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ABSTRACT

For the p-norm condition number ki, of the B-spline basis of order & we prove
the upper estimate
Kikp < K2 4",

This improves de Boor’s estimate ki, < k 9% and stands closer to his conjecture
that ky,p, ~ 2.
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1. INTRODUCTION

Let {N;} be the B-spline basis of order k on a feasible knot sequence ¢ = {t;},
t; < tjtx, normalized with respect to the Lp-norm (1 < p < o), lL.e.

Nj(x) = (k/(tjpr — t5)) /7N (),

where {N;} are the B-splines forming a partition of unity.
The condition number of {N;} is defined as
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where the L,-norm is taken with respect to the smallest interval containing the

knots {t;}.
Set

Rk pt

REg p = Slip Rk pt)

defining thus the worst B-spline condition number.
C.de Boor [1] proved that

(1.1) kg p < 2k 9F 1

and conjectured that

REgp ™~ Qk.

This conjecture was supported by the lower bound of T.Lyche [4]
Kok oo > (k— 1)1 2k=3/2

and by recent numerical computations [2]. However, the poor upper estimate (1.1)
remained unchanged.
Here we prove

THEOREM 1.
Kk p < k’l/z 4k.

2. PRELIMINARIES

Following de Boor [1], we will introduce here some related constants which ma-
jorize ky , for all p € [1,00]. More details on the problems relevant to s, can be

found in [1],[2],[5].
Recall that
Nj(t) = (k= t5) [t g, o gl (=057
so that
SuppNj:(tj,tj+k), NjZO, ZN]'II.
LEMMA A. Let H; be the class of functions h; € Lo, such that

1) supp hi C [ti, titk]
2) [ hiNj =i



and let
D, = inf tive — )R .
& Sgpsgph,nelH,{( itk llil|oo t

Then
Rk p S Dk.

Set
=
¥i(z) = m Vl:[l(x —tivy).
The following lemma shows how the functions h; € H; could be constructed.
LEMMA B. Let F; be the class of functions f; such that

1) fi € WEti, tigr],

0, k-fold at t;,
2) fi= 0=1, Vi € (i, tiyn),
i, k-fold at ¢; 4k,

and let Fi(k) = {fi(k) . fi € Fi}. Then

¥ c ;.

Further, an easy way for obtaining f; € F; is to set f; = g¢;%; with appropriate
smoothing function g;. We formulate it as

LEMMA C. Let G; be the class of functions g; such that

1) gk € WEti, tizs],

%) i = 0, k-fold at t;,
=N i, kefold at tipy,

and let Gl(k) = {(g:v)*) : g; € Gi}. Then
"M c r®.

We summarize Lemmas A-C as follows.

COROLLARY. Let

By = Sup Sll%P glgg {(ti+k - ti)||(gi1/)i)(k)||oo} .

Then
Rk p S Bk.

Finally, due to the local character of all the statements, we reformulate the
final result making the linear transform [t;,%;45] — [0, 1], eliminating thereby the
reference to the meshes ¢.

Denote by II;_; the set of algebraic polynomials w of degree & — 1 with all their
zeros lying in [0, 1] and higher derivative equal 1, i.e. of the form

k-1

w(l‘)zﬁn(l‘_tz)a tle[oal]



LEMMA D. For w € lly_1 qiven, let G, be the class of functions g such that

1) gweWi[0,1]

0, k-fold at 0,
2) gw=
w, k-fold at 1,

bl

and let
B, = su inf w) k) oo -
o= s inf [lg) ]
Then
Rk p S Bk.

