New upper bound for the B-spline basis condition number

K. Scherer

Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn, Germany

AND

A. Yu. Shadrin¹

Computing Center, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

For the p-norm condition number $\kappa_{k,p}$ of the B-spline basis of order k we prove the upper estimate

$$\kappa_{k,p} < k^{1/2} 4^k$$
.

This improves de Boor's estimate $\kappa_{k,p} < k 9^k$, and stands closer to his conjecture that $\kappa_{k,p} \sim 2^k$.

¹Supported by a grant from the Alexander von Humboldt – Stiftung

1. INTRODUCTION

Let $\{\hat{N}_j\}$ be the B-spline basis of order k on a feasible knot sequence $t = \{t_j\}, t_j < t_{j+k}$, normalized with respect to the L_p -norm $(1 \le p \le \infty)$, i.e.

$$\hat{N}_{j}(x) = (k/(t_{j+k} - t_{j}))^{1/p} N_{j}(x),$$

where $\{N_j\}$ are the B-splines forming a partition of unity.

The condition number of $\{N_j\}$ is defined as

$$\begin{split} \kappa_{k,p,t} &:= \sup_{(b)} \frac{\|(b)\|_{l_p}}{\|\sum b_j \hat{N}_j\|_{L_p}} \sup_{(b)} \frac{\|\sum b_j \hat{N}_j\|_{L_p}}{\|(b)\|_{l_p}} \\ &= \sup_{(b)} \frac{\|(b)\|_{l_p}}{\|\sum b_j \hat{N}_j\|_{L_p}}, \end{split}$$

where the L_p -norm is taken with respect to the smallest interval containing the knots $\{t_i\}$.

 Set

$$\kappa_{k,p} := \sup_t \kappa_{k,p,t}$$

defining thus the worst B-spline condition number.

C.de Boor [1] proved that

(1.1)
$$\kappa_{k,p} \leq 2k \, 9^{k-1},$$

and conjectured that

$$\kappa_{k,p} \sim 2^k$$
.

This conjecture was supported by the lower bound of T.Lyche [4]

$$\kappa_{k,\infty} \ge (k-1)k^{-1} 2^{k-3/2}$$

and by recent numerical computations [2]. However, the poor upper estimate (1.1) remained unchanged.

Here we prove

Theorem 1.

$$\kappa_{k,p} < k^{1/2} 4^k$$
.

2. Preliminaries

Following de Boor [1], we will introduce here some related constants which majorize $\kappa_{k,p}$ for all $p \in [1, \infty]$. More details on the problems relevant to $\kappa_{k,p}$ can be found in [1],[2],[5].

Recall that

$$N_{j}(t) := (t_{j+k} - t_{j}) [t_{j}, t_{j+1}, \dots, t_{j+k}] (\cdot - t)_{+}^{k-1},$$

so that

supp
$$N_j = (t_j, t_{j+k}), \quad N_j \ge 0, \quad \sum N_j = 1.$$

LEMMA A. Let H_i be the class of functions $h_i \in L_{\infty}$ such that

1) supp
$$h_i \subset [t_i, t_{i+k}]$$

2) $\int h_i N_j = \delta_{ij}$.

 $and \ let$

$$D_k = \sup_t \sup_i \inf_{h_i \in H_i} \left\{ (t_{i+k} - t_i) ||h_i||_{\infty} \right\}$$

Then

$$\kappa_{k,p} \leq D_k$$
 .

 Set

$$\psi_i(x) = \frac{1}{(k-1)!} \prod_{\nu=1}^{k-1} (x - t_{i+\nu}).$$

The following lemma shows how the functions $h_i \in H_i$ could be constructed. LEMMA B. Let F_i be the class of functions f_i such that

$$\begin{aligned} 1) \quad f_i \in W^k_{\infty}[t_i, t_{i+k}], \\ 2) \quad f_i = \begin{cases} 0, & k \text{-fold at } t_i, \\ 0 = \psi_i, & \forall t_j \in (t_i, t_{i+k}) \\ \psi_i, & k \text{-fold at } t_{i+k}, \end{cases} \end{aligned}$$

and let $F_i^{(k)} = \{f_i^{(k)} : f_i \in F_i\}$. Then

$$F_i^{(k)} \subset H_i.$$

Further, an easy way for obtaining $f_i \in F_i$ is to set $f_i = g_i \psi_i$ with appropriate smoothing function g_i . We formulate it as

