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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

One of the ways of defining multivariate splines is a variational approach leading to Atiyah’s
D™-splines:

s =s(f,m, A, Q) = arg min{ ||[D"g|l2: g € W3"(Q), glp = fla}- (1.1)

Here 2 C R™ is a bounded domain with a smooth boundary and A is a closed subset of €2,

: p/2 1/p
A
D] /(Z Jma‘ﬂz) v e
Illp = Q \lal=t ™
max (| D%gl| Lo ) p=oo.

For n = 1, the D™-splines are ordinary piecewise-polynomial functions of degree 2m—1. For n > 1,

the D™-splines are polyharmonic in the domain Q\ A with order m, i.e., V*™s = 0, where V% is a
Laplace operator.

The D™-splines inherit a number of important properties of one-dimensional splines of de-
gree 2m — 1. In particular, we denote by

h, = sup inf |z — h, = inf —z
y megyeAl yl, h, WeAly |

the maximal and the minimal step of the net A = A,. Then the condition f € WJ*(2) ensures the
convergence
If = su(Dllwm@y =0, h, —0

irrespective of the technique of condensation of the nets A,, in particular, irrespective of the
boundedness of the quantity

M, = h,/h,.

We shall call the convergence of this kind an unconditional convergence of spline-interpolants.
In Sobolev spaces W}(2) which are different from Wj"(Q2) the convergence of D™-splines can

be ensured on quasiuniform nets A,, i.e., under the condition
M, <M, veN.
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414 SHADRIN

However, when there are no constraints, the examples of divergence of an interpolation process in
some W)(£2) do exist (the details are given below).
Definition 1. We say that for the given [, p, m,n, Q an unconditional convergence (un.con.)

of D™-splines takes place in the space Wé(Q) and write
s,(f) = f uncond.in Wé(Q)

if, for any function f € Wé(Q), any sequence of discrete nets A,, and any compact set B C 2 we

have the convergence
1 = su(Pllwymy =+ 0, B = 0.
In this work we study the following problem.

Problem. Being given m,n, 2, find the necessary and sufficient conditions imposed on [ € N
and p € [1, oo] for which

s,(f) = f uncond.in Wé(Q),

This problem was posed by Yu.N. Subbotin. Its origination is connected with the well-known
conjecture of C.de Boor [1] for one-dimensional splines, namely, for any function f € C™[a,b] and

any discrete net A, C [a, b] the estimate

5™ (lloe < emll F™ oo

with the constant c,, independent of A, holds true.

2. THE WELL-POSEDNESS OF THE PROBLEM FOR DISCRETE NETS

The following conditions are necessary for the problem to be well-posed:

(A) the existence and uniqueness of the D™-spline s,(f) determined in (1.1) from the values of

the function f € W}(Q) on A,;
(B) the inclusion s, (f) € W}(Q, loc).

Our considerations refer to the case of discrete nets
N,
A, = {tiv}izla hu > 0.

In this case, conditions (A), (B) will be fulfilled under the following assumptions:
(a) m>n/2,1>n/p;
(b) I—n/p<2m—n.

Indeed, condition (a) entails the embeddings
Wi (Q) = C(Q), W,(Q) — C(9),

and this gives (A).
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ON A PROBLEM OF C. DE BOOR 415

Condition (b) ensures the inclusion G € W}(R™,loc) for the function

|m|2m—n’ n= 2n1a

G(z) =

lz|*™"In|e|, n=2n;+1,

which is a fundamental solution of the polyharmonic equation V?™u = g. This is equivalent to

condition (B) since [6] the D™-spline on the discrete net A = {¢;}}¥, can be represented as

N
s(z) = Z:ciG(:L' —t;) + F(z)

with the function F(z) = F(z;m, A, Q) which is polyharmonic and, consequently, analytic in the
domain €.
It is easy to note that conditions (a), (b) can be combined into one condition

0<l—n/p<2m-n,

which we shall assume to be fulfilled in the sequel, drawing attention to it only from time to time.

3. HISTORY OF THE PROBLEM

3.1. One-dimensional case. The first example of the divergence of an interpolation process
belongs to Nord [9], namely, an example of the divergence of cubic splines (m = 2) in C|a,b].
From subsequent works only very general results should be noted [5, 2]. A simple technique of

construction of these examples was proposed in [7]. The available results constitute the following
statement.
Theorem A1 (necessary condition for uncond. conv.). Let

s,(f) = f uncond.in Wé[a, b].

Then one of the following conditions is fulfilled:

(1) l=m, peE[l,o], n=1,;
(2) l=m+1, p=1, n=1;
(3) I=m-1, p= o0, n=1.

C. de Boor’s conjecture [1, 2] consists in the assertion that for n = 1 conditions (1)-(3) of The-
orem Al are necessary and sufficient for the unconditional convergence of the splines in Wé[a, bl.
The following theorem provides a partial justification of this conjecture.

Theorem A2 (sufficient condition for uncond. conv.).  Suppose that one of the following
conditions is fulfilled:

(1a) l=m, p €1, 0], =23, n=1;
(1b) l =m, PE(2—€m,2+¢€,) m>4, n=1;
(2) l=m+1, p=1, m=2, n=1;
(3) I=m-1, p= oo, m=2, n=1
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Then
s,(f) = f uncond.in Wé[a, b].

The sufficiency of conditions (1a), (2), (3), which refer to small values of m, was proved in [11,

3, 4]. Condition (1b), which ensures the unconditional convergence of the splines in W;"[a, ] for

any m, provided that p is sufficiently close to 2, is our recent result [10].

3.2. Multivariate case. For n > 1 the questions concerning the approximation of the function
fe Wé(Q) by means of D™-spline interpolants were considered by Matveev [7, 8]. As concerns
de Boor’s problem, he got the following results.

Lemma B [8]. Letn > 1, m > n/2, and let I" = (—1,1)" be an n-dimensional cube,
AP = {(l,p) : s,(m, f) = f uncond.in Wé([")}.

Then
AT" DAY D ...D A D ...

In other words, with an increase in the dimension, the set of Sobolev spaces Wé(Q) which admit
the unconditional convergence of D'™-splines is not considered, to say the least. In particular, the
necessary conditions presented in Theorem Al for n = 1 are automatically generalized to spaces of
dimension n > 1.

Matveev also announced the result [7] which shows that, actually, with an increase in the

dimension n the set of spaces Wé(Q) which admit the unconditional convergence of D™-splines
narrows.
Theorem C1 (necessary condition for uncond. conv.). Let

s,(f) = f wuncond.in Wé(Q)

Then one of the following conditions is fulfilled:

(1a) l=m, p € [1,00), n=2;

(1) I=m,  pel2-[ZR] 2+ 2], n>3; )
(2) Il=m+1, p=1, n=234;

(3) Il=m-1, p=o0, n—=2,3.

At the same time, the following sufficient condition for unconditional convergence is well-known.

Theorem C2 (sufficient condition for uncond. conv.).
s,(f) = f uncond. in W3"(Q).
It is obvious that as n — oo, the necessary conditions (3.1) for the unconditional convergence
s,(f,m) — fin Wé(Q) are asymptotically close to the sufficient condition
Il=m, p=2. (3.2)
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ON A PROBLEM OF C. DE BOOR 417

Here, in contrast to the one-dimensional case, no other sufficient conditions are known.
In this work, we show that this fact is not accidental and that, with a small exception, condi-

tion (3.2) is the only necessary and sufficient condition for unconditional convergence s, (f, m) — f
in W(Q).
4. FORMULATION OF THE RESULT

4.1. The main result. We have proved the following theorem.
Theorem 1 (necessary condition for uncond. conv.). Let I, m, n, p satisfy the inequalities
0<l-—n/p<2m—n and be such that

s,(f) = f wuncond.in Wé([").