Remark. Lemmas A and B are taken from [1, p.123] and [1, p.127]. Lemmas
C and, respectively, D are somewhat more accurate version of what is given in
[1, Eq.(4.1)]. Namely, they show the possibility to choose the smoothing function
g depending on w. C.de Boor’s estimate of By resulted in (1.1) was based on the
inequalities

geG m
k
k m —m
< 3 ()l s ot
m=1

with some special choice of g, € G := NG, which is seen to be independent of w.
Notice also, that in the latter sum for any choice of g. € GG the term with m = & is
equal at least to 451 (see [1, p.132]).

k
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3. PROOF OoF THEOREM 1

We will estimate By choosing ¢ € GG, depending on w in the following way. For

welly_q,
k-1

1
w(r) = =)t [T -,

i=1

Juw (%) :/ M, (t) dt,
0
where M, 1s the B-spline of degree k& — 1 constructed on the mesh
O=to<ti <...<tp1 <tp =1,

and normalized with respect to the Li-norm, i.e.,
1
/ My(t)ydt =1.
0

Ezample. In the case of the Bernstein knots, when

w(x) =cpx%(x — l)ﬁ, aa=1/k=1'=1/(a+5)!,



we have _—
M,(t) =est?(1=1)%, o=k ( - )
et
Next we need two lemmas which proofs will be given below.

LEMMA 1. For any w € Ili_4

Juw € Gy

LEMMA 2. For any w € Ili_4

gl - wk=m)| < k (k_l), m=1,. .k

m—1
Now by Lemmas 1,2, and D,

k
k
kep <Br < sup ||(go .w)(k)H < Z ( ) sup ||gfum) .w(k—m)H
(3.1) ¢
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Finally, with respect to Wallis’ inequality

4/ (k+1/2)7 < (2:) < 4 Nkr

we have )
Kk p < ﬁkl/zlﬂc < k1/24k.

4. PROOF oF LEMMA 1

Let us verify that
) g, weWE0,1]

(4.1) 0, k-fold at 0,
2) gorw=
w, k-fold at 1,

1) This is evidently true, if w has only simple zeros {ti}’f_l lying strictly in
(0,1), i.e. for
O=to<ti < ... <tlp_1 <t =1.

In fact, in this case
)y M, e Wk-to,1],
2 MY ()|, _, =0, v=0,...

r=0,1 —



For g, = [ M, this provides

1) gw € WEO, 1]

2) ] 0, k-fold at 0,
=N 1, kfold at 1,

which in turn implies (4.1).
2) If w has a multiple zero
=t =t = =t 4, -1,

then the smoothness of M,, and g, = [ M, respectively will drop down at the knot
7, to the amount p, — 1, but this loss will be compensated in the product g, -w by
the factor (z — 7,)P*~! from w. (See Example in Sect. 3).

5. PROOF OF LEMMA 2

(m

Since g™ (x) := M"Y (2), we need to prove the following statement.

LEMMA 2.
k-1
(5.1) sup (m=1) . ylk=m))| < ( ), m=1 ...k
wellg—1 m—1

(k=pv)

Remark. If w has a zero 7, of multiplicity p,, then M, has a jump at 7.
In this case we can define the value Mﬁ’“"’"*“)(n,) w(p”_l_“)(ﬂ,) as a limit either
from the left or from the right. This limit is equal to zero, if 7, € (to, ). Also, this
definition justifies the equality

(g0 )" :Z( Jolr @i :Z( Jug et m)

m=1
which was used in (3.1).

Proof. This will be given by induction on k. Namely, we establish some recur-
rence relations for the left-hand side of (5.1).
Denote by M; , the B-spline of degree p such that

ti4pt1
supp Mj p = ({5, tj4p41), / Mjp(z) do =1,
t

J

and by w; , the corresponding polynomial of the same degree p

1
wjp(r) = ]7!(1‘ — i) (@ = L)

whose zeros coincide with the inner knots of M; .
We establish some recurrence relations for the values

Litpt1 — 1
Apr 1= sup % [ Jpw‘gpp T)H
(5.2) .,
—
BPJ' = sup N || ]p ]pp ||



where sup is taken over all the meshes ; < ... <%;4,41.
For this purpose it will be enough to use three B-splines

MO = MO,p—la

M = My ,;
’ { My =M p_1;

and, respectively, three polynomials
Wp 1= Wop-1,
W =W p;

W1 1= Wi p—1;

for which, by definition,

(5.3) w(z) = % (z —tp)wo(x) = %(1‘ — 1) wi(z).