LEMMA C. Let G_i be the class of functions g_i such that

$$\begin{aligned} 1) \quad g_i \psi_i \in W^k_{\infty}[t_i, t_{i+k}], \\ 2) \quad g_i \psi_i = \begin{cases} 0, & k \text{-fold at } t_i, \\ \psi_i, & k \text{-fold at } t_{i+k} \end{cases} \end{aligned}$$

and let $G_i^{(k)} = \{(g_i \psi_i)^{(k)} : g_i \in G_i\}$. Then

$$G_i^{(k)} \subset F_i^{(k)}.$$

We summarize Lemmas A-C as follows.

COROLLARY. Let

$$B_{k} = \sup_{t} \sup_{i} \inf_{g_{i} \in G_{i}} \left\{ (t_{i+k} - t_{i}) \| (g_{i}\psi_{i})^{(k)} \|_{\infty} \right\}.$$

Then

$$\kappa_{k,p} \leq B_k$$

Finally, due to the local character of all the statements, we reformulate the final result making the linear transform $[t_i, t_{i+k}] \rightarrow [0, 1]$, eliminating thereby the reference to the meshes t.

Denote by Π_{k-1} the set of algebraic polynomials ω of degree k-1 with all their zeros lying in [0, 1] and higher derivative equal 1, i.e. of the form

$$\omega(x) = \frac{1}{(k-1)!} \prod_{1}^{k-1} (x-t_i), \quad t_i \in [0,1].$$

LEMMA D. For $\omega \in \prod_{k=1}$ given, let G_{ω} be the class of functions g such that

1)
$$g\omega \in W^k_{\infty}[0, 1]$$

2) $g\omega = \begin{cases} 0, & k \text{-fold at } 0\\ \omega, & k \text{-fold at } 1 \end{cases}$

 $and \ let$

$$B_k = \sup_{\omega \in \Pi_{k-1}} \inf_{g \in G_\omega} ||(gw)^{(k)}||_{\infty}$$

Then

$$\kappa_{k,p} \leq B_k.$$

Remark. Lemmas A and B are taken from [1, p.123] and [1, p.127]. Lemmas C and, respectively, D are somewhat more accurate version of what is given in [1, Eq.(4.1)]. Namely, they show the possibility to choose the smoothing function g depending on ω . C.de Boor's estimate of B_k resulted in (1.1) was based on the inequalities

$$B_{k} \leq \inf_{g \in G} \sup_{\omega} \|(g\omega)^{(k)}\| \leq \inf_{g \in G} \sum_{m=1}^{k} \binom{k}{m} \|g^{(m)}\| \sup_{\omega} \|\omega^{(k-m)}\|$$
$$\leq \sum_{m=1}^{k} \binom{k}{m} \|g^{(m)}_{*}\| \sup_{\omega} \|\omega^{(k-m)}\|,$$

with some special choice of $g_* \in G := \cap G_{\omega}$ which is seen to be *independent* of ω . Notice also, that in the latter sum for any choice of $g_* \in G$ the term with m = k is equal at least to 4^{k-1} (see [1, p.132]).

