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 by maik nAUKA/Interperiodica Publishing (Russia).On a Problem of C. de Boorfor Multivariate Dm-SplinesA.Yu. ShadrinReceived June, 19971. INTRODUCTION AND STATEMENT OF THE PROBLEMOne of the ways of de�ning multivariate splines is a variational approach leading to Atiyah'sDm-splines: s = s(f;m;�;
) = arg min f kDmgk2 : g 2 Wm2 (
); gj� = f j�g : (1:1)Here 
 � Rn is a bounded domain with a smooth boundary and � is a closed subset of 
,kDlgkp = 8>>>>><>>>>>:8><>:Z
 0@Xj�j=l l!�! jD�gj21Ap=2 dx9>=>;1=p ; 1 � p <1;maxj�j=l kD�gkL1(
); p =1:For n = 1, the Dm-splines are ordinary piecewise-polynomial functions of degree 2m�1. For n > 1,the Dm-splines are polyharmonic in the domain 
 n� with order m, i.e., r2ms � 0, where r2 is aLaplace operator.The Dm-splines inherit a number of important properties of one-dimensional splines of de-gree 2m� 1. In particular, we denote byh� = supx2
 infy2� jx� yj; h� = infy;z2� jy � zjthe maximal and the minimal step of the net � = �� . Then the condition f 2 Wm2 (
) ensures theconvergence kf � s�(f)kWm2 (
) ! 0 ; h� ! 0irrespective of the technique of condensation of the nets �� , in particular, irrespective of theboundedness of the quantity M� = h�=h� :We shall call the convergence of this kind an unconditional convergence of spline-interpolants.In Sobolev spaces W lp(
) which are di�erent from Wm2 (
) the convergence of Dm-splines canbe ensured on quasiuniform nets �� , i.e., under the conditionM� < M; � 2 N:413



414 SHADRINHowever, when there are no constraints, the examples of divergence of an interpolation process insome W lp(
) do exist (the details are given below).De�nition 1. We say that for the given l; p;m;n;
 an unconditional convergence (un. con.)of Dm-splines takes place in the space W lp(
) and writes�(f)! f uncond. in W lp(
)if, for any function f 2 W lp(
), any sequence of discrete nets �� , and any compact set B � 
 wehave the convergence kf � s�(f)kW lp(B) ! 0 ; h� ! 0:In this work we study the following problem.Problem. Being given m;n;
, �nd the necessary and su�cient conditions imposed on l 2 Nand p 2 [1;1] for which s�(f)! f uncond. inW lp(
);This problem was posed by Yu.N. Subbotin. Its origination is connected with the well-knownconjecture of C. de Boor [1] for one-dimensional splines, namely, for any function f 2 Cm[a; b] andany discrete net �� � [a; b] the estimateks(m)� (f)k1 � cmkf (m)k1with the constant cm independent of �� holds true.2. THE WELL-POSEDNESS OF THE PROBLEM FOR DISCRETE NETSThe following conditions are necessary for the problem to be well-posed:(A) the existence and uniqueness of the Dm-spline s�(f) determined in (1.1) from the values ofthe function f 2 W lp(
) on �� ;(B) the inclusion s�(f) 2W lp(
; loc).Our considerations refer to the case of discrete nets�� = fti�gN�i=1; h� > 0:In this case, conditions (A), (B) will be ful�lled under the following assumptions:(a) m > n=2; l > n=p;(b) l� n=p < 2m� n:Indeed, condition (a) entails the embeddingsWm2 (
)! C(
); W lp(
)! C(
);and this gives (A).PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 415Condition (b) ensures the inclusion G 2 W lp(Rn; loc) for the functionG(x) = 8><>: jxj2m�n; n = 2n1;jxj2m�n ln jxj; n = 2n1 + 1;which is a fundamental solution of the polyharmonic equation r2mu = g. This is equivalent tocondition (B) since [6] the Dm-spline on the discrete net � = ftigNi=1 can be represented ass(x) = NXi=1 ciG(x� ti) + F (x)with the function F (x) = F (x;m;�;
) which is polyharmonic and, consequently, analytic in thedomain 
.It is easy to note that conditions (a), (b) can be combined into one condition0 < l � n=p < 2m� n;which we shall assume to be ful�lled in the sequel, drawing attention to it only from time to time.3. HISTORY OF THE PROBLEM3.1. One-dimensional case. The �rst example of the divergence of an interpolation processbelongs to Nord [9], namely, an example of the divergence of cubic splines (m = 2) in C[a; b].From subsequent works only very general results should be noted [5, 2]. A simple technique ofconstruction of these examples was proposed in [7]. The available results constitute the followingstatement.Theorem A1 (necessary condition for uncond. conv.). Lets�(f)! f uncond. in W lp[a; b]:Then one of the following conditions is ful�lled:(1) l = m; p 2 [1;1]; n = 1;(2) l = m+ 1; p = 1; n = 1;(3) l = m� 1; p =1; n = 1:C. de Boor's conjecture [1, 2] consists in the assertion that for n = 1 conditions (1){(3) of The-orem A1 are necessary and su�cient for the unconditional convergence of the splines in W lp[a; b].The following theorem provides a partial justi�cation of this conjecture.Theorem A2 (su�cient condition for uncond. conv.). Suppose that one of the followingconditions is ful�lled:(1a) l = m; p 2 [1;1]; m = 2; 3; n = 1;(1b) l = m; p 2 (2� �m; 2 + �0m) m � 4; n = 1;(2) l = m+ 1; p = 1; m = 2; n = 1;(3) l = m� 1; p =1; m = 2; n = 1:PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



416 SHADRINThen s�(f)! f uncond. in W lp[a; b]:The su�ciency of conditions (1a), (2), (3), which refer to small values of m, was proved in [11,3, 4]. Condition (1b), which ensures the unconditional convergence of the splines in Wmp [a; b] forany m, provided that p is su�ciently close to 2, is our recent result [10].3.2. Multivariate case. For n > 1 the questions concerning the approximation of the functionf 2 W lp(
) by means of Dm-spline interpolants were considered by Matveev [7, 8]. As concernsde Boor's problem, he got the following results.Lemma B [8]. Let n � 1, m > n=2, and let In = (�1; 1)n be an n-dimensional cube,Amn := n(l; p) : s�(m; f)! f uncond. in W lp(In)o :Then Am1 � Am2 � : : : � Amn � : : :In other words, with an increase in the dimension, the set of Sobolev spaces W lp(
) which admitthe unconditional convergence of Dm-splines is not considered, to say the least. In particular, thenecessary conditions presented in Theorem A1 for n = 1 are automatically generalized to spaces ofdimension n > 1.Matveev also announced the result [7] which shows that, actually, with an increase in thedimension n the set of spaces W lp(
) which admit the unconditional convergence of Dm-splinesnarrows.Theorem C1 (necessary condition for uncond. conv.). Lets�(f)! f uncond. in W lp(
):Then one of the following conditions is ful�lled:(1a) l = m; p 2 [1;1); n = 2;(1b) l = m; p 2 h2� [n+12 ]�1; 2 + [n�12 ]�1i ; n � 3;(2) l = m+ 1; p = 1; n = 2; 3; 4;(3) l = m� 1; p =1; n = 2; 3: (3.1)At the same time, the following su�cient condition for unconditional convergence is well-known.Theorem C2 (su�cient condition for uncond. conv.).s�(f)! f uncond. in Wm2 (
):It is obvious that as n ! 1, the necessary conditions (3:1) for the unconditional convergences�(f;m)! f in W lp(
) are asymptotically close to the su�cient conditionl = m; p = 2: (3:2)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 417Here, in contrast to the one-dimensional case, no other su�cient conditions are known.In this work, we show that this fact is not accidental and that, with a small exception, condi-tion (3.2) is the only necessary and su�cient condition for unconditional convergence s�(f;m)! fin W lp(
). 4. FORMULATION OF THE RESULT4.1. The main result. We have proved the following theorem.Theorem 1 (necessary condition for uncond. conv.). Let l, m, n, p satisfy the inequalities0 < l � n=p < 2m� n and be such thats�(f)! f uncond. in W lp(In):Then either (l; p) = (m; 2); n � 2; (4:1)or one of the following conditions is ful�lled:(1a) l = m; p 2 [1; 2); m = 2m1; n = 2;(1b) l = m; p 2 [3=2; 2); m = 2m1; n = 3;(2a) l = m+ 1; p = 1; n = 2; 3;(2b) l = m+ 1; p = 1; m = 2m1 + 1; n = 4;(3) l = m� 1; p =1; n = 2; 3: (4:2)Corollary. For n � 5, the convergences�(f;m)! f uncond. in W lp(In)takes place if and only if (l; p) = (m; 2):Due to our results, it should be expected that, actually, the following conjecture is valid.Conjecture 1. For n � 2 the convergences�(f;m)! f uncond. in W lp(In)takes place if and only if (l; p) = (m; 2):In order to get this �nal result, the counterexamples are lacking only in three cases for n = 2(see Remark 4.1 below).4.2. Reduction to a small dimension n. We have to show that if none of conditions(4:1); (4:2) is ful�lled, then there exist f 2 W lp(In), B 2 In, and a sequence f��g for which thenorms ks�(f)kW lp(B) will increase inde�nitely.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



