g! = ( 0; k-fold at 0;!; k-fold at 1;and let Bk = sup!2�k�1 infg2G! k(gw)(k)k1:Then �k;p � Bk:Remark. Lemmas A and B are taken from [1, p.123] and [1, p.127]. LemmasC and, respectively, D are somewhat more accurate version of what is given in[1, Eq.(4.1)]. Namely, they show the possibility to choose the smoothing functiong depending on !. C.de Boor's estimate of Bk resulted in (1.1) was based on theinequalitiesBk � infg2G sup! k(g!)(k)k � infg2G kXm=1�km�kg(m)k sup! k!(k�m)k� kXm=1� km�kg(m)� k sup! k!(k�m)k;with some special choice of g� 2 G := \G! which is seen to be independent of !.Notice also, that in the latter sum for any choice of g� 2 G the term with m = k isequal at least to 4k�1 (see [1, p.132]).3. Proof of Theorem 1We will estimate Bk choosing g 2 G! depending on ! in the following way. For! 2 �k�1, !(x) = 1(k � 1)! k�1Yi=1(x� ti);set g!(x) = Z x0 M!(t) dt;where M! is the B-spline of degree k � 1 constructed on the mesh0 = t0 � t1 � : : : � tk�1 � tk = 1;and normalized with respect to the L1-norm, i.e.,Z 10 M!(t) dt = 1:Example. In the case of the Bernstein knots, when!(x) = c1 x�(x� 1)�; c1 = 1=(k� 1)! = 1=(�+ �)! ;4



we have M!(t) = c2 t�(1� t)�; c2 = k�k � 1� �:Next we need two lemmas which proofs will be given below.Lemma 1. For any ! 2 �k�1 g! 2 G!:Lemma 2. For any ! 2 �k�1kg(m)! � !(k�m)k � k�k � 1m � 1�; m = 1; : : : ; k:Now by Lemmas 1,2, and D,(3:1) �k;p � Bk � sup! k(g! � !)(k)k � kXm=1�km� sup! kg(m)! � !(k�m)k� k kXm=1�km��k � 1m� 1� = k � 12�2kk �;that is �k;p � k2 �2kk �:Finally, with respect to Wallis' inequality4k=p(k + 1=2)� < �2kk � < 4k=pk�we have �k;p < 12p� k1=2 4k < k1=2 4k:4. Proof of Lemma 1Let us verify that(4:1) 1) g! � ! 2W k1[0; 1]2) g! � ! = ( 0; k-fold at 0;!; k-fold at 1;1) This is evidently true, if ! has only simple zeros ftigk�11 lying strictly in(0; 1), i.e. for 0 = t0 < t1 < : : : < tk�1 < tk = 1:In fact, in this case 10) M! 2W k�11 [0; 1];20) M (�)! (x)��x=0;1 = 0; � = 0; : : : ; k� 2:5



For g! = R M! this provides100) g! 2W k1[0; 1]200) g! = ( 0; k-fold at 0;1; k-fold at 1;which in turn implies (4.1).2) If ! has a multiple zero�� := t�� = t��+1 = : : : = t��+p��1;then the smoothness ofM! and g! = R M! respectively will drop down at the knot�� to the amount p� � 1, but this loss will be compensated in the product g! �! bythe factor (x� ��)p��1 from !. (See Example in Sect. 3).5. Proof of Lemma 2Since g(m)! (x) :=M (m�1)! (x), we need to prove the following statement.Lemma 20.(5:1) sup!2�k�1 tk � t0k kM (m�1)! � !(k�m)k � �k � 1m � 1�; m = 1; : : : ; k:Remark. If ! has a zero �� of multiplicity p�, then M (k�p�)! has a jump at ��.In this case we can de�ne the value M (k�p�+�)! (��)!(p��1��)(��) as a limit eitherfrom the left or from the right. This limit is equal to zero, if �� 2 (t0; tk). Also, thisde�nition justi�es the equality(g! � !)(k)(x) = kXm=1�km�g(m)! (x)!(k�m)(x) := kXm=1�km�M (m�1)! (x)!(k�m)(x);which was used in (3.1).Proof. This will be given by induction on k. Namely, we establish some recur-rence relations for the left-hand side of (5.1).Denote by Mj;p the B-spline of degree p such thatsuppMj;p = (tj ; tj+p+1); Z tj+p+1tj Mj;p(x) dx = 1;and by !j;p the corresponding polynomial of the same degree p!j;p(x) = 1p! (x� tj+1) : : : (x� tj+p):whose zeros coincide with the inner knots of Mj;p.We establish some recurrence relations for the values(5:2) Ap;r := sup tj+p+1 � tjp+ 1 kM (r)j;p !(p�r)j;p kBp;r := sup 1p+ 1 kM (r)j;p !(p�r�1)j;p k:6