3. Proof of Theorem 1

We will estimate B_k choosing $g \in G_\omega$ depending on ω in the following way. For $\omega \in \prod_{k=1}$,

$$\omega(x) = \frac{1}{(k-1)!} \prod_{i=1}^{k-1} (x - t_i),$$

 set

$$g_{\omega}(x) = \int_0^x M_{\omega}(t) dt,$$

where M_{ω} is the B-spline of degree k-1 constructed on the mesh

$$0 = t_0 \le t_1 \le \ldots \le t_{k-1} \le t_k = 1,$$

and normalized with respect to the L_1 -norm, i.e.,

$$\int_0^1 M_\omega(t) \, dt = 1.$$

Example. In the case of the Bernstein knots, when

$$\omega(x) = c_1 x^{\alpha} (x-1)^{\beta}, \quad c_1 = 1/(k-1)! = 1/(\alpha + \beta)!,$$

we have

$$M_{\omega}(t) = c_2 t^{\beta} (1-t)^{\alpha}, \quad c_2 = k \binom{k-1}{\alpha}.$$

Next we need two lemmas which proofs will be given below. LEMMA 1. For any $\omega \in \prod_{k=1}$

$$g_{\omega} \in G_{\omega}$$
.

LEMMA 2. For any $\omega \in \prod_{k=1}$

$$\|g_{\omega}^{(m)} \cdot \omega^{(k-m)}\| \le k \binom{k-1}{m-1}, \quad m = 1, \dots, k.$$

Now by Lemmas 1,2, and D,

(3.1)

$$\begin{aligned}
\kappa_{k,p} \leq B_k \leq \sup_{\omega} \|(g_{\omega} \cdot \omega)^{(k)}\| \leq \sum_{m=1}^k \binom{k}{m} \sup_{\omega} \|g_{\omega}^{(m)} \cdot \omega^{(k-m)}\| \\
\leq k \sum_{m=1}^k \binom{k}{m} \binom{k-1}{m-1} = k \cdot \frac{1}{2} \binom{2k}{k},
\end{aligned}$$

that is

$$\kappa_{k,p} \leq \frac{k}{2} \binom{2k}{k}.$$

Finally, with respect to Wallis' inequality

$$4^k/\sqrt{(k+1/2)\pi} < \binom{2k}{k} < 4^k/\sqrt{k\pi}$$

we have

$$\kappa_{k,p} < \frac{1}{2\sqrt{\pi}} k^{1/2} 4^k < k^{1/2} 4^k.$$

4. Proof of Lemma 1

Let us verify that

(4.1)
$$\begin{aligned} 1) \quad g_{\omega} \cdot \omega &\in W^k_{\infty}[0,1] \\ 2) \quad g_{\omega} \cdot \omega &= \begin{cases} 0, & k \text{-fold at } 0, \\ \omega, & k \text{-fold at } 1, \end{cases} \end{aligned}$$

1) This is evidently true, if ω has only simple zeros $\{t_i\}_1^{k-1}$ lying strictly in (0, 1), i.e. for

$$0 = t_0 < t_1 < \ldots < t_{k-1} < t_k = 1.$$

In fact, in this case

1')
$$M_{\omega} \in W_{\infty}^{k-1}[0,1],$$

2') $M_{\omega}^{(\nu)}(x)|_{x=0,1} = 0, \quad \nu = 0, \dots, k-2.$

For $g_{\omega} = \int M_{\omega}$ this provides

$$\begin{aligned} 1'') \quad g_{\omega} \in W^k_{\infty}[0, 1] \\ 2'') \quad g_{\omega} = \begin{cases} 0, & k \text{-fold at } 0, \\ 1, & k \text{-fold at } 1, \end{cases} \end{aligned}$$

which in turn implies (4.1).

2) If ω has a multiple zero

$$\tau_{\nu} := t_{\mu_{\nu}} = t_{\mu_{\nu}+1} = \ldots = t_{\mu_{\nu}+p_{\nu}-1},$$

then the smoothness of M_{ω} and $g_{\omega} = \int M_{\omega}$ respectively will drop down at the knot τ_{ν} to the amount $p_{\nu} - 1$, but this loss will be compensated in the product $g_{\omega} \cdot \omega$ by the factor $(x - \tau_{\nu})^{p_{\nu} - 1}$ from ω . (See Example in Sect. 3).

5. Proof of Lemma 2

Since $g_{\omega}^{(m)}(x) := M_{\omega}^{(m-1)}(x)$, we need to prove the following statement. LEMMA 2'.