418 SHADRINAccording to the Banach{Steinhaus theorem, by virtue of Lemma B, this is a direct corollaryof the following result.Theorem 10. Suppose that one of the following conditions is ful�lled:(1a) l = m; p 2 (2;1]; n = 2;(1b) l = m; p 2 [1; 2); m = 2m1 + 1; n = 2;(1c) l = m; p 2 [1; 3=2); m = 2m1 + 1; n = 3;(1d) l = m; p 2 [1; 2); m = 2m1; n = 4;(2a) l = m+ 1; p = 1; m = 2m1; n = 4;(2b) l = m+ 1; p = 1; m = 2m1 + 1; n = 5;(3) l = m� 1; p =1; n = 4: (4:3)Then, for any M; �; � > 0, there exist a function f 2 W lp(In) and a discrete net �� such thatdist (�� ; In) < �; kfkW lp(In) = 1; ks(f;m;��; In)kW lp(�In) > M: (4:4)Indeed, according to Lemma B, Theorem 10 is valid for all n beginning with those indicatedin (4:3). And from this theorem, according to the Banach{Steinhaus theorem, follows the existenceof a function g 2 W lp(In) and a sequence of nets �� such thatks(g;m;��; In)kW lp(�In) !1; h� ! 0;for the given � > 0Remark 4.1. We can see from (4:3) that in order to prove the hypothesis concerning theuniqueness of the su�cient condition for the unconditional convergence in W lp(In)(l; p) = (m; 2); n � 2;it su�ces to construct examples similar to (4:4) only in the following three cases:(i) l = m; p 2 [1; 2); m = 2m1; n = 2;(ii) l = m+ 1; p = 1; n = 2;(iii) l = m� 1; p =1; n = 2:4.3. The structure of the work. The rest part of the article is connected with the proofof Theorem 10. The case l = m;m+ 1 is discussed in Secs. 5{16 and the case l = m� 1 in Sec. 17.In Secs. 5, 6 and at the beginning of Sec. 17 we carry out further simpli�cations which reduceTheorem 10 to Theorem 2 (l = m;m+ 1) and Theorem 3 (l = m� 1).Theorem 2 (l = m;m + 1) is formulated in Sec. 7 and each of its cases is then proved inSecs. 10{16. Since the counterexamples for l = m;m + 1 are very complicated, we give detailedproofs only in cases (1a), (1b) where n = 2. In the other cases (n = 3; 4; 5), we restrict ourselvesto the formulation of statements and brief explanations.Theorem 3 and everything that refers to the case l = m � 1 can be found in Sec. 17. Here wealso restrict ourselves to a brief exposition.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 4195. REDUCTION TO INTERPOLATION ON AN ARBITRARY SETIn this section we show the possibility of a further simpli�cation in cases (1), (2) of Theorem 10where l = m;m + 1, namely, we show that in these cases the existence of f 2 W lp(In) and of adiscrete net �� with properties (4:4) follows from the existence of f 2 W lp(In) \Wm2 (In) and analready arbitrary (not necessarily discrete) set � with the same properties (4:4).Lemma 5.1. Let m > n=2, � � In and let the sequence of discrete nets f�ig be such that�i � �i+1 � �; dist (�i;�)! 0:Suppose, furthermore, that si := s(f;m;�i; In); s := s(f;m;�; In)for the given f 2 Wm2 (In).Then ksi � skWm2 (In) ! 0:The proof is similar to that given in [7, p. 150].Remark 5.1. If we choose as � the closure of a certain subdomain In with a su�cientlysmooth boundary S, then, by virtue of the smoothness of s; f 2 Wm2 (In), the interpolations(f)���� � f ���� entailes the interpolation of the boundary values of f , i.e.,@ks(f)@nkS ���S = @kf@nkS ���S ; k = 0; : : : ; m� 1;where nS is a normal vector to S.Let us now consider the problem concerning the estimation of the W lp-norms of si(f) in termsof the W lp-norm of the limit spline s(f;m;�; In).Generally speaking, for a nondiscrete �, for any smoothness of f , we can a priori state the onlyfact that s(f) 2 Wm2 (In). However, since the function s(f) is polyharmonic and, consequently,analitic in V = (In n �), we have the inclusion s(f) 2 W lp(B) for any l; p and any compact setB 2 V .The following lemma shows that on any compact set of this kind the W lp-norms of the discretesplines si also converge to kskW lp(B).Lemma 5.2. Let m > n=2, f 2 Wm2 (In), �i;� � In,ks � sikWm2 (In) ! 0:Then, for any compact set B such thatB � V := In n (f�ig11 [�);for any l; p, the convergence ks� sikW lp(B) ! 0PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



