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1. INTRODUCTION

In [Sh] we proved that, for p sufficiently close to 2, the L,-norm of the Lo-
projector P onto the space S of polynomial splines of order £ on a knot-sequence
A 1s bounded independently of A:

1 1
sup || Ps, (a)llp < e, ‘———‘ < €, e = o(1). (1.1)
A p 2

This was thought to be a support to de Boor’s conjecture [B] which states such
a boundedness for p = oo (thus, for all p € [1,x]), and which has been proved so
far only for some particular k.

The proof itself was rather technical and employed specific properties of the
polynomial splines.

In this paper we prove two theorems which show that, on its own, the estimate
(1.1) has nothing to do either with the splines, or with de Boor’s conjecture.

Namely, in Theorem 1, by elementary means, we show that, for p from a small
neighbourhood of p = 2, the mesh independent Lp-estimate (1.1) is not some-
thing extraordinary, but holds for the Ls-projector onto arbitrary space with a
well conditioned basis of finitely supported functions. The minimal radius of this
neighbourhood depends only on the basis local condition number.

Using Theorem 1 and a known bound for the B-spline condition we give an
explicit expression for ¢ in (1.1), which we did not manage to compute in [Sh].

On the other hand, in Theorem 2, we construct a sequence of f.e. bases with uni-
formly bounded local condition numbers, such that the corresponding Lo-projectors
are not uniformly L,-bounded, if p does not belong to a certain neighbourhood of
p = 2. As local condition (necessarily) tends to oo, the mazimal radius of this
neighbourhood becomes arbitrary small.

Since the local condition of the B-spline basis of order k grows like 2%, the
latter theorem shows that in proving de Boor’s conjecture for large & one should use
something more delicate than the mesh independent boundedness of the B-spline
condition number.

2. RESULTS

Let k,n € N, and let A = {tl}fz‘l'lk be a knot sequence, such that
a=1 <ty < ... <lpyp =0, 1 <tipp.
For k,n,A as above, and for d € R, define & 4(A) as the set of all fie. bases
& = {¢;}7_, with the following properties:
(A1) supp¢; = B = [ti, tisk];
(A2)  6illo < 1/k;
(As) d™May| < |EITVPI I aidill, ey Ya=(a)isy, Yp €1 00].



For a linear space S we write S € Si 4(A), if S = span {®} with some & € &y 4(A).
Remarks. 1) Property (As) is equivalent to
dp(®) < d,
where
dp(®) == {mf [1E;]~ 1P Qist (¢;,span {¢;} Z;,g]) ]}_1
can be viewed as a local p-condition number of ®. By Holder mequahty,
0(®) < dy(®), i 1<p< oo,

so that it is enough to require (Asz) only for p = 1.
2) Also, properties (A1)—(Asz) provide the estimate

rp(®) < dp(®) < d
for the global condition number &, of the properly L,-normalized basis ® (see §3).

Now let Pg be the operator of the La-projection onto S with respect to the usual
inner product (f,9) = [ fyg, i.e.,

(f,o)=(Psf, o), VYoeS.

For S € Sk 4(A), due to (As), this operator maps L, onto L,, and we are interested
in bounds for its norm

1Psllp = sup {[Ps(f)lp-

[Fllp=1
The main results of this paper are the following.

THEOREM 1. Foranyk e N, de R, d > k,

1 1 1
su su P < c(k,d), - — - < =
Ap Sesk,S(A) 1Psllp < ek, d) ‘ ‘ 2kd?Ind
THEOREM 2. For k=2, and any d > 16,

sup sup [|Ps|l, = oo,

‘1 1‘ 3
A S€S3.4(A)

--l> =
217 Vd

The proof of Theorem 1 is given in §§ 3-7 among which only §5 and §7 contain
some new results. §§ 3,4,6 are just a rewriting of the known results for the B-spline
basis to the f.e. bases satisfying (A;1)-(As) and are given for the sake of completeness.

Theorem 1 has just the same “spline-eliminating” character as Demko’s result
on the inverses of the band matrices, and Descloux’s result on the f.e. matrices.

For the spline space Si(A) the local condition of the B-spline basis @5 (A) of
order k satisfies

k=128 < sup di(®x(A)) < k2.
A
Thus, by Theorem 1, we obtain
COROLLARY 1. For the Ly-projector onto the spline space S (A)
1 1 1
. < AE+1]4°

SliPHPSk(A)Hp < c(k, d), 573

On the other hand, Theorem 2 shows that the growth of the B-spline basis
condition number is not its best property.