Then either
(,p)=(m,2), n>2, (4.1)

or one of the following conditions is fulfilled:

(1a) l=m, p €[1,2), m = 2my, n=2;

(1b) l=m, p €[3/2,2), m=2my, n=3;

(2a) I=m+1, p=1, n=23; (4.2)
(2b) l=m+1, p=1, m=2m;+1, n=4

(3) l=m-1, p=o0, n=23.

Corollary. Forn > b, the convergence
s,(fy,m) — f wuncond.in Wé([")
takes place if and only if

(,p) = (m,2).

Due to our results, it should be expected that, actually, the following conjecture is valid.
Conjecture 1. For n > 2 the convergence

s,(fy,m) — f wuncond.in Wé([")
takes place if and only if

(,p) = (m,2).

In order to get this final result, the counterexamples are lacking only in three cases for n = 2
(see Remark 4.1 below).

4.2. Reduction to a small dimension n. We have to show that if none of conditions
(4.1), (4.2) is fulfilled, then there exist f € W}(I"), B € I", and a sequence {A,} for which the

norms HSV(f)HWIQ(B) will increase indefinitely.
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According to the Banach—Steinhaus theorem, by virtue of Lemma B, this is a direct corollary
of the following result.

Theorem 1'. Suppose that one of the following conditions is fulfilled:

(1a) l=m, p € (2,00], n=2;
(1b) l=m, p€[1,2), m=2m;+1, n=2;
(1c) l=m, p€el,3/2), m=2m;+1, n=3;
(1d) l=m, p €11,2), m = 2my, n = 4; (4.3)
(2a) l=m+1, p=1, m = 2my, n=4;
(2b) l=m+1, p=1, m=2m;+1, n=0>5;
(3) Il=m-1, p=o0, n=4.

Then, for any M, e, > 0, there exist a function f € Wé([”) and a discrete net A, such that

dist (A, 1) < & [Ifllwgamy =1, Ns(fm, Ay, T lyarmy > M. (4.4)

Indeed, according to Lemma B, Theorem 1’ is valid for all n beginning with those indicated

n (4.3). And from this theorem, according to the Banach—Steinhaus theorem, follows the existence

of a function g € Wé([”) and a sequence of nets A, such that
Hs(g,m, AV’ In)HWé(UI") — 00, El/_> Oa

for the given n > 0
Remark 4.1. We can see from (4.3) that in order to prove the hypothesis concerning the

uniqueness of the sufficient condition for the unconditional convergence in Wé([ ™)
(,p)=(m,2), n>2,

it suffices to construct examples similar to (4.4) only in the following three cases:

(1) l=m, p€[l,2), m=2m;, n=2;
(ii) l=m+1, p=1, n=2;
(iii) l=m-1, p= oo, n=2.

4.3. The structure of the work. The rest part of the article is connected with the proof
of Theorem 1’. The case [ = m,m -+ 1 is discussed in Secs. 5-16 and the case [ = m — 1 in Sec. 17.
In Secs. 5,6 and at the beginning of Sec. 17 we carry out further simplifications which reduce
Theorem 1’ to Theorem 2 (I = m, m + 1) and Theorem 3 (I = m — 1).

Theorem 2 (I = m, m + 1) is formulated in Sec. 7 and each of its cases is then proved in
Secs. 10-16. Since the counterexamples for [ = m, m 4 1 are very complicated, we give detailed
proofs only in cases (1la), (1b) where n = 2. In the other cases (n = 3, 4, 5), we restrict ourselves
to the formulation of statements and brief explanations.

Theorem 3 and everything that refers to the case I = m — 1 can be found in Sec. 17. Here we
also restrict ourselves to a brief exposition.
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5. REDUCTION TO INTERPOLATION ON AN ARBITRARY SET

In this section we show the possibility of a further simplification in cases (1), (2) of Theorem 1’

where | = m, m 4 1, namely, we show that in these cases the existence of f € Wé([”) and of a

discrete net A, with properties (4.4) follows from the existence of f € W}(I™) N W3"(I") and an

already arbitrary (not necessarily discrete) set A with the same properties (4.4).
Lemma 5.1. Let m > n/2, A C I"™ and let the sequence of discrete nets {A;} be such that

A; C Ay CA, dist(A;A) — 0.
Suppose, furthermore, that
si = s(f,m, A, I"), s:=s(f,m,AI")

for the given f € Wi (I™).
Then
HSi — SHWQ'"(I") — 0.

The proof is similar to that given in [7, p. 150].
Remark 5.1. If we choose as A the closure of a certain subdomain I"™ with a sufficiently

smooth boundary S, then, by virtue of the smoothness of s, f € W3*(I"), the interpolation
s(f)|

A= f‘A entailes the interpolation of the boundary values of f, i.e.,

" s(f) _ Of

% ‘ ~ 3k
ong 1S On%

, k=0,...,m-1,
s

where ng is a normal vector to S.

Let us now consider the problem concerning the estimation of the Wé—norms of s;(f) in terms
of the Wé—norm of the limit spline s(f, m, A, I"™).

Generally speaking, for a nondiscrete A, for any smoothness of f, we can a priori state the only

fact that s(f) € W3*(I"™). However, since the function s(f) is polyharmonic and, consequently,
analitic in V' = (I"\ A), we have the inclusion s(f) € Wé(B) for any I, p and any compact set
BeV.

The following lemma shows that on any compact set of this kind the Wé—norms of the discrete
splines s; also converge to HSHWé(B)-

Lemma 5.2. Let m > n/2, f € Wi*(I™), A;, A C I™,
Is = sillwg»(zn) — 0.
Then, for any compact set B such that
BcCcV:=I"\({A;}T7UA),

for any l, p, the convergence

Is = sillwi ) — 0
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takes place.
Proof.  For the functions g which are polyharmonic in the ball B(a, 2¢) we have an inequality

of the Markov’s type, namely,
HgHWé[B(a,e)] < C(G, L, p) HgHLl[B(a,%)]' (51)

Furthermore, for any small € > 0 there exists a covering B by a finite number of balls B(a;,€) of
radius ¢, say, by the number of balls K = K (B, ¢), such that

B c UEB(a;,¢) c UEB(a;,2¢) C (I"\ A).

Since the D™-splines s, s; are polyharmonic in the domain V that contains B, we can set f; = s—s;
and apply (5.1) to obtain

K K
1 fillwisy < D NFillwisase < (& 1,2) D N1 fill Ly iB(ag 26 < K (B €)e(e, L, )| fill o (1m),
7=1

3=1

i.e.,

Ils — SiHWIQ(B) < (B, &1, p)lls — sill L, (17)-

However,

Is = sillz, () < I8 = sillwyr(zm) — 0,

and this completes the proof of the lemma.
Lemmas 5.1,5.2 allow us to reduce Theorem 1’ to splines on arbitrary sets A € I"™. However,

we shall not do this now, in the general situation, but shall formulate the corresponding statement

in Sec. 7 for special f, s(f), A defined in Sec. 6.