420 SHADRINtakes place.Proof. For the functions g which are polyharmonic in the ball B(a; 2�) we have an inequalityof the Markov's type, namely, kgkW lp[B(a;�)] � c(�; l; p)kgkL1[B(a;2�)]: (5.1)Furthermore, for any small � > 0 there exists a covering B by a �nite number of balls B(aj ; �) ofradius �, say, by the number of balls K = K(B; �), such thatB � [K1 B(aj ; �) � [K1 B(aj ; 2�) � (In n�):Since the Dm-splines s; si are polyharmonic in the domain V that contains B, we can set fi = s�siand apply (5.1) to obtainkfikW lp(B) � KXj=1 kfikW lp[B(aj;�)] � c(�; l; p) KXj=1 kfikL1[B(aj;2�)] � K(B; �)c(�; l; p)kfikL1(In);i.e., ks� sikW lp(B) � c1(B; �; l; p)ks� sikL1(In):However, ks� sikL1(In) � ks� sikWm2 (In) ! 0;and this completes the proof of the lemma.Lemmas 5.1, 5.2 allow us to reduce Theorem 10 to splines on arbitrary sets � 2 In. However,we shall not do this now, in the general situation, but shall formulate the corresponding statementin Sec. 7 for special f; s(f);� de�ned in Sec. 6.6. SPECIAL ELEMENTS OF CONSTRUCTIONSEverywhere in what follows we havex = (x1; : : : ; xn); r = jxj = qx21 + : : :+ x2n:6.1. The choice of the net �. For the arbitrary 0 < h < H < 2n we setV := VH;h := fx 2 In : h < r < Hg; U := Uh := fx 2 In : 0 � r � hg:As the set � on which the condition of interpolation sj� = f j� is de�ned we set� := �H;h := In n V:6.2. The choice of the function f . For every collection (m;n; l; p) the function f is radial,i.e., f(x) = f(r):PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 4216.3. The explicit form of Dm-splines. For the interpolation Dm-spline s = s(f;m;�H;h;In)we have s(x) 2 Wm2 (In); s(x) � f(x); x 2 �H;h; (6:1)and also r2ms = 0; x 2 V = (In n�H;h): (6:2)Furthermore, since f also belongs to Wm2 (In), conditions (6:1) imply@ks@rk ���r=H;h = @kf@rk ���r=H;h; k = 0; : : : ; m� 1: (6:3)By virtue of the existence and uniqueness of the solution of the Dirichlet problem for a polyharmonicequation, the function � which satis�es conditions (6:2), (6:3), is a restriction of the Dm-spline s(f)to the ring VH;h, i.e., �(f; x) � s(f; x); x 2 VH;h:We shall also seek �(f; x) in the form of the radial function �(r). The functionsn = 2; �(r) =Pmj=1 ajr2j�2 +Pmj=1 bjr2j�2 ln r;n = 3; �(r) =Pmj=1 ajr2j�2 +Pmj=1 bjr2j�3;n = 4; �(r) =Pmj=1 ajr2j�2 + b1=r2 +Pmj=2 bjr2j�4 ln r;n = 5; �(r) =Pmj=1 ajr2j�2 +Pmj=1 bjr2j�5 (6:4)are radial functions which are m-harmonic in Rnn f0g. In this case, the jth terms of every sum arepolyharmonic, with the exact order j.The boundary conditions (6:3) de�ne �(r) of the form (6:4) also uniquely. Thus, for our choiceof � = �H;h and f = f(r), we haves(f;m;�H;h; In; x) = �(f; r); x 2 VH;h;where �(f; r) has the form (6:4) and satis�es the boundary conditions (6:3).6.4. Inequalities for W lp-norms. We setkgkW lp(In) := kgkLp(In) + kDlgkLp(In);where kDlgkLp(In) = 8>>>>><>>>>>:8><>:ZIn 0@Xj�j=l l!�! jD�g(x)j21Ap=2 dx9>=>;1=p ; 1 � p <1;maxj�j=l kD�gkL1(In); p =1:In this case, as usual, � = (�1; : : : ; �n) is a multi-index,j�j = �1 + : : :+ �n; �! = �1! : : :�n!; D�g(x) = @j�jg(x)@x�11 : : :@x�nn :PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



422 SHADRINLet us �nd, for these norms, the lower and upper estimates that will be convenient for theconsideration of the radial functions g(x) = g(r).1. To �nd the lower estimate, we use the relation@lg(r)@rl = Xj�j=l l!�! x�rl D�g(x):Applying the Schwartz inequality to the right-hand side, we get�����@lg(r)@rl �����2 � 0@Xj�j=l l!�! x2�r2l 1A0@Xj�j=l l!�! jD�g(x)j21A = Xj�j=l l!�! jD�g(x)j2;whence it follows that kDlgkLp(V ) � cn8<: HZh ���@lg(r)@rl ���rn�1 dr9=;1=p : (6:5)2. In order to �nd the upper estimate, we use the relationD�g(x) = lXk=1 Xj�j=k c��x�rk 1rl�k @kg(r)@rk :From this relation, we derivekDlgkLp(In) � cl;n max1�k�l8<: 2Z0 ��� 1rl�k @kg(r)@rk ���prn�1 dr9=;1=p : (6:6)7. STATEMENT BEING PROVEDIt will follow from the results of Secs. 6, 7 that in order to prove Theorem 10 in the casesl = m;m+ 1, it su�ces to prove the following statement.Theorem 2. Suppose that one of the following conditions is ful�lled:(1a) l = m; p 2 (2;1]; n = 2;(1b) l = m; p 2 [1; 2); m = 2m1 + 1; n = 2;(1c) l = m; p 2 [1; 3=2); m = 2m1 + 1; n = 3;(1d) l = m; p 2 [1; 2); m = 2m1; n = 4;(2a) l = m+ 1; p = 1; m = 2m1 n = 4;(2b) l = m+ 1; p = 1; m = 2m1 + 1; n = 5: (7:1)Then, for any M;H > 0, there exist h > 0 and a function f = fH;h such that0 < h < H; f 2 W lp(In) \Wm2 (In); kfkW lp(In) = Op(1); (7:2)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 423and for the spline �(f) such thatr2m� = 0; x 2 V ; @k[f � �]@rk ���r=H;h = 0; k = 0; : : : ; m� 1; (7:3)the inequality k�(f)kW lp(V ) > M (7:4)is satis�ed.Indeed, for the arbitrary �; � > 0 de�ned in Theorem 10, we takeH := minf�; �g:Then we have dist (�H;h; In) = H � h < �; V = VH;h � �Infor our special �H;h = In n VH;h for the arbitrary h < H . With the chosen H and de�ned M , wechoose h and fH;h such that relations (7.2){(7.4) would be satis�ed. In this case, the inequalityk�(f)kW lp(B) > Mwiil also be satis�ed for a certain compact set B � V .If we now choose a sequence of discrete nets �i such that�i � �i+1 � �H;h; dist (�i;�H;h)! 0;then, by virtue of Lemmas 5.1, 5.2,ksi(f)kW lp(B) ! ks(f)kW lp(B) = k�(f)kW lp(B)and, hence, for a certain � we shall also havedist(�� ; In) < �; ks�(f)kW lp(�In) > ks�(f)kW lp(B) > M:8. TWO EXAMPLES AND THE GENERAL IDEAThe general construction of the function f for the arbitrary m is based on the following simpleobservations for n = 2, m = 1.8.1. Example for p > 2. Let n = 2, m = 1 and let V := V1;h = fx : h < r < 1g. We take asmooth function f = f(r) such that f(r) = 8><>: 0; r = 1;1; r = h;say, f(r) = fh(r) = (1� r2)=(1� h2). The solution of the problemr2�(x) = 0; x 2 V ; �(r)jr=1;h = fh(r)jr=1;hPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