(5.1)
$$\sup_{\omega \in \Pi_{k-1}} \frac{t_k - t_0}{k} \| M_{\omega}^{(m-1)} \cdot \omega^{(k-m)} \| \le \binom{k-1}{m-1}, \quad m = 1, \dots, k.$$

Remark. If ω has a zero τ_{ν} of multiplicity p_{ν} , then $M_{\omega}^{(k-p_{\nu})}$ has a jump at τ_{ν} . In this case we can define the value $M_{\omega}^{(k-p_{\nu}+\mu)}(\tau_{\nu}) \omega^{(p_{\nu}-1-\mu)}(\tau_{\nu})$ as a limit either from the left or from the right. This limit is equal to zero, if $\tau_{\nu} \in (t_0, t_k)$. Also, this definition justifies the equality

$$(g_{\omega} \cdot \omega)^{(k)}(x) = \sum_{m=1}^{k} \binom{k}{m} g_{\omega}^{(m)}(x) \omega^{(k-m)}(x) := \sum_{m=1}^{k} \binom{k}{m} M_{\omega}^{(m-1)}(x) \omega^{(k-m)}(x),$$

which was used in (3.1).

Proof. This will be given by induction on k. Namely, we establish some recurrence relations for the left-hand side of (5.1).

Denote by $M_{j,p}$ the B-spline of degree p such that

supp
$$M_{j,p} = (t_j, t_{j+p+1}), \quad \int_{t_j}^{t_{j+p+1}} M_{j,p}(x) \, dx = 1$$

and by $\omega_{j,p}$ the corresponding polynomial of the same degree p

$$\omega_{j,p}(x) = \frac{1}{p!}(x - t_{j+1})\dots(x - t_{j+p})$$

whose zeros coincide with the inner knots of $M_{j,p}$.

We establish some recurrence relations for the values

(5.2)
$$A_{p,r} := \sup \frac{t_{j+p+1} - t_j}{p+1} \|M_{j,p}^{(r)}\omega_{j,p}^{(p-r)}\| B_{p,r} := \sup \frac{1}{p+1} \|M_{j,p}^{(r)}\omega_{j,p}^{(p-r-1)}\|.$$

where sup is taken over all the meshes $t_j \leq \ldots \leq t_{j+p+1}$. For this purpose it will be enough to use three B-splines

$$M := M_{0,p}; \quad \begin{cases} M_0 := M_{0,p-1}, \\ M_1 := M_{1,p-1}; \end{cases}$$

and, respectively, three polynomials

$$\omega := \omega_{0,p}; \quad \begin{cases} \omega_0 := \omega_{0,p-1}, \\ \omega_1 := \omega_{1,p-1}; \end{cases}$$

for which, by definition,

(5.3)
$$\omega(x) = \frac{1}{p} (x - t_p) \omega_0(x) = \frac{1}{p} (x - t_1) \omega_1(x).$$

1) First, we use the following identity [3, Eq.(4.6)] for the B-splines M, M_0, M_1

$$\frac{t_{p+1}-t_0}{p+1} M^{(r)}(x) = \left[M_0^{(r-1)}(x) - M_1^{(r-1)}(x) \right],$$

coupled with the equalities for $\omega, \omega_0, \omega_1$ obtained from (5.3) by simple differentiation:

$$\begin{split} \omega^{(p-r)}(x) &= p^{-1} \left[(x-t_p) \, \omega_0^{(p-r)}(x) + (p-r) \, \omega_0^{(p-r-1)}(x) \right] \\ &= p^{-1} \left[(x-t_1) \, \omega_1^{(p-r)}(x) + (p-r) \, \omega_1^{(p-r-1)}(x) \right]. \end{split}$$

This gives

(5.4)
$$\frac{t_{p+1} - t_0}{p+1} M^{(r)}(x) \omega^{(p-r)}(x) = p^{-1} \Big[(x - t_p) M_0^{(r-1)}(x) \omega_0^{(p-r)}(x) + (p-r) M_0^{(r-1)}(x) \omega_0^{(p-r-1)}(x) - (x - t_1) M_1^{(r-1)}(x) \omega_1^{(p-r)}(x) - (p-r) M_1^{(r-1)}(x) \omega_1^{(p-r-1)}(x) \Big].$$