3. CONDITION NUMBER

For 1 <p < o0, set

Sip = (K/|E) i, @y = {gip)is. (3.1)
and define the p-condition number of ¢ as
122 @i ¢inllz [1C6)1l:
Kp(®) := sup J ~—* sup P,
! o @)l ey 11225 0505lL,

LEMMA 3.1. If ® € Oy 4(A), then

d™ally, < 1Y aidipllz, < llall,, (3.2)
i=1

i.€.

k(@) < d.

Proof. 1) The upper estimate.
la) If p = oo, then at any x € [a, b], due to (A1), at most k& functions of @ differ
from zero, what by (A2) implies

> leia)] < kmax|gi(x)] < 1, Ve € [a,0], (3.3)

i=1

and respectively,
n m
1Y aisillr., < max ;| - > il < max |a;.
i=1 i=1

1b) For p =1, by (Aa),
il =k B~ il < kllgilleo <1, Vi,
thus,

1Y aiginllh <Y lal (1601l < Y laal. (3.4)
i=1 i=1 i=1

1c) For 1 < p < oo, since
$ip =7 6112,
by Holder inequality, and due to (3.3)-(3.4),
1 1
IS aidi? - 61N, < 110 lail?1és 1 )7 (5 164.00)) 91,
1 1
I abéi )P N, = IS abeiill” <@/

llalle, -

Il Z?:l ai‘?si,pHLp

IN

2) The lower estimate. By (As),

d=P|a,|P < k| Zaikl/p|Ej|—1/p¢i||1£p[Ej] =k Zai(/j)imnip[b“j]’



thus, for f = 3", a;¢; p, we have

a7y agl? < k7Y AN ey < AN e
i i

4. Ly-PROJECTOR AND GRAM-MATRIX

Here we will establish equivalence between the L,-norm of Pg and the [,-norm
of inverse of a Gram-type matrix A,.

LEMMA 4.1. Let ® € @y 4(A), S =span {®}, and let A, be the n x n matriz
Ap = (qj’i,qaqj’j,p) Zj:r
Then
d721A7 e, < N1Psllz, < (1477, (4.1)

Proof. We make use of the following nice formula of de Boor [B].

o Nlsllpllellq . Mlsllpllelly
Psl|, = sup inf ———+ = sup inf —————. 4.2
1Pslle =222 328 .ol ~ e 228 s, o) 2

Now, if
n n
5= § Ti¢jp, 0= § Yidig-
j=1 i=1

for some sequences z = (z;), y = (y;), then
(s,0) = Zyi Z(‘/’i,qaqj’j,p)xj = (Apx,y), Ap ={(ip, 05,0} =1,
i=1 j=1

and according to (4.2),

S o
po = sup g Jollzliolls o il ol

cesoes |(s,0)] T cervely [(Apzy)]
By Lemma 3.1,
dYell, < sllz, < llell, d ik, < lolle, < ol

so that

- ol [yl -
d= 2y < || Psl|, < 7, = sup inf ——2070T — ||A7 Y,
Py_ || Hp _Py Py xelpyelq |(Ap$,y)| || ||p

The lemma is proved.

Since for any matrix B = (b;;) holds

1
1bis] < 1Bll, < 1BIL I BIELT < max{[|Bll1, 1Bl

a corollary of (4.1) is
LEMMA 4.2. Let ® € & 4(A), S =span {P},

A, = {(¢i g ¢j7p}2j:1a Agjl = (bijyp)?,jzl



Then
1Ps]lp > d”Hg}leij,pl, (4.3)

[|Ps[lp < max m?XZ 1bij 5, m]aXZ |bijpl ¢ - (4.4)

j=1 i=1

5. PRoOOF OF THEOREM 1.

In order to apply the estimate (4.4) it sufficies to establish a certain decay of
the entry b;; , as a function of |i — j| and p.
From the normalization condition (3.1), it follows that

Ap = {(@,q, ¢j,p} = El/pAooE_l/pa

with
E :=diag (| 1|, | Eal, .. .| Enl).

This gives for the entries of the inverse matrices Azjl = (b;;,p) the relation
bijp = (IEHI/1Ei) Pbij o (5.1)
and, as a corollary, the intermediate estimate
b0l = 1812177 b e /7. (5:2)

As we will show in §§ 6-7,

li—j] d2_1 1/2(k-1)
[bijol < dPy ", 2 = <d2+ 1) : (5.3)
|bijcol < A, v = d/V2, (5.4)
so that (5.2) implies
Jaijpl < i 5y =3Pl p >0, (5.5)
The inequality v, < 1 means
2/p
L el I (ﬁ) <1, p>2
Yoo
what results in |
N Yoo
1>2/p> ——mM
2 Yoo + In(1/72)
le.,
11 1 In(1
OS___<_M::€0. (56)
2 p  2Inve +In(1/¥2)