6. SPECIAL ELEMENTS OF CONSTRUCTIONS

Everywhere in what follows we have

= (21, ...,2,), 7=|z|=+/2}+...+22.

6.1. The choice of the net A. For the arbitrary 0 < h < H < 2" we set
Vi=Vup={zecl": h<r<H}, U=Up:={zclI": 0<r<h}.
As the set A on which the condition of interpolation s|, = f|, is defined we set

A=Ay :=I"\V.

6.2. The choice of the function f. For every collection (m,n,!, p) the function f is radial,

i.e.,
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6.3. The explicit form of D™-splines. For the interpolation D™-spline s = s(f,m,Ag 4,I")

we have

s(z) € W (I™), s(z) = f(z), z¢€Amp, (6.1)

and also

Vims = 0, ze€V = (In \ AH,h)- (6.2)

Furthermore, since f also belongs to W3 (I"™), conditions (6.1) imply

2
ork

_ 9

r:Hh_W k:O,,m—l (63)

r=H,h’

By virtue of the existence and uniqueness of the solution of the Dirichlet problem for a polyharmonic
equation, the function o which satisfies conditions (6.2),(6.3), is a restriction of the D™-spline s( f)
to the ring Vg, i.e.,

O'(f,ﬂl)ES(f,J}), T E‘/H,h-

We shall also seek o(f, z) in the form of the radial function o(r). The functions

(r) =371 a;r¥ =2 4 30 br?~2Inr,

(r) =Y ajr® 2 4 0 br? 8,

(r) =271 ajrzj_2 + by /72 + dits bj?”2j—4 Inr,
(r)=%

m n25—2 m »27—5
=1 45T A Y0 b

3
I
o
S

r

3
|
w
S

3
I
S

r

3
I
S

are radial functions which are m-harmonic in R™\ {0}. In this case, the jth terms of every sum are
polyharmonic, with the exact order j.
The boundary conditions (6.3) define o(r) of the form (6.4) also uniquely. Thus, for our choice

of A=Apgy and f = f(r), we have
S(famaAH,haIn;m):U(far)a CANS VH,ha
where o(f,r) has the form (6.4) and satisfies the boundary conditions (6.3).

6.4. Inequalities for Wé-norms. We set

HgHWIQ(I") = HgHLP(I") + HDlgHLp(In),

where
| p/2 1/p
mn.
, (Z;ID g(w)l2) de o, 1<p<oo;
IDgly iy =4 o \lalmt &
max (| D%l 2 p= 0.
In this case, as usual, @ = (e, ..., ) is a multi-index,
Hlal
ol =ar+ ...+ a,, al=ail...a,, D%(z)= g(z)

=2
0zl" ... 0zn"
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Let us find, for these norms, the lower and upper estimates that will be convenient for the
consideration of the radial functions g(z) = g(r).

1. To find the lower estimate, we use the relation

Applying the Schwartz inequality to the right-hand side, we get

2
dtg(r) I g2 n. . 9 n. . 9
5| < %;laﬁ gl;lall? 9(z)|” | = %;lJ'D 9(z)|%,
whence it follows that
H o ( 1/p
g\")| n-—
2 {/\ el 1dr} . (6.5)
h
2. In order to find the upper estimate, we use the relation
zl: Z zf 1 9Fg(r)
= CaB T Tk gpk
e T or
From this relation, we derive
1/p
gl 1 < /\ S (6.6
INLp(I™) Clnf?l??l —k 8rk " ’ ’

7. STATEMENT BEING PROVED

It will follow from the results of Secs. 6,7 that in order to prove Theorem 1’ in the cases
I =m,m+ 1, it suffices to prove the following statement.
Theorem 2. Suppose that one of the following conditions is fulfilled:

(1a) l=m € (2, o0], n=2;
(1b) l=m, € [1,2), m=2m;+1, n=2;
1c l=m 1,3/2), m=2m;+1, n=3;
(19 e [1,3/2), : .
(1d) Il=m € [1,2), m = 2my, n =4,
(2a) l=m+1, p=1, m = 2my n=4;
(2b) l=m+1, p=1, m=2m;+1, n=
Then, for any M, H > 0, there exist h > 0 and a function f = fr; such that
0<h<H, feW,(I"nWI"), |fllwm =O0p(1), (7.2)
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and for the spline o(f) such that

O f — o]
2m — — —_
VT =0, zcV; o 7h—0, k=0, ...,m—1, (7.3)
the inequality
lo(Nllwivy > M (7.4)

1s satisfied.

Indeed, for the arbitrary ¢, > 0 defined in Theorem 1’, we take
H := min{e, n}.

Then we have
dist (AH7h,In):H—h<€, V:VHJLC?]In

for our special Agp = I™ \ Vi, for the arbitrary h < H. With the chosen H and defined M, we
choose h and fg 5, such that relations (7.2)—(7.4) would be satisfied. In this case, the inequality

Ha(f)HWIQ(B) > M

wiil also be satisfied for a certain compact set B C V.
If we now choose a sequence of discrete nets A; such that

A; CAjp1 CAgp, dist (A, Agp) =0,
then, by virtue of Lemmas 5.1,5.2,
[si(Dllwizy = [Is(Dllws) = llo(Hllwiz)
and, hence, for a certain v we shall also have
dist (B, 1% < & s (Pllwyarey > Isu(Dllwys) > M-

8. TWO EXAMPLES AND THE GENERAL IDEA

The general construction of the function f for the arbitrary m is based on the following simple

observations for n = 2, m = 1.

8.1. Example for p > 2. Let n =2, m=1andlet V:=V;, ={z: h <7 <1}. We takea
smooth function f = f(r) such that

say, f(r) = fn(r) = (1 — r%)/(1 — h?). The solution of the problem

V2U(m) = 0’ T C V’ U(r)|r:17h = fh(r)|r:17h
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is the D!-spline

on(fo,r)=Inr/lnh, h<r<Ll.
From this, using the relation (;—g) + (;—) (g—f)z, we obtain
1D o L0, ho
h|La (V) | 1nh| ) )
whereas for p > 2, we have
Oy(1)
1 _ P

Thus, even for infinitely smooth f = fi with || fallw1 (12) < ¢, we have

Ho-h(fh)HWI}(Vlyh) — 00, h— Oa p> 2.

8.2. Example for p < 2. Suppose that n =2, m =1,V ={z: h < r < 1} as before. We
take

f(r) =1n?r.
Then, for any ¢ > 0, we have

FEWs (1), Nfllwy_ (1) < Ke < 00
The solution of the problem
Vie=0, zeV; o()=mn = F(")ap

is the D!-spline
op(f,r)=Inr-Inh, h<r<Ll

Since the inequality || Inr||z, (v,) > Co is satisfied for small A < hy, it is obvious that not only for

the Wpl—norm but also for the Li-norm we get

Ho-hHLl(Vlyh) :O(|1nh|) — 00, h — 0.

8.3. The idea of the general construction. 1. For n = 2, m = 2m; +1, p > 2 we construct
a smooth function f € W/ (I?) of the form

flry=r*"+...,
for which, on the ring V = Vg 1, we have
o(f,7) = co(H)r*™ Inr/Inh + ...,
so that for p > 2 we obtain
HDzml"'lcrH ) 2> em||L/(rInk)||L,v) =00, h—0,

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997
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just as in Example 8.1.