424 SHADRINis the D1-spline �h(fh; r) = ln r= lnh; h < r < 1:From this, using the relation ( @g@x1 )2 + ( @g@x2 )2 = (@g@r )2, we obtainkD1�hkL2(V ) = 1pj lnhj ! 0; h! 0;whereas for p > 2, we have kD1�hkLp(V ) = Op(1)h1�2=pj lnhj ! 1; h! 0:Thus, even for in�nitely smooth f = fh with kfhkW 11(I2) < c, we havek�h(fh)kW 1p (V1;h) !1; h! 0; p > 2:8.2. Example for p < 2. Suppose that n = 2, m = 1, V = fx : h < r < 1g as before. Wetake f(r) = ln2 r:Then, for any � > 0, we havef 2 W 12��(I2); kfkW 12��(I2) < K� <1:The solution of the problemr2� = 0; x 2 V ; �(r)jr=H;h = f(r)jH;his the D1-spline �h(f; r) = ln r � lnh; h < r < 1:Since the inequality k ln rkL1(Vh) > C0 is satis�ed for small h < h0, it is obvious that not only forthe W 1p -norm but also for the L1-norm we getk�hkL1(V1;h) = O(j lnhj)!1; h! 0:8.3. The idea of the general construction. 1. For n = 2, m = 2m1+1, p > 2 we constructa smooth function f 2 Wm1(I2) of the formf(r) = r2m + : : : ;for which, on the ring V = VH;h, we have�(f; r) = cm(H)r2m1 ln r= lnh+ : : : ;so that for p > 2 we obtainkD2m1+1�kLp(V ) � cmk1=(r lnh)kLp(V ) !1 ; h! 0;PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 425just as in Example 8.1.2. For n = 2, m = 2m1 + 1, p < 2 we construct a function f 2 Wmp (I2) of the formf(r) = r2m1 ln2 r + : : : ;for which, on the ring VH;h, we have�(f; r) = cm(H)r2m1 ln r � lnh + : : : ;so that k�kL1(V ) !1 ; h! 0;just as in Example 8.2.3. The construction itself is very cumbersome. It could have been simpler if there existed asimple formula for Hermite's two-point interpolation for the systemfr2j ; r2j ln rgm�1j=0(such, for instance, as the formula for Hermite's polynomial interpolation). Then we could haveimmediately written out the explicit form of Hermite's Dm-interpolant �(f), say, forf(r) = r2m; p > 2; f(r) = rm�1 ln2 r; p < 2:However, we could not �nd formulas of this kind.4. Therefore we begin with constructing a function F such that@kF (r)@rk ���r=H;h = 0; k = 0; : : : ; m� 1;and then decompose it into two parts F = f � �(f);referring to �(f) polyharmonic terms of F of order not higher than m, not necessarily all terms ofthis kind. Thus the boundary conditions and the polyharmonicity of �(f) are satis�ed automati-cally, and it remains to estimate the corresponding norms of f and �(f).9. THE FUNCTIONS �m(r; h)The basic element of the general construction for n = 2 is the radial function �m, which ispolyharmonic in R2 n f0g, de�ned as follows.We set �1(r; h) := ln r � ln hand de�ne �m(r; h) := rZh 1u uZh t � �m�2(t; h) dt duPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



426 SHADRINfor odd m = 2m1 + 1 = 3; 5; : : : :Lemma 9.1. The function �m satis�es the conditions@k�m(r; h)@rk ���r=h = 0; k = 0; : : : ; m� 1; (9.1)and has the form �m(r; h) = pm�1(r; h)(lnr � ln h) + qm�1(r; h); (9.2)where pm�1(r; h) = m�1X2i=0 a2i;mhm�1�2ir2i; ja2i;mj < cm; (9.3)qm�1(r; h) = m�1X2i=0 b2i;mhm�1�2ir2i; jb2i;mj < cm:Proof. Relation (9.1) is valid by construction. We shall prove (9.2),(9.3) by induction.For m = 1 they hold true by the de�nition of �1. Suppose that they hold true for a certainodd m, i.e., �m(r; h) = m�1X2i=0 a2ihm�1�2ir2i(ln r � ln h) + b2ihm�1�2ir2i:Let us see what the (2i)th terms of the sum become under the transformation�m+2(r; h) := rZh 1u uZh t � �m(t; h)dtdu:1. For r2i(ln r� lnh) we have (with c := 1=(2i+ 2))s2i(r; h) := rZh 1u uZh t2i+1(ln t � ln h) dt du = rZh 1u hcu2i+2(lnu� ln h)� c2(u2i+2 � h2i+2)i du= c2r2i+2(ln r � lnh)� 2c3(r2i+2 � h2i+2) + c2h2i+2(ln r� lnh)= c2(r2i+2 + h2i+2)(ln r � lnh)� 2c3(r2i+2 � h2i+2);i.e.,hm�1�2is2i(r; h) = c2(hm+1�2(i+1)r2(i+1) + hm+1(ln r� lnh)� 2c3(hm+1�2(i+1)r2(i+1) � hm+1):Consequently, rZh 1u uZh tpm�1(t; h) dt du = pm+1;1(r; h)(lnr � lnh) + qm+1;1(r; h):PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 4272. For r2i (with the same c = 1=(2i+ 2)),rZh 1u uZh t2i+1dt du = rZh 1u �cu2i+2 � ch2i+2� du = c2(r2i+2 � h2i+2)� ch2i+2(ln r � ln h);whence it follows thatrZh 1u uZh tqm�1(t; h) dt du= pm+1;2(r; h)(lnr � ln h) + qm+1;2(r; h):This completes the proof of the lemma.10. THE CASE (1a) OF THEOREM 2: l = m, p 2 (2;1], n = 2We shall begin with the case of an odd m = 2m1+1 from which we shall obtain a constructionof an even m = 2m1 as a simple consequence.10.1. The case m = 2m1 + 1. We setF (r) := 1ln h(r2 �H2)m�m(r; h); (10:1)so that @kF (r)@rk ���r=h;H = 0; k = 0; 1; : : : ; m� 1:Proposition 1a. The function F admits the decompositionF (r) = f(r)� �(f; r);where r2m� = r2(m1+1)� = 0; x 2 V ; @k[f � �]@rk ���r=h;H = 0; 0 � k � m� 1: (10:2)In this case, f(r) = cm(r2 �H2)mrm�1 + 1lnhf2(r); (10.3)�(f; r) = ln rlnh m�1X2j=0 a2j(H; h)hm�1�2jr2j ; ja0(H; h)j = c0m(H);and the estimates kfkWm1(I2) < cm; (10.4)k�(f)kWmp (V ) > cm(H)h1�2=pj lnhj ! 1 ; h! 0; p > 2;are valid.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



428 SHADRINProof. 1. The boundary conditions in (10.2) are ful�lled by de�nition. The polyharmonicityof the spline �, with the order � = (m� 1)=2 + 1 :=m1 + 1 < m;follows from its representation (10.3).2. Let us prove (10.3). By virtue of (9.2),(9.3), we have�m(r; h) = pm�1(r; h)(lnr � ln h) + qm�1(r; h)= �pm�1(r; h) lnh+ qm�1(r; h) + pm�1(r; h) lnr= cmrm�1 lnh + hh2 ln hpm�3(r; h) + qm�1(r; h)i+ pm�1(r; h) lnr=: cmrm�1 ln h+ S(r; h)+ pm�1(r; h) lnr :Next we set P (r;H) = (r2 �H2)m:Then we obtainF (r) := 1lnhP (r;H)�m(r) = hcmP (r;H)rm�1i+ 1lnhP (r;H)S(r; h)+ P (r;H)pm�1(r; h) lnrlnh=: f1(r) + 1ln hf21(r) +Q(r) ln rlnh:Furthermore, Q(r) := P (r;H)pm�1(r; h) := (r2 �H2)mpm�1(r; h)is an even polynomial of r of degree 2m+ (m� 1), and we decompose it asQ(r) = rm+1T (r;H; h)� qm�1(r;H; h);where T (r;H; h) = m�1X2j=0 d2j(H; h)r2j; jd2j(H; h)j < c0m(H);qm�1(r;H; h) = m�1X2j=0 a2j(H; h)hm�1�2jr2j ; ja0(H; h)j = cm(H):Hence, Q(r) ln rlnh = 1lnhT (r;H; h)rm+1 ln r � qm�1(r;H; h) lnrlnh =: 1ln hf22(r)� �(f; r):Finally, collecting all the relations and setting f2 := f21 + f22, we �nd thatF (r) = f1(r) + 1ln hf2(r)� �(f; r);PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 429where f1(r) = cm(r2 �H2)mrm�1;f2(r) = P (r;H)S(r; h)+ T (r;H; h)rm+1 ln r;�(f; r) = ln rln h qm�1(r;H; h):We have proved relations (10.3).3. Let us now prove estimates (10.4). We setk � km;p := k � kWmp (I2):It is obvious that kf1km;1 < cm:Furthermore, since P (r;H), S(r; h), T (r;H; h) are polynomials of r2 with bounded (by certain cm)coe�cients, and we also have kgmkm;1 < cm for gm(r) := rm+1 ln r, we �nd thatkf2km;1 � kPkm;1 � kSkm;1 + kTkm;1 � kgmkm;1 < cm:Thus we have kfkm;1 � kf1km;1 + 1j lnhjkf2km;1 < cm;and the �rst estimate in (10.4) is proved.To estimate k�(f)kWmp (V ) from below, we use inequality (6:5)kgkpWmp (V ) � kDmgkpLp(V ) � cp HZh ���@mg(r)@rm ���pr dr:From the representation�(f; r) = ln rlnh m�1X2j=0am�1�2j(H; h)h2jrm�1�2j ; ja0(H; h)j = cm(H);we �nd that @m�(r)@rm = 1lnh m�1X2j=0 b2j(H; h)h2jr�1�2j ; jbm�1(H; h)j = cm(H):From this relation, with the substitution t = r=h and for H=h > 2, we obtainHZh ������m�1X2j=0 b2jh2jr�2j�1������p r dr = h2�p H=hZ1 ������m�1X2j=0 b2jt�2j�1������p t dt > h2�pjbm�1(H; h)j�m;where �m := infc2j2R2Z1 jt�m + m�3X2j=0 c2jt�2j�1jpt dt:PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