Now, by definition (5.2), and due to the finiteness of B-splines

$$p^{-1} | M_0^{(r-1)}(x) \, \omega_0^{(p-r)}(x) | \quad := \quad p^{-1} | M_{0,p-1}^{(r-1)}(x) \, \omega_{0,p-1}^{(p-1-(r-1))}(x) | \\ \leq \quad \frac{\chi_{[t_0,t_p]}(x)}{t_p - t_0} \, A_{p-1,r-1},$$

with χ_E being the characteristic function of the interval E. Similarly,

$$p^{-1} \left| M_1^{(r-1)}(x) \, \omega_1^{(p-r)}(x) \right| \le \frac{\chi_{[t_1, t_{p+1}]}(x)}{t_{p+1} - t_1} \, A_{p-1, r-1}.$$

Also, by (5.2)

 $p^{-1} \left| M_0^{(r-1)}(x) \, \omega_0^{(p-r-1)}(x) \right| := p^{-1} \left| M_{0,p-1}^{(r-1)}(x) \, \omega_{0,p-1}^{(p-1-(r-1)-1)}(x) \right| \le B_{p-1,r-1},$

and, respectively,

$$p^{-1} |M_1^{(r-1)}(x) \omega_1^{(p-1-r)}(x)| \le B_{p-1,r-1}.$$

Thus, from (5.4) we derive

$$A_{p,r} \le ||D|| A_{p-1,r-1} + 2(p-r) B_{p-1,r-1}$$

where

$$D(x) = \frac{|x - t_p|}{t_p - t_0} \chi_{[t_0, t_p]}(x) + \frac{|x - t_1|}{t_{p+1} - t_1} \chi_{[t_1, t_{p+1}]}(x).$$

Evidently $D(x) \leq 1$, hence

(5.5)
$$A_{p,r} \le A_{p-1,r-1} + 2(p-r) B_{p-1,r-1}.$$

2) Next we find a similar recurrence relation for

$$B_{p,r} := \sup_{t} \frac{1}{p+1} \| M_{j,p}^{(r)} \omega_{j,p}^{(p-r-1)} \|.$$

For this purpose we use another identity [3, Eq.(4.9)] for the B-splines $M,\,M_0,\,M_1$

$$\frac{1}{p+1}M^{(r)}(x) = \frac{1}{t_{p+1}-t_0}\frac{1}{p-r}\left[(x-t_0)M_0^{(r)}(x) + (t_{p+1}-x)M_1^{(r)}(x)\right],$$

coupled with the previous relations for ω,ω_0,ω_1

$$\begin{split} \omega^{(p-r-1)}(x) &= p^{-1} \left[(x-t_p) \, \omega_0^{(p-r-1)}(x) + (p-r-1) \, \omega_0^{(p-r-2)}(x) \right] \\ &= p^{-1} \left[(x-t_1) \, \omega_1^{(p-r-1)}(x) + (p-r-1) \, \omega_1^{(p-r-2)}(x) \right]. \end{split}$$

This implies

$$\begin{aligned} \frac{1}{p+1} M^{(r)}(x) \,\omega^{(p-r-1)}(x) \\ &= \frac{1}{p} \frac{1}{t_{p+1} - t_0} \frac{1}{p-r} \times \Big[(x-t_0) \,(x-t_p) M_0^{(r)}(x) \,\omega_0^{(p-r-1)}(x) \\ &+ (p-r-1) \,(x-t_0) M_0^{(r)}(x) \,\omega_0^{(p-r-2)}(x) \\ &+ (t_{p+1} - x) \,(x-t_1) M_1^{(r)}(x) \,\omega_1^{(p-r-1)}(x) \\ &+ (p-r-1) \,(t_{p+1} - x) M_1^{(r)}(x) \,\omega_1^{(p-r-2)}(x) \Big]. \end{aligned}$$