2. For n =2, m = 2my + 1, p < 2 we construct a function f € Wg‘(ﬂ) of the form

f(ry=r™1n%r+...,
for which, on the ring Vg 1, we have

o(f,7) = cm(H)r*™ Inr - Inh+ ...,

so that
HUHLl(V) — 0, h_>0a

just as in Example 8.2.
3. The construction itself is very cumbersome. It could have been simpler if there existed a
simple formula for Hermite’s two-point interpolation for the system

{r% ¥ 1n r};":_ol

(such, for instance, as the formula for Hermite’s polynomial interpolation). Then we could have

immediately written out the explicit form of Hermite’s D™-interpolant o( f), say, for

f(ry=r""p>2 f(ry=r""tIn?r, p<2.

However, we could not find formulas of this kind.
4. Therefore we begin with constructing a function F' such that

O*F(r)

W :0, k:O,...,m—l,
r

r=H,h

and then decompose it into two parts
F = f - U(f)a

referring to o(f) polyharmonic terms of F' of order not higher than m, not necessarily all terms of
this kind. Thus the boundary conditions and the polyharmonicity of o(f) are satisfied automati-

cally, and it remains to estimate the corresponding norms of f and o(f).

9. THE FUNCTIONS ¢,,(r, k)

The basic element of the general construction for n = 2 is the radial function ¢,,, which is

polyharmonic in R?\ {0}, defined as follows.

We set
¢1(r,h):=Inr —Inh
and define
T 1 u
G (7, h) 3:/—/t-¢m_2(t,h) dt du
u
h h
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forodd m =2m;+1=3,5, ... .

Lemma 9.1. The function ¢,, satisfies the conditions

O* by (r, )
Tr:h_o, k=0, ...,m—-1, (9.1)
and has the form
G (ryh) = P (7, R)(In? — In k) + gp—1(r, h), (9.2)
where
m—1 o
pm—l(r, h) = Z a2i,mhm_1_2lr2la |a2i,m| < Cm;
o (9.3)
Qm—l(ra h) - Z b2i,mhm_1_2ir2ia |b2i,m| < Cpm-
22=0

Proof. Relation (9.1) is valid by construction. We shall prove (9.2),(9.3) by induction.

For m = 1 they hold true by the definition of ¢;. Suppose that they hold true for a certain
odd m, i.e.,

m—1
Gm(r,B) = > ayih™ %% (Inr — In h) + by k™%

2:=0
Let us see what the (2¢)th terms of the sum become under the transformation
T 1 u
Srnsa(r, b) = / : / £ o, B)dtdu.
U
h h
1. For r%(Inr — In h) we have (with ¢ := 1/(2i + 2))
T 1 u

. 1 . . .
sqi(r, h) == / ;/ 2+(Int — In k) dt du = / " {cu2’+2(lnu —Inh) — A (u*t? - h2’+2)} du
h h h

= ¥ 2(Inr — Inh) — 23 (P2 F2 — A2H2) 4 2R¥ 2 (Inr — In h)

— C2 (r2i+2 T h2i+2)(1nr —In h) _ 263(r2i+2 _ h2i-|—2),
i.e.,
hm_1_2i82i(7’, h) — C2(hm+1—2(i+l)r2(i+l) T hm+1(lnr —In h) _ 263(hm+1—2(i+1)r2(i+1) _ hm-l—l)‘

Consequently,

SN

/
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2. For 7% (with the same ¢ = 1/(2i + 2)),

r1Or 1 . . . . .
/ —/t2’+1dt du = / — (cu2’+2 — ch2’+2) du = (r**? — B**%) — ch®*2(Inr — In h),
u u
h h h

whence it follows that

P

1 u
/ " / tqm—1(t, h) dt du = ppq1 2(r, R)(Inr — In k) + g1 2(r, h).
h h

This completes the proof of the lemma.

10. THE CASE (1la) OF THEOREM 2: [ =m, p € (2,00], n =2

We shall begin with the case of an odd m = 2m; 4+ 1 from which we shall obtain a construction
of an even m — 2m; as a simple consequence.

10.1. The case m = 2my + 1. We set

= L 2 2\m
F(r) = g (" = H)"6m(r, ), (10.1)
so that
3kF(r)
ok g =0 k=01 m L

Proposition 1la. The function F admits the decomposition

F(r) = f(r) - o(fi7),

where
kre _
Ve =vimtls —o  zeV; ot — ol =0, 0<k<m-1. (10.2)
ork  le=hH
In this case,
2 2ym,_ m—1 1
f(r) = cm(r® = H*)™r + mfr,;(r),
. (10.3)
Inr "= —1—2i 25
U(f’ 7’) = m z_: a2j(H’ h)h ! 2‘77’2‘7, |CL0(H, h)| = c;n(H)a
25=0
and the estimates
HfHWm I2 < Cpy
20 (10.4)

em(H)
lo(Dlwmvy > hL-2/oIn h]| —+o00, h—0,p>2

are valid.
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Proof. 1. The boundary conditions in (10.2) are fulfilled by definition. The polyharmonicity
of the spline o, with the order

p=m-1)/2+1:=m;+1<m,

follows from its representation (10.3).
2. Let us prove (10.3). By virtue of (9.2),(9.3), we have

G (r,h) = p—1(r, R)(In? — In h) 4 gy—1(7, h)
= —Pm-1 (7’, h) Inh + Im—1 (7‘, h) + pm—l(ra h) Inp
—c¢,r™ tlnh + {hz In Apy—3(7, h) + gm—1(7, h)} + Pm—1(r,h) Inr

= cpr™ Hinh + S(r, h) + pr_1(r, B) Inr.

Next we set

P(r,H) = (r* — H*)™.

Then we obtain

1
Flr) = ﬁP(r, H) o (r) = {cmP(r, H)rm—l} + ﬁp(r, H)S(r,h)+ P(r, H)pm_1(r, h)%
1 1
=: fi(r) + mfﬂ(’“) + Q(’")%

Furthermore,
Qr) i= P(r, H)pu-1(r, B) i= (v — H*)"py_1(r, h)

is an even polynomial of » of degree 2m 4 (m — 1), and we decompose it as

Q(r) = rm+1T(r, H,h)— ¢un-1(r, H, h),

where
m—1 )
T(r,H,h) = Z doj(H, h)r*, |da;(H, h)| < b (H);
25=0
m_l . .
gm-1(r, H, h) = Z as;(H, R)h" 172092 lao(H, h)| = cm(H).
25=0
Hence,
Q)T = L H Ry nr — g1 (r, H B) T = L oo (r) — (£, 7)
Ink  Inh o0 I\ S M T IR 7

Finally, collecting all the relations and setting fs := fo1 + foo, we find that

F(r) = fi(r) + ﬁfz(r) —o(f,r),
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where
fi(r) = cp(r? — HH™pm™= 1
f2(r) = P(r, H)S(r,h)+ T(r, H,B)r™* 1nr,
Inr

o(f,7) = 1 dmoa(r, H B).

We have proved relations (10.3).
3. Let us now prove estimates (10.4). We set
TS y—
It is obvious that
[f1llm.co < €m.-
Furthermore, since P(r, H), S(r, h), T(r, H, h) are polynomials of *> with bounded (by certain c,,)

coefficients, and we also have ||g,||m,c0 < ¢ for gim(r) := r™*!Inr, we find that

[ f2llm.co < NPllm,co - [15]lmc0 + [T ]lm,c0 - lIgmllm,c0 < em-

Thus we have

1
moo< m,00 1. 1.1 m,00 my
£l < Wfrllmos + il follmes < @

and the first estimate in (10.4) is proved.