1) First, we use the following identity [3, Eq.(4.6)] for the B-splines M, My, M,

tpr1 — 1t . r— r—
PEE M @) = (MY (@) - M )]

coupled with the equalities for w,wy,w; obtained from (5.3) by simple differentia-
tion:

@) = 5 [ = 1) el @) + (- )l V)]

= [ -l @)+ (- )]

This gives
tp;1+_1t0 M) () W@ (x)
G4 == t)M @) el T @)+ (0= MV @)l T @)

— (& = )MV @) T (@) = (p— )MV @) T ()],

Now, by definition (5.2), and due to the finiteness of B-splines

— r—1 -7 — r—1 —1—(r—1
p M @) 0T @) = p M @) W T @)
X[tDytp](x)
= tp_tO Ap—l,r—la

with xg being the characteristic function of the interval E. Similarly,

X[tl,tp+1](x)

P (@) Wl T ()| < S
lpy1 — 4

Ap—l,r—1~

Also, by (5.2)
— r—1 —r—1 — r—1 —1—(r—1)—-1
7 M TV @) T )| = 7 Mg () T T @)] < By
and, respectively,
P M (@) AT @) < By
Thus, from (5.4) we derive

Apr <D Ap—rir1 +2(p = 7) By o1,



where

r—t r—1
Dy = B2l e+ T )
p — 40 p+1 — 1
Evidently D(z) < 1, hence
(5.5) Apr <Ap_1,-14+2(p—7)Bp_1r-1.

2) Next we find a similar recurrence relation for

p r— 1)||

Bpr = sgp—” JP “jp

) p+1

For this purpose we use another identity [3, Eq.(4.9)] for the B-splines M, My,
My

1 1
e My = - _ (r) _ (r)
ST MO = e [ M @) o )M

coupled with the previous relations for w,wp, wy

W @) = p [ t) el T @) + (= Dl T ()]
= p! [(1‘ — 1) wgp_r_l)(l‘) +(p—-r-1) WEP_T_Z)(QU)} :
This implies

]%M(T)(I)w(p_r_l)(l‘)
11 1 (1) () o, (P=7=1)
= —to)(z —t,) M
] (R S P )

(== e~ o) M (@)l T )
+ (tps1 = @)z — )M (@)l (@)
o= Dltper = 2) M (@)l (0)].

Or, in terms of A, B,

1
By < S [P+ 11D20D Ap- 1,r+||D3||(p—7°—1)Bp—1,r],

where | ull . 1
x — 1log||x — P
Dq(x 7)< -,
1) (tp+1 — to)(tp — to) Xtot,) () < 4
ltp1 — 2f|le — i 1
D X = <2
2( ) (tp-|-1 - to)(tp+1 —tl) X[t17tp+1]( ) = 4
—t t -
D3(l‘) — |$ 0|X[tu,tp]($) + | p+1 x|X[t1,tp+1]($) S L
tpy1 — o
That is,
1 1
(5.6) By, < _Ap—l,r+(p—7°— 1)Bp—1,r



3) In (5.6) let us make the changes (p,r) — (p — 1,7 — 1), and write it down
together with (5.5).

Apr < Apipo1+2(p—1) Bpoirn
1 [1

< b §Ap—2,7‘—1 +(p—r—=1)By_o,1

Bp—l,r—l
The values Ay o could be evaluated directly:

t -1 t -1
14%0:::sup-ﬁil———gnﬁfaﬂpn|::sup-ﬁil—i—gnﬂdﬂ < 1.
t

p+1 t p+
If we put
ap,O = 1,
(57) Apyr = Ap—1r—1 +2(P—7°) bp—l,r—la
1 1
bp—l,r—l = pr §ap—2,7‘—1 + (P - r—- 1) bp—2,7‘—1 3
then

Apr S tpry Bpr <bpr.

Comparing the expressions for ¢ and bin (5.7), we see that b,_q1 ,_1 = m Up—1,r-
Hence, (5.7) is reduced to the relations

apo = 1,
Apyr = Gp_1yr—1 +ap—1,7‘a

which define the binomial coefficients a, , = (f)
Thus,

and, respectively,

tr — 1o
k

sup
w

k—1
M E=m =2 Ay oy < ( )
m—1

which was to be proved.
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