Or, in terms of A, B,

$$B_{p,r} \leq \frac{1}{p-r} \Big[(\|D_1\| + \|D_2\|) A_{p-1,r} + \|D_3\| (p-r-1) B_{p-1,r} \Big],$$

where

$$D_{1}(x) = \frac{|x - t_{0}| |x - t_{p}|}{(t_{p+1} - t_{0})(t_{p} - t_{0})} \chi_{[t_{0}, t_{p}]}(x) \leq \frac{1}{4},$$

$$D_{2}(x) = \frac{|t_{p+1} - x| |x - t_{1}|}{(t_{p+1} - t_{0})(t_{p+1} - t_{1})} \chi_{[t_{1}, t_{p+1}]}(x) \leq \frac{1}{4},$$

$$D_{3}(x) = \frac{|x - t_{0}| \chi_{[t_{0}, t_{p}]}(x) + |t_{p+1} - x| \chi_{[t_{1}, t_{p+1}]}(x)}{t_{p+1} - t_{0}} \leq 1.$$

That is,

(5.6)
$$B_{p,r} \leq \frac{1}{p-r} \left[\frac{1}{2} A_{p-1,r} + (p-r-1) B_{p-1,r} \right].$$

3) In (5.6) let us make the changes $(p, r) \rightarrow (p - 1, r - 1)$, and write it down together with (5.5).

$$A_{p,r} \leq A_{p-1,r-1} + 2(p-r) B_{p-1,r-1}$$
$$B_{p-1,r-1} \leq \frac{1}{p-r} \left[\frac{1}{2} A_{p-2,r-1} + (p-r-1) B_{p-2,r-1} \right].$$

The values $A_{p,0}$ could be evaluated directly:

$$A_{p,0} := \sup_{t} \frac{t_{p+1} - t_0}{p+1} \| M \,\omega^{(p)} \| = \sup_{t} \frac{t_{p+1} - t_0}{p+1} \| M \| \le 1.$$

If we put

(5.7)
$$a_{p,0} = 1,$$

$$a_{p,r} = a_{p-1,r-1} + 2(p-r) b_{p-1,r-1},$$

$$b_{p-1,r-1} = \frac{1}{p-r} \left[\frac{1}{2} a_{p-2,r-1} + (p-r-1) b_{p-2,r-1} \right]$$

then

$$A_{p,r} \le a_{p,r}, \quad B_{p,r} \le b_{p,r}.$$

Comparing the expressions for a and b in (5.7), we see that $b_{p-1,r-1} = \frac{1}{2(p-r)} a_{p-1,r}$. Hence, (5.7) is reduced to the relations

$$a_{p,0} = 1,$$

 $a_{p,r} = a_{p-1,r-1} + a_{p-1,r},$

which define the binomial coefficients $a_{p,r} = {p \choose r}$.

Thus,

$$A_{p,r} \leq \binom{p}{r},$$

and, respectively,

$$\sup_{\omega} \frac{t_k - t_0}{k} \| M_{\omega}^{(m-1)} \omega^{(k-m)} \| =: A_{k-1, m-1} \le \binom{k-1}{m-1}$$

which was to be proved.

References

- C. DE BOOR, On local linear functionals which vanish at all B-splines but one, in "Theory of Approximation with Applications" (A.G.Law and B.N.Sahney, Eds.), pp. 120-145, Academic Press, New York, 1976.
- [2] C. DE BOOR, The exact condition of the B-spline basis may be hard to determine, J. Approx. Theory, 60 (1990), 344-359.
- [3] C. DE BOOR, Splines as linear combinations of B-splines. A survey, in "Approximation Theory II" (G.G.Lorentz et al, Eds.), pp. 1-49, Academic Press, New York, 1976.
- [4] T. LYCHE, A note on the condition number of the B-spline basis, J. Approx. Theory, 22 (1978), 202-205.
- [5] K. SCHERER, The condition number of B-splines and related constants, in "Open Problems in Approximation Theory" (B.Bojanov, Ed.), pp. 180-191, SCT Publishing, Singapore, 1994.