To estimate HU(f)HWI;"(V) from below, we use inequality (6.5)

H
amg(r)p
P m p
191l (ry = 11D 9”LP<V>ZCP/‘ drm
h

From the representation

m—1

Inr
O'(f, ) lnh Z A—1— 2](H h)h2ﬂrm 1- 2] |a0(H h)|—cm(H)
25=0
we find that
8m0'(7‘ Lm 1

am—th i (H, R)RXr 172 by (H, h)| = e (H).
r —

From this relation, with the substitution ¢ = »/h and for H/h > 2, we obtain

H _— . . P H/h m—1 . p
/ D bogh®rTH T wdr = WP [ Y byt bt > BT by (H, B,
5 |25=0 1 [29=0
where
2 m—3
L m 25—1|p
Em = C;‘?ef]R £+ Z cait "t de.
1 25=0
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The final result is
cm(H)

), R0, p> 2.
hi=2/p[Inh| R

o (Dlwrm vy >

We have proved Proposition 1la.

10.2. The case m = 2m;. A simple corollary of Proposition 1a is
Proposition 1a’. For an even m = 2m; and for any 0 < h < H there erists a function

g = g(x) such that

HgHWzoml(IQ) < Cm, (105)
whereas for the spline o(g) such that
klg
gAemly _ g gey, 29=9W)] —0, 0<k<2m -1, (10.6)
ork r=h,H
the limiting process
2m _ Cm(H)
|D 1C’(!])HLP(V) = M—T|lnh| —+00, h—0,p>2, (10.7)
1s fulfilled.
Proof.  We take the functions f and o(f) from Proposition 1a, i.e., functions such that
O*[f — a(£)]
2(m1-|—1) — . e
\Y o(f)=0, zecV; 5ok g 0, 0<k<2my,

and the estimates
HfHWiml-l-l(IQ) < Cm,

cm (H)

2mq+1

00, h—=0,p>2,

are valid. Since (D™ f)? := > laj=m ca(D*f)?, for every h there exists @ = ay,, |a| = 2m; + 1, such
that

o' o (f) cm (H)
—_—— > ————— =00, h—0,p>2
H Oz~ Lo(V) h1=2/p|In A|
Let j be the number of any nonzero component a = (a4, ..., a,). We set
0f(=) do(f,z)
g(z) = ==, o(g,2) = —F—"".
323]' 313]'

Then estimates (10.6),(10.7) are obviously valid and the boundary conditions in (10.5) are fulfilled.
As to the order of polyharmonicity of o(g) = 0o (f)/0z;, we have, since the differentiation operation
preserves this order,

V#a(g) =0, p=m+1<2m =m.

We have proved Proposition 1a’ and, together with it, the case (1a) of Theorem 2.
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11. THE CASE (1b) OF THEOREM 2: [=m,p€[1,2),m=2m;+ 1, n=2

For this case, just as for every subsequent new case of Theorem 2, we use some symbols F, f,
fi, fo, etc., from the previous notation, for the functions that differ from case to case.

We construct the function f that satisfies Theorem 2 under condition (1b) in the form

2
fy=d DO oce<ny, =@ \B,

f2(r)a ES Uha

where

o fi (r)
ork

0% fa(r)

r=h  Ork

, k=0,...,m—-1,
r=h

i.e., f will be glued from two pieces. It is obvious that in this case
U(fa 7‘) = U(flar)a

and we shall consider precisely o(f1). Since the glueing is smooth, the estimate
HfHWI;n(IQ) = Op(l)
will follow from (uniform with respect to h) estimates
[ fillwm(zz) = Op(1), [ fallwm(rz) = Op(1)-

The necessity of these considerations is connected with our method of constructing f; and o(f;)
in which the functions f;, although bounded in W;”(I}%) uniformly with respect to A > 0, do not
belong to W;"(I?) because of the singularities at zero.

In this section we shall construct f; and o(f1).

Forp<2,l=m=2m;+1,n=2 we set

F(r) = ¢m(r, H) - ¢m(r, h), (11.1)

so that
3kF(r)
ork

—0, k=0,1,...,m—1.
r=h,H

Proposition 1b. The function F admits the decomposition
F(’I‘) = fl(r) - U(flar)a

where

k _
V2mcr:0, z eV, 0"[f1 — o]

o =0, 0<k<m-1. (11.2)
T

r=h,H
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In this case,

fl (7‘) = Pm—-1 (7‘, H) pm—l(ra h) 1112 7,
m—1 . .
pm—l(ra t) = Z a2jtm_1_2‘77’2‘7, |a2j| < Cmyy
25=0 (11.3)

o(f1,7) = On(V)r?™2lnr - Inh + InrPp_s(r?) + Qu-1(r?),
Pp2 € T2, Qm-1 € Tp_1,
and the estimates
|l = On(1), 1<p<2,
le(f)llz, vy = Or(|Inhl) = o0, h—0,

(11.4)

are valid.
Proof. 1. The boundary conditions in (11.2) are satisfied by definition (11.1). The polyhar-

monicity of the spline o(f;) with order m follows from its representation in (11.3).
2. Let us establish the validity of (11.3). According to Lemma 9.1, we have

¢m(ra t) = pm—l(ra t) Inr — Pm—1(7‘, t) Int + Qm—l(ra t)a

whence it follows that
F(r) = ¢m(r, k) pm(r, H)
= [pm-1(r, k) Inr — pp_1(r, B) Inh + gp—1(r, h)]
X [Pm—1(r, H)YInr — ppy_1(r, H)In H + g1 (r, H)]
=: fi(r) — o(f1,7). (11.5)

We have set
fi(r) := pm—1(r, A)pm—1(r, H) In’ r,
and referred to o(f1,r) all the other terms which appear after the removal of the parentheses
in (11.5).
Since py_1,¢m—1 are even polynomials of degree m — 1 = 2m; of the form

2171,1—2 2171,1—2
pm—l(r, t) = C2m1r2m1 + Z C2j(t)7’2‘7, Qm—l(ra t) = Cl1n—17'21n1 + Z d2j(t)7’2‘7,
25=0 25=0
we find from (11.5) that
2m—2 ) )
o(fr,r) =3 (as;(H, h)r*lnr + by;(H, h)r?) (11.6)
25=0

the coefficient as,,_» in r2"~2Inr being equal to
P — —cgml (InH + Inh) + 2¢om, dom, = Om(1)Inh.

We have proved relations (11.3).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 433

3. Let us estimate the corresponding norms of f; and o(f1).

For f; we have
fi(r) := pm—1(r, H)pm-1(r, h) In’ r,

and, since ||pp—1(-, H)|lm,co < €m, it suffices to estimate the W, (I}?)-norm of

m—1
Prm—1(r, h) In?r = E azjhm_l_zjr% In?r.
25=0

Let us estimate the W,"(I#)-norm of every term of the sum with the use of inequality (6.6):

2
1 Okg(r)p
m P
1D™gIIL, 12y < em 19@;/ ‘rm—k Ik \ rdr.
h
We have (for p <2 and 0 <25 <m—1)

2
h(m_1_2j)p]\Dmr2j In? | cl(m,p)h(m_l_zj)p/r(zj_m)p+1| In?? 7| dr

h

< c2(m,p)h(m—1—2j)p + C3(m,p)h_p+2| In® h| < C4(m,p).