where sup is taken over all the meshes tj � : : : � tj+p+1.For this purpose it will be enough to use three B-splinesM :=M0;p; ( M0 :=M0;p�1;M1 :=M1;p�1;and, respectively, three polynomials! := !0;p; ( !0 := !0;p�1;!1 := !1;p�1;for which, by de�nition,(5:3) !(x) = 1p (x� tp)!0(x) = 1p (x� t1)!1(x):1) First, we use the following identity [3, Eq.(4.6)] for the B-splines M , M0, M1tp+1 � t0p+ 1 M (r)(x) = hM (r�1)0 (x) �M (r�1)1 (x)i ;coupled with the equalities for !; !0; !1 obtained from (5.3) by simple di�erentia-tion: !(p�r)(x) = p�1 h(x� tp)!(p�r)0 (x) + (p� r)!(p�r�1)0 (x)i= p�1 h(x� t1)!(p�r)1 (x) + (p � r)!(p�r�1)1 (x)i :This gives(5:4) tp+1 � t0p+ 1 M (r)(x)!(p�r)(x)= p�1h(x� tp)M (r�1)0 (x)!(p�r)0 (x) + (p� r)M (r�1)0 (x)!(p�r�1)0 (x)� (x� t1)M (r�1)1 (x)!(p�r)1 (x)� (p� r)M (r�1)1 (x)!(p�r�1)1 (x)i:Now, by de�nition (5.2), and due to the �niteness of B-splinesp�1��M (r�1)0 (x)!(p�r)0 (x)�� := p�1��M (r�1)0;p�1 (x)!(p�1�(r�1))0;p�1 (x)��� �[t0;tp](x)tp � t0 Ap�1;r�1;with �E being the characteristic function of the interval E. Similarly,p�1��M (r�1)1 (x)!(p�r)1 (x)�� � �[t1 ;tp+1](x)tp+1 � t1 Ap�1;r�1:Also, by (5.2)p�1��M (r�1)0 (x)!(p�r�1)0 (x)�� := p�1��M (r�1)0;p�1 (x)!(p�1�(r�1)�1)0;p�1 (x)�� � Bp�1;r�1;and, respectively, p�1��M (r�1)1 (x)!(p�1�r)1 (x)�� � Bp�1;r�1:Thus, from (5.4) we deriveAp;r � kDkAp�1;r�1 + 2(p� r)Bp�1;r�1;7



where D(x) = jx� tpjtp � t0 �[t0;tp](x) + jx� t1jtp+1 � t1 �[t1;tp+1 ](x):Evidently D(x) � 1, hence(5:5) Ap;r � Ap�1;r�1 + 2(p� r)Bp�1;r�1:2) Next we �nd a similar recurrence relation forBp;r := supt 1p+ 1 kM (r)j;p !(p�r�1)j;p k:For this purpose we use another identity [3, Eq.(4.9)] for the B-splines M , M0,M1 1p+ 1 M (r)(x) = 1tp+1 � t0 1p� r h(x� t0)M (r)0 (x) + (tp+1 � x)M (r)1 (x)i ;coupled with the previous relations for !; !0; !1!(p�r�1)(x) = p�1 h(x� tp)!(p�r�1)0 (x) + (p� r � 1)!(p�r�2)0 (x)i= p�1 h(x� t1)!(p�r�1)1 (x) + (p� r � 1)!(p�r�2)1 (x)i :This implies1p+ 1M (r)(x)!(p�r�1)(x)= 1p 1tp+1 � t0 1p� r�h(x� t0)(x� tp)M (r)0 (x)!(p�r�1)0 (x)+ (p � r � 1)(x� t0)M (r)0 (x)!(p�r�2)0 (x)+ (tp+1 � x)(x� t1)M (r)1 (x)!(p�r�1)1 (x)+ (p � r � 1)(tp+1 � x)M (r)1 (x)!(p�r�2)1 (x)i:Or, in terms of A;B,Bp;r � 1p� rh(kD1k+ kD2k)Ap�1;r + kD3k(p� r � 1)Bp�1;ri;where D1(x) = jx� t0jjx� tpj(tp+1 � t0)(tp � t0) �[t0;tp](x) � 14 ;D2(x) = jtp+1 � xjjx� t1j(tp+1 � t0)(tp+1 � t1) �[t1;tp+1](x) � 14 ;D3(x) = jx� t0j�[t0;tp](x) + jtp+1 � xj�[t1;tp+1 ](x)tp+1 � t0 � 1:That is,(5:6) Bp;r � 1p� r � 12Ap�1;r + (p � r � 1)Bp�1;r� :8



3) In (5.6) let us make the changes (p; r) ! (p � 1; r � 1), and write it downtogether with (5.5).Ap;r � Ap�1;r�1 + 2(p� r)Bp�1;r�1Bp�1;r�1 � 1p� r � 12Ap�2;r�1 + (p � r � 1)Bp�2;r�1� :The values Ap;0 could be evaluated directly:Ap;0 := supt tp+1 � t0p+ 1 kM !(p)k = supt tp+1 � t0p+ 1 kMk � 1:If we put(5:7) ap;0 = 1;ap;r = ap�1;r�1 + 2(p� r) bp�1;r�1;bp�1;r�1 = 1p� r � 12ap�2;r�1 + (p� r � 1) bp�2;r�1� ;then Ap;r � ap;r; Bp;r � bp;r:Comparing the expressions for a and b in (5.7), we see that bp�1;r�1 = 12(p�r) ap�1;r.Hence, (5.7) is reduced to the relationsap;0 = 1;ap;r = ap�1;r�1 + ap�1;r;which de�ne the binomial coe�cients ap;r = �pr�.Thus, Ap;r � �pr�;and, respectively,sup! tk � t0k kM (m�1)! !(k�m)k =: Ak�1;m�1 � �k � 1m � 1�which was to be proved. References[1] C. de Boor, On local linear functionals which vanish at all B-splines but one, in\Theory of Approximation with Applications" (A.G.Law and B.N.Sahney, Eds.),pp. 120-145, Academic Press, New York, 1976.[2] C. de Boor, The exact condition of the B-spline basis may be hard to determine, J.Approx. Theory, 60 (1990), 344-359.[3] C. de Boor, Splines as linear combinations of B-splines. A survey, in \ApproximationTheory II" (G.G.Lorentz et al, Eds.), pp. 1-49, Academic Press, New York, 1976.[4] T. Lyche, A note on the condition number of the B-spline basis, J. Approx. Theory,22 (1978), 202-205.[5] K. Scherer, The condition number of B-splines and related constants, in \OpenProblems in Approximation Theory" (B.Bojanov, Ed.), pp.180-191, SCT Publishing,Singapore, 1994. 9