430 SHADRINThe �nal result is k�(f)kWmp (V ) > cm(H)h1�2=pj lnhj ! 1; h! 0; p > 2:We have proved Proposition 1a.10.2. The case m = 2m1. A simple corollary of Proposition 1a isProposition 1a0. For an even m = 2m1 and for any 0 < h < H there exists a functiong = g(x) such that kgkW 2m11 (I2) < cm; (10:5)whereas for the spline �(g) such thatr2(2m1)� = 0; x 2 V ; @k[g � �(g)]@rk ���r=h;H = 0; 0 � k � 2m1 � 1; (10:6)the limiting process kD2m1�(g)kLp(V ) = cm(H)h1�2=pj lnhj ! 1; h! 0; p > 2; (10:7)is ful�lled.Proof. We take the functions f and �(f) from Proposition 1a, i.e., functions such thatr2(m1+1)�(f) = 0; x 2 V ; @k[f � �(f)]@rk ���r=h;H = 0; 0 � k � 2m1;and the estimates kfkW 2m1+11 (I2) < cm;kD2m1+1�(f)kLp(V ) > cm(H)h1�2=pj lnhj ! 1; h! 0; p > 2;are valid. Since (Dmf)2 :=Pj�j=m c�(D�f)2, for every h there exists � = �h, j�j = 2m1 + 1, suchthat 




@2m1+1�(f)@x� 




Lp(V ) > cm(H)h1�2=pj lnhj ! 1; h! 0; p > 2;Let j be the number of any nonzero component � = (�1; : : : ; �n). We setg(x) := @f(x)@xj ; �(g; x) := @�(f; x)@xj :Then estimates (10.6),(10.7) are obviously valid and the boundary conditions in (10.5) are ful�lled.As to the order of polyharmonicity of �(g) = @�(f)=@xj, we have, since the di�erentiation operationpreserves this order, r2��(g) = 0; � = m1 + 1 � 2m1 = m:We have proved Proposition 1a0 and, together with it, the case (1a) of Theorem 2.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 43111. THE CASE (1b) OF THEOREM 2: l = m, p 2 [1; 2), m = 2m1 + 1, n = 2For this case, just as for every subsequent new case of Theorem 2, we use some symbols F , f ,f1, f2, etc., from the previous notation, for the functions that di�er from case to case.We construct the function f that satis�es Theorem 2 under condition (1b) in the formf(r) = 8><>: f1(r); x 2 I2h ;f2(r); x 2 Uh; Uh = fx : 0 � r � hg; I2h = (I2 n Uh);where @kf1(r)@rk ���r=h = @kf2(r)@rk ���r=h; k = 0; : : : ; m� 1;i.e., f will be glued from two pieces. It is obvious that in this case�(f; r) � �(f1; r);and we shall consider precisely �(f1). Since the glueing is smooth, the estimatekfkWmp (I2) = Op(1)will follow from (uniform with respect to h) estimateskf1kWmp (I2h) = Op(1); kf2kWmp (I2h) = Op(1):The necessity of these considerations is connected with our method of constructing f1 and �(f1)in which the functions f1, although bounded in Wmp (I2h) uniformly with respect to h > 0, do notbelong to Wmp (I2) because of the singularities at zero.In this section we shall construct f1 and �(f1).For p < 2, l = m = 2m1 + 1, n = 2 we setF (r) := �m(r;H) � �m(r; h); (11:1)so that @kF (r)@rk ���r=h;H = 0; k = 0; 1; : : : ; m� 1:Proposition 1b. The function F admits the decompositionF (r) = f1(r)� �(f1; r);where r2m� = 0; x 2 V ; @k[f1 � �]@rk ���r=h;H = 0; 0 � k � m � 1: (11:2)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



432 SHADRINIn this case, f1(r) = pm�1(r;H) pm�1(r; h) ln2 r;pm�1(r; t) = m�1P2j=0a2jtm�1�2jr2j ; ja2jj < cm;�(f1; r) = Om(1)r2m�2 ln r � lnh + ln rPm�2(r2) +Qm�1(r2);Pm�2 2 �m�2; Qm�1 2 �m�1; (11:3)and the estimates kf1kWmp (I2h) = Op(1); 1 � p < 2;k�(f1)kL1(V ) = OH(j lnhj)!1; h! 0; (11:4)are valid.Proof. 1. The boundary conditions in (11.2) are satis�ed by de�nition (11.1). The polyhar-monicity of the spline �(f1) with order m follows from its representation in (11.3).2. Let us establish the validity of (11.3). According to Lemma 9.1, we have�m(r; t) = pm�1(r; t) lnr� pm�1(r; t) ln t + qm�1(r; t);whence it follows that F (r) := �m(r; h)�m(r;H)= [pm�1(r; h) lnr � pm�1(r; h) lnh+ qm�1(r; h)]� [pm�1(r;H) lnr � pm�1(r;H) lnH + qm�1(r;H)]=: f1(r)� �(f1; r): (11.5)We have set f1(r) := pm�1(r; h)pm�1(r;H) ln2 r;and referred to �(f1; r) all the other terms which appear after the removal of the parenthesesin (11:5).Since pm�1; qm�1 are even polynomials of degree m� 1 = 2m1 of the formpm�1(r; t) = c2m1r2m1 + 2m1�2X2j=0 c2j(t)r2j; qm�1(r; t) = dm�1r2m1 + 2m1�2X2j=0 d2j(t)r2j;we �nd from (11:5) that�(f1; r) = 2m�2X2j=0 �a2j(H; h)r2j ln r + b2j(H; h)r2j� ; (11:6)the coe�cient a2m�2 in r2m�2 ln r being equal toa2m�2 = �c22m1(lnH + lnh) + 2c2m1d2m1 = Om(1) lnh:We have proved relations (11.3).PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 4333. Let us estimate the corresponding norms of f1 and �(f1).For f1 we have f1(r) := pm�1(r;H)pm�1(r; h) ln2 r;and, since kpm�1(�; H)km;1 < cm, it su�ces to estimate the Wmp (I2h)-norm ofpm�1(r; h) ln2 r = m�1X2j=0a2jhm�1�2jr2j ln2 r:Let us estimate the Wmp (I2h)-norm of every term of the sum with the use of inequality (6.6):kDmgkpLp(I2h) � cpm max1�k�m 2Zh ��� 1rm�k @kg(r)@rk ���pr dr:We have (for p < 2 and 0 � 2j � m� 1)h(m�1�2j)pkDmr2j ln2 rkpp � c1(m; p)h(m�1�2j)p 2Zh r(2j�m)p+1j ln2p rj dr� c2(m; p)h(m�1�2j)p+ c3(m; p)h�p+2j ln5 hj � c4(m; p):Thus, kDmf1kLp(I2h) � cm;pand since it is obvious that kf1kLp(I2h) < c0m;p, we have found estimate (11.4) for f1.Let us now estimate the L1-norm of �. For this purpose, we introduce the quantity�m(H) := infPm�2;Qm�1 HZH=2 ��� r2m�2 ln r + Pm�2(r2) ln r +Qm�1(r2)���r dr:It is clear that �m(H) > 0;and actually depends only on m and H . We shall not elucidate the exact order of this quantity.Since �(f1; r) = 2m�2X2j=0 �a2jr2j ln r + b2jr2j� ; a2m�2 = Om(1) lnh;we now havek�(f1)kL1(V ) = c HZh j�(g1; r)jrdr > c HZH=2 j�(g1; r)jrdr > ca2m�2�m(H) > Om(1)�m(H)j lnhj;i.e., k�(f1)kL1(V ) = Om;H(j lnhj)!1; h! 0:We have proved Proposition 1b.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