Thus,
I1D™ fillz,(z2) < €mp

and since it is obvious that HleLp(Ii) < ¢, ., we have found estimate (11.4) for f;.

m,p’

Let us now estimate the Li-norm of . For this purpose, we introduce the quantity

H
em(H) = b ing / ‘ P 21Inr + Pp_s(r?) Inr + Qm_l(rz)‘r dr.
m—2; m_lH/2
It is clear that
em(H) > 0,
and actually depends only on m and H. We shall not elucidate the exact order of this quantity.
Since
2m—2 ) )
o(fi,r)= 3 (agir™Inr+byr7), Gz s =On(1)Ink,
25=0
we now have
H H
le(fllz, vy = c/ lo(g1,7)|rdr > ¢ / lo(g1,7)|rdr > casm—26m(H) > On(1l)en(H)|Inh|,
h H/2

i.e.,

lo(f1)llL,(v) = Om,a(|Inh|]) = 00, h— 0.

We have proved Proposition 1b.
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12. CONTINUATION OF THE CASE (1b) OF THEOREM 2:
THE SMOOTHING OF f;

The functions fi(r) := fi(r; H, h) constructed in the preceding section have a bounded W"-

norm in I?, i.e., outside of the circle U, = {z : » < h}, the bounding being uniform with respect
to h > 0, but have singularities at zero. In this section we show the possibility of a smooth
continuation of f; to the interior of the circle Uy.

Lemma 12.1. For any h > 0 there exists a function fs such that

" f, (r)
ork

9% fu(r)

r=h  Ork
| f2llwsm ) = Op(1), 1<p<2.

, k=0,1, ...,m—-1;
r=h

Proof. Since

Fi(P) == pm—1(r, H)[pm—-1(r, h) In2 r] == f11(r) fi2(r),

where
Hflleg(p) = Hpm—l("H)HW&’(ﬂ) < Cm,

it suffices to smooth the second factor

m—1
f12(7) := pm—1(r, h) In?r =In%r Z azjhm_l_zjr2j
25=0
m—1 o
= A" n?y Z az;h~H 2 = K™ (). (12.1)
25=0
Let us construct a polynomial s(r) = s(r, k) such that
S S PR L) | I 1 12.2
s(r, )r:h_ ; Ik |pn = O =1, ...,m-1. (12.2)

We can define it as

s(r, h) = cm(h) / 72 (¢ — By du,

where c,,,(h) is chosen such that the relation s(r, h) = h™~! is satisfied for » = h, and then (12.2)
is obviously satisfied. It is easy to show that s(r, k) defined in this way has the form
m—1 o
s(r,h) = ™1 Z b;h~"r".
=0

We shall now smooth fi5(7) in (12.1) as follows:

2m—2
fia(r) = R™7LI(r) — s(r, R)J(r) = P r Z dih ™8t =: fao(r).

=0
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According to Leibniz rule, by virtue of (12.2), we immediately obtain

0" faa(r)

ork

0% fia(r)

h_T y k:O,l,...,m—l.
r= r

r=h

It remains to show that the W, (Uy)-norms of the function
2m—2 )
faa(r, )= > di(r™ ' In’r)(r /)’

=0

are uniformly bounded with respect to A > 0.
For every term of the sum we have

a2 e| < e, |(r/R)| <1, T <h,

i'e'a f22 € Loo(U)

In order to estimate the L,-norms of the mth derivatives, we use Leibniz rule and the relations

IA

th—(m—k) ,

thm—l—k—l—2/p 1112 h,

D™= (e /B) || )

[D*rm = In? ||z, o)

A

and this yields
|D™ fazllL,w,) < emh 2P’ h 50, h—0, p<2.

We have proved Lemma 12.1.
We have thus constructed the function f € W,"(I?) that satisfies all requirements (7.2)—(7.4) of
Theorem 2 in the case (1b), but it is necessary, in addition, that the function f should also be from

Wir(I%). However, it is obvious that we can now smooth the function f in a small neighborhood U,

of zero to f € W3*(I?) so that we should have
D) flz)=f(z), 2 P\Us @) |If = Fllwpel <e

for any € > 0. Then, for € < h the function f will satisfy all requirements of Theorem 2 for the
case (1b).
Indeed, condition (i) will imply the relation o(f) = o(f) and, hence, all properties of the spline

will remain unchanged, and, by virtue of (ii), the norm of f will also be bounded.
We have proved Theorem 2 for the case (1b).

13. THE CASE (1d) OF THEOREM 2: [=m,p€ [1,2),m=2m;, n=4

In this case the construction of the function f is a slight modification of the case (1b). We shall

show that for the function
filr) =™ 2% 4 f e W2™(I%y Ve >0,
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the Hermite spline o(f;) on the ring V has the form
o(fi,r)=r*2Inr-Inh+...,

whence follows the unboundedness of ||o(f1)[z,(v) as A — 0.

The smoothing of f; in the neighborhood of zero can be carried out in the same way as in

Sec. 11.

13.1. Auxiliary lemmas. We set

¥o(r, H) := 2H?*(Inr — In H) — (r* — H?),

so that
* s (r)
3F per = 0, k£=0,1,
and, for even m = 2m; = 4,6, ..., define

P

Yo (r, H) iZ/%/t-¢m_2(t,H) dt du.
H

H

Lemma 13.1. The function v, satisfies the relations

"y, (r,H)
ork

and has the form

Y, H) = H?pp_o(r, H)(Inr — In H) + ¢, (r, H),

where
m—2 9 2
pm_z(’l‘, H) = 220 a2i7mHm_ re, |a2i,m| ~ Cm;
1=
m . .
Gn(r,H) = 3 baimH™ 27202 |byim| ~ e
2¢=0

The proof is similar to that of Lemma 9.1 for ¢,,.
Next, for the function ¢;(r, k) defined in (9.1)-(9.3), for odd I = 2I; + 1 we set

1 0¢am, Jh
X (P, B) := Xom, (r, B) == ;%1(7’)

Lemma 13.2. The function x,, satisfies the relations

"X (r, )

3ok =0, k=0,...,m—1,
r

r=h

and has the form

Xm (P, B) = $m_a(r, R)(In? — In h) + tp_2(r, B) + b AP 2,
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where

m—2 e
5m—2(ra h) - Z C2i,mhm_2_2lr2la |C2i,m| ~ Cm;
=0 o (13.6)
tm—2(ra h) - Z d2i,mhm_2_2lr2la |d2i,m| ~ Cmp.
2¢=0
Proof. This lemma is a direct corollary of Lemma 9.1 for ¢9,, +1 -

13.2. Construction of f;. We set

F(r) :== ¥ (r, H)xm(r, ),

so that
3kF(r)

ik =0, k=0, ...,m—1. (13.7)

r=H,h

Proposition 1d. The function F admits the decomposition
F(’I‘) = fl(r) - U(flar)a

where

k _
V2mcr:0, z eV, 0"[f1 — o]

o =0, 0<k<m-1. (13.8)
T

r=h,H

In this case,

fi(r) = H?pp_o(r, H) 8p_s(r, R) 10 7 + ¢, HPR™r 2 Inr + /7?2 21nr,

(13.9)
o(f1,7) = O (V)r*™*Ilnrlnh + c¢(H, h)r 2+ Ppy_s(r?) Inr + Qp1(r?),

and the estimates
HleW;"(I;ll) = Op(]')a YA [1a2);
lo(fu)llzyvi) = Or(|Inh|) = oo, h— 0,