Since Inz > 1 — 1/a, we have

1 d*+1 1 1
In(1 = |
n(1/72) 2(k—1)n<d2—1)>k—1d2—|—1’

Invee = ln(d/\/i),




therefore,

1 1 1 1
€y = = > = .
CT 9Ty s T 214 (k= 1)(d? + 1) In(d/V2)
From the inequality d > k > 2, it follows that

L1
P
07 9%kd?Ind

so that for p satisfying

_
T 2kd?Ind

0< - —=—<¢":

N | —

1
p

the inequality (5.6) is also satisfied.

(5.7)

This means, that if p belongs to the interval (5.7), then for v, defined in (5.5)

we have
o < Ypr = Yra < 1
therefore,
bijpl < T wa <1,
and, by (4.4),
1Pslly < ck,a-
Finally,

1 1 1
P < —— | < —.
1Psllp < ek |2 p| = 9kd?1nd

Theorem 1 is proved.
6. ProoF oF (5.3)

Denote by @7 = {¢7 ,} the basis dual to @,

(¢Z’,qa¢;yq) = 6Z]a Za.] = Ln

It follows from the definition of A;l ={(¢i g, 0j )} = (bijp), that
f/’;q = Z bijp@jp-
j=1

LEMMA 6.1. Let @ € &y 4(A), and ¢7 5 = Z;:l big;a. Then

o d2—1 1/2k
b' <d2 |Z_]| —
bj] < dyy ™, v 211

Proof. 1) Since ¢; , is orthogonal to span {¢; 2};;, we have
(972,97 2) = (di2, bidi 2 + ijf/>j,2) = (67 2, bidi2) = bi,
J#e

1.e.

1675115 = bi.



On the other hand, by (3.2),
A7) 0 < 197al13,
=1

1.e.

2 2 4
b} <Y by < dh.
j=1

2) Form > i+ 1—k, set
n+k

Um = Y bid;.
j=m

Then
Um(x) = @7 o(2), = >tmik

i.e. ¥y, 1s orthogonal to span{(biyz}Qm{_k_l, in particular to ¥, yr—1. This gives

||1/’m||%2[a,b] + 1= 1/)m+k—1||%2[a,b] = [|¢hm — 1/)m+k—1||%2[a,b]a

le.
m+k—2

1Y bisialz+ 11 Y. bidiallz =11 >, bidsall3,

j>m j>m+k—1 j=m
or, with respect to (3.2),

m+k—2

DN ST O
j=m

jizm j>m+k—1

Set

B, = Z b?.

izm
Then (6.2) reads
d_zBm + d_zBm+k—1 S Bm - Bm+k—1
or
- d? -1
TTETT
For any j > i+ 1, with some 0 <[y < k — 2, this gives

Bm+k—1 S 7Bma

b? < Bj < ’YL’Z_T;J-HBi—lD < »y;Z_Tlld‘l

) 1/(2k-2)
i 2, |i=Jl _(d -1
|b]|§d'72 3 72_<d2—|—1)

Finally,

7. ProoF oF (5.4)

LEMMA 7.1. Let ® € By 4(A), and let ¢Fy = 35—, a;j¢;. Then

laj] < d3H79 v = d/V2.

(6.2)

(5.4)



Proof. 1) By (5.1),(6.1),
lai| := |bis o] = |bii 2| = [b;] < d*.
2) Let I, = [titios titio+1] be the largest subinterval of F; = [t;, ti4s], i.€.,
Livi, C Eiy g > k7HE|,  0<lh<k-1

Then, for any j =1,...,k,
Livio C Eigig—k+j,

and we have

A= Naigio—kii| < | Bigto—kri| T 67 1 Lo (Brigiy—ia)

< |Ii+l0|_1/2||¢;1||L2(El+lu—k+j)
< KB |ai il Lo
< kY aigillpo e
< k_1/2|ai| < L=1/242 < d2’
1.e.
max laj| < d°. (7.1)
i+lo+1-k<j<i+lo
3) Form>i+1—k set
n+k
U = Y a;6;.
j=m

Then
Um(x) = 67 1(2), > tmir1

i.e. ¥y, 1s orthogonal to span{¢i}i2m+k_1, in particular to ¥y, 415—1. This gives
Hd)mHiQ[tm_,_k_l,b] + I = 1/’m+k—1||12[tm+k_1,b] = [|¢m — ¢m+k||12[tm+k_1,b]'
Since
Erik—1 = [t -1, tmy2k—1) C [tmgr—1, 0],
SUpPP (¥m — Ymak—1) N [Emtk—1,0] = Emtt—1,tmt2x—2] C Emir_1
we also have
1mll7 s (Empns) T 1ty < = i1 llT (e