434 SHADRIN12. CONTINUATION OF THE CASE (1b) OF THEOREM 2:THE SMOOTHING OF f1The functions f1(r) := f1(r;H; h) constructed in the preceding section have a bounded Wmp -norm in I2h, i.e., outside of the circle Uh = fx : r � hg, the bounding being uniform with respectto h > 0, but have singularities at zero. In this section we show the possibility of a smoothcontinuation of f1 to the interior of the circle Uh.Lemma 12.1. For any h > 0 there exists a function f2 such that@kf2(r)@rk ���r=h = @kf1(r)@rk ���r=h; k = 0; 1; : : : ; m� 1;kf2kWmp (Uh) = Op(1); 1 � p < 2:Proof. Since f1(r) := pm�1(r;H)[pm�1(r; h) ln2 r] := f11(r)f12(r);where kf11kWm1(I2) := kpm�1(�; H)kWm1(I2) < cm;it su�ces to smooth the second factorf12(r) := pm�1(r; h) ln2 r = ln2 r m�1X2j=0 a2jhm�1�2jr2j= hm�1 ln2 r m�1X2j=0 a2jh�2jr2j =: hm�1J(r): (12.1)Let us construct a polynomial s(r) = s(r; h) such thats(r; h)���r=h = hm�1; @ks(r; h)@rk ���r=h = 0; k = 1; : : : ; m� 1: (12:2)We can de�ne it as s(r; h) := cm(h) rZ0 tm�2(t� h)m�1du;where cm(h) is chosen such that the relation s(r; h) = hm�1 is satis�ed for r = h, and then (12.2)is obviously satis�ed. It is easy to show that s(r; h) de�ned in this way has the forms(r; h) = rm�1 m�1Xi=0 bih�iri:We shall now smooth f12(r) in (12.1) as follows:f12(r) = hm�1J(r)! s(r; h)J(r) = rm�1 ln2 r 2m�2Xi=0 dih�iri =: f22(r) :PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 435According to Leibniz rule, by virtue of (12.2), we immediately obtain@kf22(r)@rk ���r=h = @kf12(r)@rk ���r=h; k = 0; 1; : : : ; m� 1:It remains to show that the Wmp (Uh)-norms of the functionf22(r; h) = 2m�2Xi=0 di(rm�1 ln2 r)(r=h)iare uniformly bounded with respect to h > 0.For every term of the sum we havejrm�1 ln2 rj < cm; j(r=h)ij < 1; r < h;i.e., f22 2 L1(U).In order to estimate the Lp-norms of the mth derivatives, we use Leibniz rule and the relationskDm�k(r=h)ikL1(U) � cmh�(m�k);kDkrm�1 ln2 rkLp(U) � cmhm�1�k+2=p ln2 h;and this yields kDmf22kLp(Uh) � cmh�1+2=p ln2 h! 0; h! 0; p < 2:We have proved Lemma 12.1.We have thus constructed the function f 2 Wmp (I2) that satis�es all requirements (7.2){(7.4) ofTheorem 2 in the case (1b), but it is necessary, in addition, that the function f should also be fromWm2 (I2). However, it is obvious that we can now smooth the function f in a small neighborhood U�of zero to ~f 2 Wm2 (I2) so that we should have(i) ~f(x) = f(x); x 2 I2 n U�; (ii) k ~f � fkWmp (I2)k < �for any � > 0. Then, for � < h the function ~f will satisfy all requirements of Theorem 2 for thecase (1b).Indeed, condition (i) will imply the relation �( ~f) = �(f) and, hence, all properties of the splinewill remain unchanged, and, by virtue of (ii), the norm of ~f will also be bounded.We have proved Theorem 2 for the case (1b).13. THE CASE (1d) OF THEOREM 2: l = m, p 2 [1; 2), m = 2m1, n = 4In this case the construction of the function f is a slight modi�cation of the case (1b). We shallshow that for the functionf1(r) := r2m1�2 ln2 r + : : : ; f 2 W 2m12�� (I4) 8� > 0;PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



436 SHADRINthe Hermite spline �(f1) on the ring V has the form�(f1; r) = r2m1�2 ln r � ln h+ : : : ;whence follows the unboundedness of k�(f1)kL1(V ) as h! 0.The smoothing of f1 in the neighborhood of zero can be carried out in the same way as inSec. 11.13.1. Auxiliary lemmas. We set 2(r;H) := 2H2(ln r� lnH)� (r2 �H2);so that @k 2(r)@rk ���r=H = 0; k = 0; 1;and, for even m = 2m1 = 4; 6; : : : ; de�ne m(r;H) := rZH 1u uZH t �  m�2(t; H) dt du:Lemma 13.1. The function  m satis�es the relations@k m(r;H)@rk ���r=H = 0; k = 0; : : : ; m� 1; (13:1)and has the form  m(r;H) = H2pm�2(r;H)(lnr � lnH) + qm(r;H); (13:2)where pm�2(r;H) = m�2P2i=0 a2i;mHm�2ir2i; ja2i;mj � cm;qm(r;H) = mP2i=0 b2i;mHm�2�2ir2i; jb2i;mj � cm: (13:3)The proof is similar to that of Lemma 9.1 for �m.Next, for the function �l(r; h) de�ned in (9.1){(9.3), for odd l = 2l1 + 1 we set�m(r; h) := �2m1(r; h) := 1r @�2m1+1(r; h)@r :Lemma 13.2. The function �m satis�es the relations@k�m(r; h)@rk ���r=h = 0; k = 0; : : : ; m� 1; (13:4)and has the form �m(r; h) = sm�2(r; h)(lnr � lnh) + tm�2(r; h) + bmhmr�2; (13:5)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 437where sm�2(r; h) = m�2P2i=0 c2i;mhm�2�2ir2i; jc2i;mj � cm;tm�2(r; h) = m�2P2i=0 d2i;mhm�2�2ir2i; jd2i;mj � cm: (13:6)Proof. This lemma is a direct corollary of Lemma 9.1 for �2m1+1 .13.2. Construction of f1. We setF (r) :=  m(r;H)�m(r; h);so that @kF (r)@rk ���r=H;h = 0; k = 0; : : : ; m� 1: (13:7)Proposition 1d. The function F admits the decompositionF (r) = f1(r)� �(f1; r);where r2m� = 0; x 2 V ; @k[f1 � �]@rk ���r=h;H = 0; 0 � k � m � 1: (13:8)In this case,f1(r) = H2pm�2(r;H) sm�2(r; h) ln2 r + cmHmhmr�2 ln r + c0mr2m�2 ln r;�(f1; r) = Om(1)r2m�4 ln r lnh + c(H; h)r�2+ Pm�3(r2) lnr + Qm�1(r2); (13:9)and the estimates kf1kWmp (I4h) = Op(1); p 2 [1; 2);k�(f1)kL1(Vh) = OH(j lnhj)!1; h! 0; (13:10)are valid.The proof is similar to that of Proposition 1b from Sec. 11. Using relations (13.2), (13.5) for m and �m respectively, we write out the product in the relationF (r) := f1(r)� �(f1; r) :=  m(r)�m(r)and refer to �(f1) all m-harmonic terms, i.e., the terms that enter (for n = 4) into the collectionr�2; fr2j ln rgm�2j=0 ; fr2jgm�1j=0 :All the other terms constitute f1. In this way we obtain (13.9).Conditions (13.8) are ful�lled automatically.Estimate (13.10) can be easily derived from (13.9). The estimate for k�(f1)kL1(V ) is obviousbecause of the factor ln h. We can estimate the norm of f1 as follows.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