(13.10)

are valid.
The proof is similar to that of Proposition 1b from Sec. 11. Using relations (13.2), (13.5) for

1, and x,, respectively, we write out the product in the relation
F(’I‘) =5 (7‘) - U(fla 7’) = ¢m(r)Xm(7')
and refer to o(f1) all m-harmonic terms, i.e., the terms that enter (for n = 4) into the collection

P2, {rzj lnr}’;‘:_of‘:, {rzj};”:_ol.
All the other terms constitute f;. In this way we obtain (13.9).
Conditions (13.8) are fulfilled automatically.
Estimate (13.10) can be easily derived from (13.9). The estimate for ||o(f1)||z,(v) is obvious

because of the factor In h. We can estimate the norm of f; as follows.
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For the factors of the first term of f; in (13.9) we have
s Bllwisrsy < ems 18msCo )2 gty < o

The first inequality is obvious; the second inequality is valid since

m—2
Sm—2(r, h) In?r = E c2jhm_2_23r23 Inr
25=0

and the W}*(I}})-norm of each term is bounded. This boundedness can be established in the same

way as for the second term of f; in (13.9) for which we have (for p € [1,2) and n = 4)

2
R™P||D™r ™2 In THLP(I}l) < cl(m,p)hmp/r(_2_m)p+3 In? r dr
h

< C2(map)hmp + C3(m,p)h_2p+4| In® h| < C4(m,p) :

Finally, the third term of f; in (13.9), namely, 72"~ %Inr, is obvious from W (I%).
We have proved Proposition 1d.

13.3. Smoothing of f;. This smoothing can be carried out in the same way as in the case (1b),
(see Sec. 12).
We have proved the case (1d) of Theorem 2.

14. THE CASE (2a) OF THEOREM 2: I=m+1,p=1, m=2m;, n=4

This case follows immediately from the results of Sec. 13, namely, it is easy to verify that the
relation

1 fillwmer gy = O(1)

is satisfied uniformly with respect to A > 0 for the functions f; := f1.z 5 defined in (13.9). For

instance, for the same term c,, H"h™r~2Inr in representation (13.9) for fi(r) we have (for p = 1
and n = 4)
2
B D™ I ) < cl(m)hm/r—2—(m+1)+3| lnr| dr
h
< ea(m)h™ + cs(m)h|Inh| < e4(m)h|Inh| -0, h—0.

The smoothing of f; € W}"(I}) to the function f € W1 (I*)NW4*(I*) with the preservation
of the order of the Wf”'l—norm is carried out as before.

In this way we can prove the case (2a) of Theorem 2.
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15. THE CASE (1c) OF THEOREM 2: [=m, p € [1,3/2),n =3

In the case of an odd dimension n, we cannot use the results which we obtained earlier for an
even n since the nature of polyharmonic functions is different. However, this case is very simple.

We set
F(r):==(r — H)™(r — )™ '(Inr — In k). (15.1)
Proposition 1c. The function F admits the decomposition
F(’I‘) = fl(r) - U(flar)a
where
8 [fr — ]

2m . . —
Ve =0, zeV; —pa—| =0, 0<k<m-1 (15.2)

In this case,
fr) = e - HY"(r— By ar

(15.3)
o(fi,r) = r~(r— H)™(r — h)™ 'lnh,

and the estimates

HleW;"(I;D’l) = Op(]')a pc [1a3/2)a
lo(f)llzy vy = Om(/lnhl) = o0, h—0,

(15.4)

are valid.
Proof.  All relations are obvious, except for the estimates || f, HW;n(I;j) in (15.4). Let us prove

their validity.
Since the factor (r — H)™ in representation (15.3) for f; is bounded in W (I?), it suffices to

prove the boundedness in the norm W;"(I}}) of the factor

m—1
P — R tnr = Z a; R ) < e
i=0

For the terms in the sum we have (for p € [1,3/2),0<j<m -1, and n = 3)

2
Rm=1=0p|| Dmpd = g2 SCl(map)h(m_l_j)p/r(j_l_m)p+2lnprdr
Lp(I})
h

< c2(m,p)h(m—1—j)p + C3(m,p)h_2p+3| 1nh|5/2 < C4(m,p).

We have proved Proposition lc.
It remains to smooth f; to f € W)*(I®) g (I°), and then the case (1c) of Theorem 2 will be

proved.
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16. THE CASE (2b) OF THEOREM 2: [=m+1,p=1,n=5

This case is also simple. We set
G(r) == (r — H)™(r — B)™ 1 (r* + Ar + B).

We choose the coefficients A, B such that the polymonial G(r) would not include the monomials r

and r2™. Let
2m+1

G(r)= > a;r'.
2=0
Then we have

azm = A—mH — (m-1)h=0,
a1 = H™h™=2(A- Hh — B(mh + (m — 1)H)) = 0,

whence it follows that

A=O0,(H), B=0(h).

Consequently,
2m—1 ) m o
G(r) = comyrr™ 4 D o (H h)r? + Y ¢i(H B)R™Ir) + ey (H, h)W™,  |ej(H, B)| < ¢y,
j=m+1 =2
(16.1)
Now we set
F(r) = ~G(r)(lnr - Inh),
r
so that
O F(r)
WTZHJL—O, k—O,l,...,m—l.
Proposition 2b. The function F admits the decomposition
F(’I‘) = fl(r) - U(flar)a
where
kre _
Vg =0, z€V; Ol = =0, 0<k<m-—1. (16.2)
ork r=h,H
In this case,
r) = r73G(r)Inr,
h(r) ) (16.3)
o(fi,7) =r73G(r)Inh
and the estimates
[ fillwmr 5y = O(1), (16.4)

lo(f1)llz, vy = Or(Inh) — 00, h—0,
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are valid.
Proof. Representation (16.3) is obvious.

From relation (16.1) we find that r=>G(r) is a linear combination of the functions
(2575, iz

which are polyharmonic with order j < m, i.e., the function o(f;) is m-harmonic. The boundary
conditions are fulfilled by the definition of F, and therefore relations (16.2) hold true.

Let us prove estimates (16.4). For the Li(V)-norm of o(f;) the estimate is obvious because of
the factor In h. Let us find the estimate for the norm of f;. From (16.1), (16.3) we find that

fi(r) = Pu(r, H R)r™2lnr + Z d;(H,R)h™=Iri 3 Inr.

=0

The first term in this representation is obviously from W{"*!(I®). For the terms of the sum we
have (for p=1,0<j < m, and n = 3)
2
K= || D™ =3 1y ’“HLl(I,i) < Cl(m)hm—j/rj—S—(m+1)+4| Inr|dr
h

< C2(map)hm_j + C3(m)h| 1nh| < C4(m,p).

We have proved Proposition 2b.

We again smooth f; to f € W}"t1(I°) N Wi™(I°), and this completes the proof of the case (2b)
of Theorem 2 and, together with it, the whole Theorem 2.

17. THE CASE (3) OF THEOREM 1: l=m—1,p=o0co,n=4

We have not managed to reduce this case to the preceding scheme for I = m, m + 1 in which
we used Hermite’s D™-splines that interpolate the values of the function f and those of its partial
derivatives on manifolds of dimension n — 1. However, this case reduces to a multiple Hermite

interpolation at the points (on manifolds of dimension 0).