By (As) we have

24 amin-1” < |Bmirot| T (Wman—107 0z, o1 + 1mllpz e )
< Bk |7 m = Yman-1ll7 e, ]
< lm = 1/)m+k:_1||%oo[Em+k—1]
m+k—2
= | Z aj¢j||%oo[Em+k—l]
j=m
< max |a;]?,

m<j<m+k-2



what implies

aml < @V max ag)
i+lo+2—-k<j<i+lo

Finally, with respect to (7.1) ,

] < d(d/ V)M,

8. PROOF OF THEOREM 2

In this section, for given ¢ > 0 we construct a sequence of bases ®,, = {¢;}7—;,
such that

(A) @, € Py 4(A,), with some A, and some d = d. = O(1/¢€%);
(B) for the matrices

Apn = {(¢i,q; qj’j,p)}zj:la I/p=1/2—¢,
with some constants ¢, and & > 1 holds
1Az nllp > €™
This proves Theorem 2.
1) Let f1, fo € Lo [0, 1] be given. For k& = 2, and
Ap=da=t <ty <...<tpy1 <lpys =0b}, with h; =141 —1;,

define a f.e. basis ® = {¢;}7—; as

biw) = { T, e 5.)
fo((@ —tig1)/his1), € lLisr.

Further, consider the case of the geometric mesh A,, ., with the local mesh ratio z,
le.,

hH_l/hi:z, Vi=1,n+1.
As we show in §9, such a basis ® := ®(f1, f2, Ay, ;) has the following properties.
2) The local L;i-condition of & is determined by

1+=

di(®) = 76(1,1) Foe(fa)

(8.2)
where

e(fr) = ingfl — afallr0], e(f2) = i%foz — Bfllzao1)-

3) If for e € (0,1/2], and z > 1 holds

(4272 [ fifo> [fR+2[ 13, (8.3)

then for the inverse of the matrix

Apn = {(Pi,q: 95 p) Zj:l’ I/p=1/2—¢,



with some constants ¢, and & > 1

1A lp > b1l > c€™.

(8.4)

4) Now, for some z > 1 and arbitrary small €, we construct the functions fi, fo

satisfying (8.3), such that d; in (8.2) is O(1/€?).

For a given § € (0,1/2], denote by ®, s the basis defined via (8.1) by the

functions
1 3 1,2’ LS [OaPY]a
flEi, fz(l‘): 2z 7_1—(52
0’ LS (P%
Then . .
1 11 1
=0-a5=5 dp)=0-15-==5 "=
and by (8.2), since y < 1
1+ =2 2 142 9
d1(<I>m;) = c \/;

- = " < —
(fi) +ze(fo) 2 14z2/\/y 02
With fi1, f2 from (8.5), inequality (8.3) turns to be

227> 2/,

. . 1 1 14+v1—% 1+4
25> = —4/—=1= = .
N val 1—9

1+ 1 26 %)

or

This implies

1
Inz= =1 — = < 26
R B R A
le.,
20
€ < —.
Inz
Set
2
d:= (5_2\/;’
so that, by (8.6), we have @, 5 € ®3 4(A, ;). Then
5 V214
IRV
and respectively
1 222174
(< —(—=——
Vd Inz
Set z = 4, then with § € (0,1/2] we have
2
d = 6—2\/; Z 16,
and
SESCINY
O Vimz S Va

10

(8.5)

(8.6)



9. PROOF OF (8.2)-(8.3)

Let fi1, f2 € Loo[0, 1] be given, and for
A={a=t1 <ty <...<tpy1 <tpya=0b}, hi:=tiy1—t,
a f.e. basis ® = {¢;}7, is defined as

bi() = Ji((e =)/ hi) v e I
fo((@ —tig1)/his1), € lLisr.