438 SHADRINFor the factors of the �rst term of f1 in (13.9) we havekpm�2(�; H)kWm1(I4) < cm; ksm�2(�; h) ln2(�)kWmp (I4h) < cm:The �rst inequality is obvious; the second inequality is valid sincesm�2(r; h) ln2 r = m�2X2j=0 c2jhm�2�2jr2j ln rand the Wmp (I4h)-norm of each term is bounded. This boundedness can be established in the sameway as for the second term of f1 in (13.9) for which we have (for p 2 [1; 2) and n = 4)hmpkDmr�2 ln rkLp(I4h) � c1(m; p)hmp 2Zh r(�2�m)p+3 lnp r dr� c2(m; p)hmp + c3(m; p)h�2p+4j ln3 hj � c4(m; p) :Finally, the third term of f1 in (13.9), namely, r2m�2 ln r, is obvious from Wm1(I4).We have proved Proposition 1d.13.3. Smoothing of f1. This smoothing can be carried out in the same way as in the case (1b),(see Sec. 12).We have proved the case (1d) of Theorem 2.14. THE CASE (2a) OF THEOREM 2: l = m+ 1, p = 1, m = 2m1, n = 4This case follows immediately from the results of Sec. 13, namely, it is easy to verify that therelation kf1kWm+11 (I4h) = O(1)is satis�ed uniformly with respect to h > 0 for the functions f1 := f1;H;h de�ned in (13.9). Forinstance, for the same term cmHmhmr�2 ln r in representation (13.9) for f1(r) we have (for p = 1and n = 4) hmkDm+1r�2 ln rkL1(I4h) � c1(m)hm 2Zh r�2�(m+1)+3j ln rj dr� c2(m)hm + c3(m)hj lnhj � c4(m)hj lnhj ! 0; h! 0:The smoothing of f1 2 Wm+11 (I4h) to the function f 2 Wm+11 (I4)\Wm2 (I4) with the preservationof the order of the Wm+11 -norm is carried out as before.In this way we can prove the case (2a) of Theorem 2.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 43915. THE CASE (1S) OF THEOREM 2: l = m, p 2 [1; 3=2), n = 3In the case of an odd dimension n, we cannot use the results which we obtained earlier for aneven n since the nature of polyharmonic functions is di�erent. However, this case is very simple.We set F (r) := 1r (r �H)m(r� h)m�1(ln r � ln h): (15:1)Proposition 1c. The function F admits the decompositionF (r) = f1(r)� �(f1; r);where r2m� = 0; x 2 V ; @k[f1 � �]@rk ���r=h;H = 0; 0 � k � m � 1: (15:2)In this case, f1(r) = r�1(r �H)m(r� h)m�1 ln r;�(f1; r) = r�1(r �H)m(r� h)m�1 lnh; (15:3)and the estimates kf1kWmp (I3h) = Op(1); p 2 [1; 3=2);k�(f1)kL1(V ) = OH(j lnhj)!1; h! 0; (15:4)are valid.Proof. All relations are obvious, except for the estimates kf1kWmp (I3h) in (15.4). Let us provetheir validity.Since the factor (r � H)m in representation (15.3) for f1 is bounded in Wm1(I3), it su�ces toprove the boundedness in the norm Wmp (I3h) of the factorr�1(r � h)m�1 ln r = m�1Xj=0 ajhm�1�jrj�1; jaj j < cm:For the terms in the sum we have (for p 2 [1; 3=2), 0 � j � m� 1, and n = 3)h(m�1�j)pkDmrj�1 ln rkpLp(I3h) � c1(m; p)h(m�1�j)p 2Zh r(j�1�m)p+2 lnp r dr� c2(m; p)h(m�1�j)p + c3(m; p)h�2p+3j lnhj5=2 � c4(m; p):We have proved Proposition 1c.It remains to smooth f1 to f 2 Wmp (I3) \m2 (I3), and then the case (1c) of Theorem 2 will beproved.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



440 SHADRIN16. THE CASE (2b) OF THEOREM 2: l = m+ 1, p = 1, n = 5This case is also simple. We setG(r) := (r�H)m(r � h)m�1(r2 + Ar +B):We choose the coe�cients A; B such that the polymonial G(r) would not include the monomials rand r2m. Let G(r) = 2m+1Xi=0 airi:Then we have a2m = A�mH � (m� 1)h = 0;a1 = Hm�1hm�2(A �Hh�B(mh + (m� 1)H)) = 0;whence it follows that A = Om(H); B = O(h):Consequently,G(r) = c2m+1r2m+1 + 2m�1Xj=m+1 cj(H; h)rj + mXj=2 cj(H; h)hm�jrj + c1(H; h)hm; jcj(H; h)j< c0m:(16:1)Now we set F (r) := 1r3G(r)(lnr � lnh);so that @kF (r)@rk ���r=H;h = 0; k = 0; 1; : : : ; m� 1:Proposition 2b. The function F admits the decompositionF (r) = f1(r)� �(f1; r);where r2m� = 0; x 2 V ; @k[f1 � �]@rk ���r=h;H = 0; 0 � k � m � 1: (16:2)In this case, f1(r) = r�3G(r) lnr;�(f1; r) = r�3G(r) lnh (16:3)and the estimates kf1kWm+11 (I5h) = O(1);k�(f1)kL1(V ) = OH(lnh)!1; h! 0; (16:4)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 441are valid.Proof. Representation (16.3) is obvious.From relation (16.1) we �nd that r�3G(r) is a linear combination of the functionsfr2j�5; r2j�2gmj=1which are polyharmonic with order j � m, i.e., the function �(f1) is m-harmonic. The boundaryconditions are ful�lled by the de�nition of F , and therefore relations (16.2) hold true.Let us prove estimates (16.4). For the L1(V )-norm of �(f1) the estimate is obvious because ofthe factor ln h. Let us �nd the estimate for the norm of f1. From (16.1), (16.3) we �nd thatf1(r) = Pm(r;H; h)rm�2 ln r + mXj=0dj(H; h)hm�jrj�3 ln r:The �rst term in this representation is obviously from Wm+11 (I5). For the terms of the sum wehave (for p = 1, 0 � j � m, and n = 3)hm�jkDm+1rj�3 ln rkL1(I5h) � c1(m)hm�j 2Zh rj�3�(m+1)+4j ln rj dr� c2(m; p)hm�j + c3(m)hj lnhj � c4(m; p):We have proved Proposition 2b.We again smooth f1 to f 2 Wm+11 (I5)\Wm2 (I5), and this completes the proof of the case (2b)of Theorem 2 and, together with it, the whole Theorem 2.17. THE CASE (3) OF THEOREM 10: l = m� 1, p =1, n = 4We have not managed to reduce this case to the preceding scheme for l = m;m+ 1 in whichwe used Hermite's Dm-splines that interpolate the values of the function f and those of its partialderivatives on manifolds of dimension n � 1. However, this case reduces to a multiple Hermiteinterpolation at the points (on manifolds of dimension 0).17.1. Reduction to multiple Dm-splines. According to Sobolev's embedding theorem, wehave m� n=2 > k � 0 ) Wm2 (In)! Ck(In)and, hence, in the de�nition of the Dm-spline as the solution of the variational problemkDmgkL2(In) ! minunder interpolation constraints, we can de�ne as these interpolation constraints not only the valuesof g(x) at the points ti 2 � but also the values of the partial derivatives D�g(x) up to the order kinclusive.To be more precise, for 0 � k < m� n=2 for the multi-indices � 2Zn+ we setAk := f� : j�j � kgPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