17.1. Reduction to multiple D™-splines. According to Sobolev’s embedding theorem, we
have

m-n/2>k>0 = W(I")—CkI™)
and, hence, in the definition of the D™-spline as the solution of the variational problem
1D™g||z,(zmy — min

under interpolation constraints, we can define as these interpolation constraints not only the values
of g(z) at the points ¢; € A but also the values of the partial derivatives D“g(z) up to the order k
inclusive.

To be more precise, for 0 < k < m — n/2 for the multi-indices a € Z'} we set

A ={a: |of <k}
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and understand the net A, as the collection of pairs
Ag = (A, 4) = {(t:;, A)HL,
where
A={t}, t el A={A;}, A;CA.

Then, for any f € Wi*(I™), we can define the multiple D™-spline s4(f) as the solution of the

problem
SA(f) = s(fama AAaQ)
= arg min{||D™gl|y: g € Wi*(Q), D%(t;) = D*f(t;), a € 4;, 1 <i < N}.

The existence and uniqueness of s4(f) are known from the general theory of variational splines.

For the ordinary spline s(f), we have

s(f) =sa(f), A=A

The following lemma allows us to reduce the original problem on the unconditional convergence
of discrete D™-splines in C™~1({2) to a similar problem on multiple D™-splines. We give it without
proof, and only for the case n = 4.

Lemma 17.1. Let n =4, m > 2(= n/2), k. = m — 3(< m — n/2). Suppose, furthermore,
that e; = (1,0,0,0) is a unit vector in R, and for the arbitrary t; € I*, n > 0 we have

&y ={t1 + ]'7761}?*:0, §o = {t:},, A, =38,Ud;
A={t1}UA,, A= {]'61}?*:0, A; = {0}.

Finally, suppose that

sy = s(f,m, A, IY),
sa:=s(f,m,Au I =
&g _Of

:= arg ming |[D™glls: g € Win(I%), —= = —
eminf [1D7gls g € Wy, 2 = 21

|m:t1’ Ogjgk*!”AQ :f|A2}

for an arbitrary f € Wit (I%).
Then
54 = sollwpr ey = 0, n—0.

17.2. Unboundedness of multiple D™-splines in C™~!. It follows from Lemma 17.1 and
Lemma 5.2 that on any ball B(a, €) such that

B(a,2¢) CV := I*\ {AL} <o

we have the convergence

154 = syllem-1{Bae) — 0, 7—0.
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Thus, in order to prove the last case 3) of Theorem 1, it suffices to prove the unboundedness of s4
in C™7L(TM).

We shall prove the following statement.

Theorem 3. Let the condition

(3) I=m-1, p=o0, n=4
be fulfilled. Suppose, furthermore, that k. = m — 3 and the arbitrary net

Ay ={t;; A}, t;eA, A€ A, maxmax|a| =k,
7 aCA;

1s defined.
Then, for any f € C™ 1N Wi (I*) and any M > 0 there ezists a ball B(a,2¢) such that

B(a,2¢) CI*\ A, |[D™ 'sa(f)llLu(Blae) > M. (17.1)

Proof. For s4(f) we have a representation similar to (2.1) for s(f), namely, for A = {A;}
with A; € A, k < m — n/2, we have

N
SA(f, a:) = Z Z CmDaG(a} — ti) + F(a}), (17.2)
=1 a€A;
where, as before, we have
|m|2m—n’ n = 2ny;
G(z) = (17.3)

lz|*™"In|e|, n=2n;+1,
and the function F(z) = F(z; m, A4, Q) is polyharmonic in I™.
It follows from (17.3) that for || = k (and for the agreement that W = C")

D*G(z) € Wé(R", loc) & I-n/p<2m—-n-—k, (17.4)

and
0, n = 2nq,
esssup | D*G(z)| = (17.5)
O(1), n=2n;+1

for p = 00, l = 2m — n — k in the neighborhood of zero |z| < e.

Let us find the worse smoothness of D*G. We can see from (17.4) that the smoothness of G
decreases with the growth of k, but in the definition of multiple splines we are restricted by the
inequality

kE<m-—n/2.

Under this restriction, the maximal value of k = k, is

=m-—(n/2+1), n=2ng;
m

k.
k.

- (n+1)/2, n=2n; —1,
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whence, for any n, we have

-1
2m—n—k*:m—(n1—1):n—{n2 } (17.6)
Thus, we find from (17.2)-(17.6) that
-1
sa(f) e Wi(I"loc) & I-n/p<m- [ | (17.7)

under the interpolation of the partial derivatives of f € WJ*(I™) of the maximum possible order
k = k. at some points of the net A,4.
In the case n = 4, ] = m — 1 which is of interest to us we have, for k, = m — 3,

sa(f) € Wg‘_l(I‘L,loc) & m-—1l-n/p<m-1.

With due account of (17.5), we infer that if, for p = oo, the set 4; in the pair (¢;, A;) € A4 contains

a with |a| = k. = m — 3, then
1D s a(f)lLuBltip) =00 Vo> 0.
Now, for any M, e > 0, there exists a point a € B(¢;, 3¢) such that
|DPsu(f,a)| > M

for a certain multi-index 3, || = m — 1, and this gives the estimate of the norm in (17.1).
Now if 3¢ < h(A) :=inf |t; — ¢;|, then B(a,2¢)NA = @, i.e., the first requirement imposed on B
in (17.1) is also met. We have proved Theorem 3.
18. COMMENTS

18.1. Possibility of a complete solution. As was pointed out in Sec. 4, in order to prove
Conjecture 1, namely, the fact that

s,(f,m) — f uncond.in Wé([”) & (I,p)=(m,2)

for n > 2, it suffices to construct examples of divergence of discrete D™-splines only in the following
three cases:

(1) l=m, p€[l,2), m=2m;, n=2;
(ii) l=m+1, p=1, n=2; (18.1)
(iii) l=m-1, p= oo, n=2.

We have shown that this problem reduces to a similar problem for Hermite D"™-splines, which are
nothing other than the solution of the general Dirichlet problem for a polyharmonic operator in a
certain domain 2 with the boundary A:

Ve =0, z€Q\A, U‘A:f‘A.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 445

Let
T =Ti,(Q) : WAQ) = WQ), T(f)=o(f)

be an operator of polyharmonic continuation of the boundary values of f € Wé(Q) to the whole

domain. Then, in order to prove Conjecture 1, it suffices to show that

up |71, ()| = 00, (Lp) # (m,2), n>2,

Except for certain pairs (I, p), we have proved this fact by considering the simplest domains:
(1) a ring for I = m,m+ 1,
(2) actually a ball with the deleted center for [ = m — 1.
It is very likely that slightly more exotic domains (e.g., a circle with a deleted segment) will

give counterexamples for the required cases of (18.1).

18.2. Generalization of the problem. We can pose a more general question concerning the
necessary and sufficient conditions under which

s,(f) = f uncond.in Wj(Q), fe Wé(Q) (18.2)
According to the results obtained, we can expect that (18.2) holds if and only if the embeddings
WLQ) — W3 (Q) — WE(Q) (18.3)

are simultaneosly satisfied.

Our results allow us also to suppose that

(1) if the first embedding in (18.3) is not satisfied, then there can be found an example in which
s, (f) diverge already in L;(Q2);

(2) now if the first embedding exists and the second does not, then there can be found an

example in which s, (f) diverge not only in W () but also in any other space Wj,/(Q) that does
not include W3*(2).
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