LEMMA 9.1. If hjx1/h; = 2, then the local Ly-condition of ® is determined by

_ 14z
di(®) = AFTEIAL (8.2)

where

e(fr) = ingfl — afsllnio], e(f2) = i%foz — Bfllzao1)-

Proof. For the value dy(®) we have

ei = inf 6 = 22525 405l Ly (ruri)
= ioéﬂg |¢i — (i1 + Boivi)llL,(ri01i41)
= inf ¢ —adiallz, ) + i%f |6i — BoitvillL, (1)

= hie(fl)‘i‘hi-l—le(fé)a
where

e(fr) = ingfl — afallr0], e(f2) = i%foz — Bfllzao1)-

This gives
) 4 N1 hi + bt
A(®) = <Hzlf|EZ| 1ei) :Slzl'p hie(f1) + hiyie(fa)
1+=
e(fr) + ze(f2)’

what proves (8.2).
LEMMA 9.2. If for e € (0,1/2], and z > 1 holds

()2 [ fife> [+ 2 [ 13 (8.3)
then for the inverse of the matriz
Ap = {(‘/’i,qa qj’j,p)}?,j:la I/p=1/2—¢,
with some constants ¢. and &, > 1

147 Hlp > b pl > €™ (8.4)

11



Proof. For the entries of the matrix

A2 = (Cl”) = (¢i,2a ¢j72)

we have
hi [ fE+ h /3
aii 2 = (¢i2, 0i2) = / hl' —l—hif 2,
a5 — (¢ ¢ ) hi+1ff1f2
41,2 -— 1,2, Pi41,2 (hz +hi+1)1/2(hi+1 +hi+2)1/2’
hi [ fifo

“i-tz = inding) = (hi—1 + hi) /2 (ki + hiyp1)'/2

a) Consider the case of geometric mesh with the local mesh ratio z, i.e.,
hH_l/hi:z, Vi=1,n+1.
Then
ai5.2 = (1 + Z)_l (fflz +fo22) ’
aijo = (L4+2)7 22 [ fifs, i—jl=1.
For the entries of A, = (ai;,) we have

aijp = (|1E;|/ 1B Pag; ».

In the case of geometric mesh this gives

aipy = (1+2)"Y([fi+=[F2),

aiix1p = (1+2)712Y2E [ 11y, e=1/2—1/p,
or
u zfw
27w u 2w
Ay = (142! |
27w u 2w
27w u
with
u=[fi+z[f3 w=zY2 [ fifo. (9.1)

b) The matrix A, is tri-diagonal. By Cramer’s rule, the element by 5, , of its
inverse is equal to

b _ det An,l,p
brP T et 4,

where A, 1, is algebraic adjoint to ay 1 p. It is clear that

n—1
det Ap 1, = H aiit1p=(1+ z)_"+1a"_1, o= zw.
i=1

12



As to det A,, we have

|Ap,n| =u |Ap,n—1| —w? |Ap,n—2|a

whence,
det Ay = (14 2) 7" (18] + 28%),
with 1
Bro = glut V2 —du?),

the roots of p(t) := t? — ut + w? and ¢y, cs constants depending on (u, w).
Thus,

n

o

|61 np| > ¢ (ﬁ_) , c=c(u,w, z),
1

and respectively

- n o
1A > [b1npl > c€”, &= 50 Wp=l12-c

c) We obtain £ > 1, as required in (8.4), if & > /1. This is the inequality

1
2w > §(u +Vu? — 4dw?),

or

22w —u > 0, (22w — u)? > u? — 4u?,

le.
(25 4+ 27w > u, z>1

Substituting expressions for u, w from (9.1) we obtain (8.3):
a9 [ s [ries [

10. APPENDIX: A PROOF OF DE BOOR’S FORMULA

LEmMma 10.2. Let p € [1,00], 1/p+1/q =1, and let S € L, be a linear subspace.
Then

. sl llelly . Mlsllpllelly
Ps||, = sup inf —————= = sup inf ————+ 10.1
1Pslle =222 385 .ol = 528228 s, o) -y

Proof. We use
(a) the observation that

P P P P
i Bl _ PP 12Tl
ses0€s (s, 0)] pres Pges |(Pf, Pg)l el 9€Ly |(Pf, Pg)]

(b) the relations

(Pf,g)=(Pf,Pg)=(fPg),  |IPglls <IIPllgllgllq

which are due to the definition of the orthoprojector P, and

13



(c) Holder (in)equality in the form

o Dol
veLy |(u,v)]

Now we have

P P P p
sup inf M = sup inf M
seryocte [(PL.POL - ger,oete (P o)l
P
< 1P|, sup int W lllglly
rer, 9€La |(Pf,9)
= ||P||qa
P P P p
sup inf M = sup inf M
fELp.(]ELq |(Pf,Pg)| feL,,gELq |(f,Pg)|
P P P
> sup inf M: sup 121l
reL, 9€La IfllplPally — ser, [
= [P,
le.,
o Mlsllpllellq
Psllp < £ 20020 P,
Il sllp_jlelgglgs (5, 0] < ||Ps]lq
Similarly,

sllpllollq

Nl
Psl|l, < sup inf <||P
|| SHq_UESSES |(8,0’)| _H SHP’

what completes the proof.

14