442 SHADRINand understand the net �A as the collection of pairs�A := (�; A) := f(ti; Ai)gNi=1;where � = ftig; ti 2 In; A = fAig; Ai � Ak:Then, for any f 2 Wm2 (In), we can de�ne the multiple Dm-spline sA(f) as the solution of theproblem sA(f) = s(f;m;�A;
)= arg min f kDmgk2 : g 2 Wm2 (
); D�g(ti) = D�f(ti); � 2 Ai; 1 � i � Ng :The existence and uniqueness of sA(f) are known from the general theory of variational splines.For the ordinary spline s(f), we haves(f) = sA(f); A = A0:The following lemma allows us to reduce the original problem on the unconditional convergenceof discrete Dm-splines in Cm�1(
) to a similar problem on multipleDm-splines. We give it withoutproof, and only for the case n = 4.Lemma 17.1. Let n = 4, m > 2 (= n=2), k� = m � 3 (< m � n=2). Suppose, furthermore,that e1 = (1; 0; 0; 0) is a unit vector in R4, and for the arbitrary ti 2 I4, � > 0 we have�� = ft1 + j�e1gk�j=0; �2 = ftigNi=2; �� = �� [ �2;� = ft1g [�2; A1 = fje1gk�j=0; Ai = f0g:Finally, suppose that s� := s(f;m;��; I4);sA := s(f;m;�A; I4) :=:= arg min( kDmgk2 : g 2 Wm2 (I4); @jg@xj1 = @jf@xj1 jx=t1 ; 0 � j � k� gj�2 = f j�2)for an arbitrary f 2 Wm2 (I4).Then ksA � s�kWm2 (I4) ! 0; � ! 0:17.2. Unboundedness of multiple Dm-splines in Cm�1. It follows from Lemma 17.1 andLemma 5.2 that on any ball B(a; �) such thatB(a; 2�) � V := I4 n f��g�<�0 ;we have the convergence ksA � s�kCm�1[B(a;�)] ! 0; � ! 0:PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 443Thus, in order to prove the last case 3) of Theorem 10, it su�ces to prove the unboundedness of sAin Cm�1(In).We shall prove the following statement.Theorem 3. Let the condition(3) l = m� 1; p =1; n = 4be ful�lled. Suppose, furthermore, that k� = m� 3 and the arbitrary net�A = fti; AigN1 ; ti 2 �; Ai 2 A; maxi max�2Ai j�j = k�;is de�ned.Then, for any f 2 Cm�1 \Wm2 (I4) and any M > 0 there exists a ball B(a; 2�) such thatB(a; 2�) � I4 n�; kDm�1sA(f)kL1[B(a;�)] > M: (17:1)Proof. For sA(f) we have a representation similar to (2.1) for s(f), namely, for A = fAigwith Ai 2 Ak , k < m� n=2, we havesA(f; x) = NXi=1 X�2Ai ci�D�G(x� ti) + F (x); (17:2)where, as before, we have G(x) = 8><>: jxj2m�n; n = 2n1;jxj2m�n ln jxj; n = 2n1 + 1; (17:3)and the function F (x) = F (x;m;�A;
) is polyharmonic in In.It follows from (17.3) that for j�j = k (and for the agreement that W r1 = Cr)D�G(x) 2 W lp(Rn; loc) , l� n=p < 2m� n � k; (17:4)and ess sup jD�G(x)j = 8><>: 1; n = 2n1;O(1); n = 2n1 + 1 (17:5)for p =1, l = 2m� n� k in the neighborhood of zero jxj < �.Let us �nd the worse smoothness of D�G. We can see from (17:4) that the smoothness of Gdecreases with the growth of k, but in the de�nition of multiple splines we are restricted by theinequality k < m� n=2:Under this restriction, the maximal value of k = k� isk� = m� (n=2 + 1); n = 2n1;k� = m� (n+ 1)=2; n = 2n1 � 1;PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



444 SHADRINwhence, for any n, we have2m� n� k� = m� (n1 � 1) = n � hn� 12 i: (17:6)Thus, we �nd from (17.2){(17.6) thatsA(f) 2 W lp(In; loc) , l � n=p < m� hn� 12 i (17:7)under the interpolation of the partial derivatives of f 2 Wm2 (In) of the maximum possible orderk = k� at some points of the net �A.In the case n = 4, l = m� 1 which is of interest to us we have, for k� = m� 3,sA(f) 2 Wm�1p (I4; loc) , m� 1� n=p < m� 1:With due account of (17:5), we infer that if, for p =1, the set Ai in the pair (ti; Ai) 2 �A contains� with j�j = k� = m� 3, thenkDm�1sA(f)kL1[B(ti;�)] =1 8� > 0:Now, for any M; � > 0, there exists a point a 2 B(ti; 3�) such thatjD�sA(f; a)j > Mfor a certain multi-index �, j�j = m� 1, and this gives the estimate of the norm in (17.1).Now if 3� < h(�) := inf jti� tj j, then B(a; 2�)\� = ?, i.e., the �rst requirement imposed on Bin (17.1) is also met. We have proved Theorem 3.18. COMMENTS18.1. Possibility of a complete solution. As was pointed out in Sec. 4, in order to proveConjecture 1, namely, the fact thats�(f;m)! f uncond. in W lp(In) , (l; p) = (m; 2)for n � 2, it su�ces to construct examples of divergence of discrete Dm-splines only in the followingthree cases: (i) l = m; p 2 [1; 2); m = 2m1; n = 2;(ii) l = m+ 1; p = 1; n = 2;(iii) l = m� 1; p =1; n = 2: (18:1)We have shown that this problem reduces to a similar problem for Hermite Dm-splines, which arenothing other than the solution of the general Dirichlet problem for a polyharmonic operator in acertain domain 
 with the boundary �:r2m� = 0; x 2 
 n�; ����� = f ����:PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 219 1997



ON A PROBLEM OF C. DE BOOR 445Let T = Tl;p(
) : W lp(
)! W lp(
); T (f) = �(f)be an operator of polyharmonic continuation of the boundary values of f 2 W lp(
) to the wholedomain. Then, in order to prove Conjecture 1, it su�ces to show thatsup
 kTl;p(
)k =1; (l; p) 6= (m; 2); n � 2:Except for certain pairs (l; p), we have proved this fact by considering the simplest domains:(1) a ring for l = m;m+ 1,(2) actually a ball with the deleted center for l = m� 1.It is very likely that slightly more exotic domains (e.g., a circle with a deleted segment) willgive counterexamples for the required cases of (18.1).18.2. Generalization of the problem. We can pose a more general question concerning thenecessary and su�cient conditions under whichs�(f)! f uncond. in W kq (
); f 2 W lp(
): (18:2)According to the results obtained, we can expect that (18.2) holds if and only if the embeddingsW lp(
)! Wm2 (
)! W kq (
) (18:3)are simultaneosly satis�ed.Our results allow us also to suppose that(1) if the �rst embedding in (18.3) is not satis�ed, then there can be found an example in whichs�(f) diverge already in L1(
);(2) now if the �rst embedding exists and the second does not, then there can be found anexample in which s�(f) diverge not only in W kq (
) but also in any other space W k0q0 (
) that doesnot include Wm2 (
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