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Abstract

Let SN,r be the (nonlinear) space of free knot splines of degree r − 1 with at most N pieces
in [a, b], and let M

k be the class of all k-monotone functions on (a, b), i.e., those functions f for
which the kth divided difference [x0, . . . , xk]f is nonnegative for all choices of (k+1) distinct points
x0, . . . , xk in (a, b).

In this paper, we solve the problem of shape preserving approximation of k-monotone functions
by splines from SN,r in the Lp-metric, i.e., by splines which are constrained to be k-monotone as
well. Namely, we prove that the order of such approximation is essentially the same as that by
the non-constrained splines. Precisely, it is shown that, for every k, r, N ∈ N, r ≥ k, and any
0 < p ≤ ∞, there exist constants c0 = c0(r, k) and c1 = c1(r, k, p) such that

dist(f, Sc0N,r ∩ M
k)p ≤ c1 dist (f, SN,r)p

∀f ∈ M
k

.

This extends to all k ∈ N results obtained earlier by Leviatan & Shadrin and by Petrov for k ≤ 3.

1 Introduction and Main Results

In this paper, we solve the problem of shape preserving approximation of k-monotone functions by
splines with free knots in the Lp-metric, i.e., by splines which are constrained to be k-monotone as
well. Namely, we prove that the order of such approximation is essentially the same as that by the
non-constrained splines, confirming thus expectations of some standing.

Given k ∈ Z+ and an interval I = (a, b), a function f : I 7→ R is said to be k-monotone on I if its
kth divided differences [x0, . . . , xk]f are nonnegative for all choices of (k + 1) distinct points x0, . . . , xk

in I. We denote the class of all such functions by Mk := Mk(I). Thus, f ∈M0 is non-negative, f ∈M1

is non-decreasing, and f ∈ M2 is a convex function. If f ∈ Ck(I), then f ∈ Mk if and only if f (k) ≥ 0
on I.

We would like to emphasize that functions from Mk are not assumed to be defined at the endpoints
of the interval (a, b), and, hence, have to be neither bounded nor integrable on (a, b). For example,
if f(x) = (−1)kx−1−1/p, then f ∈ Mk(0, 1) for k ∈ N, but f 6∈ Lp(0, 1), 0 < p ≤ ∞. (Throughout
the paper, L∞(I) denotes the space of all measurable essentially bounded functions equipped with the
norm ‖f‖L∞(I) := ess supI |f |.)

Hence, we now define Mk
p := Mk ∩ Lp, and also remark that the functions from the cone Mk are

sometimes referred to as “k-convex”.
Let f ∈ Mk

p and U be a subset of Lp. The best (non-constrained) approximation of f from U is
defined by

E(f, U)p := inf
u∈U

‖f − u‖p .

In contrast, in k-monotone approximation , one is interested in the value

E(k)(f, U)p := inf
u∈U∩Mk

‖f − u‖p.
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That is, approximants are assumed to preserve the k-monotone shape of f . Clearly, the shape preserving
approximation is more restrictive, hence, E(k)(f, U)p ≥ E(f, U)p for all f ∈Mk and U ⊂ Lp. Is it much
worse? Lorentz & Zeller [10] proved that, for U = Πn, the space of all algebraic polynomials of order
n, any k ∈ N, and any constant c0 ∈ N, there exists a function f ∈Mk

p such that

E(k)(f, Πc0n)p

E(f, Πn)p
→∞ as n→∞ .(1.1)

(The same estimate is true for a sequence of any reasonable linear subspaces Un instead of Πn.) On
the other hand, monotone and convex polynomial approximations allow Jackson type estimates, for
example,

E(k)(f, Πn)∞ ≤ ckωk+1(f, 1
n )∞ , k = 1, 2,

but they have essential restrictions (as well as gaps) in comparison with the non-constrained estimates.
Splines with free knots, s ∈ SN,r, are piecewise polynomials of order r (degree r − 1) where only

the number of pieces, N at most, not their position, is being prescribed. (Note that we do not make
any assumptions about the smoothness of functions in SN,r.) They are a classical tool of non-linear
approximation (along with the rational functions). As that, they achieve a better rate of approximation
compared with the linear methods. The simplest example (see e.g. [4, p. 365]) is that

E(f, SN,1)∞ ≤
K

2N
⇔ Var[0,1](f) ≤ K,

whereas for L∞-approximation by piecewise constants with N equidistant knots the rate O(N−1) is
attained only for W1

∞, roughly the class of continuously differentiable functions, which is much narrower
than the class of functions of bounded variation.

It was R. DeVore who had much advocated the studies of the non-linear methods in k-monotone
approximation. Set

EN,r(f)p := E(f, SN,r)p , E
(k)
N,r(f)p := E(k)(f, SN,r)p .

Notice that since Mk(0, 1) ⊂ Ck−2(0, 1) (see Lemma 3.1), the set SN,r ∩Mk contains functions other
than k-monotone polynomials of order r only if r ≥ k. In 1995, Leviatan & Shadrin [8] and Petrov [13],
independently, proved that for k = 1, 2 r ≥ k, and 0 < p ≤ ∞, there exists a constant c0 = O(r) such
that, for any f ∈M

k
p, k = 1, 2,

E
(k)
c0N,r(f)p ≤ EN,r(f)p .(1.2)

This result showed that the order of monotone and convex approximation by free knot splines is es-
sentially the same as that in the non-constrained case, which, in view of (1.1), is a striking contrast to
the linear approximation methods. Naturally, one would expect that the situation is similar for k ≥ 3.
However, the technique used in [8], [13] was based on some explicit constructions and some properties
of monotone and convex functions which have no straightforward analogues for general k. (Say, for
k = 1, 2 the maximum of two k-monotone functions is a k-monotone function, while this is no longer
true for larger k.) Petrov [14] has managed to adopt this technique for k = 3 and p =∞ obtaining an
analogue of (1.2), but it became clear that, for general k ∈ N, new ideas are required.

Here, we prove the following general result.

Theorem 1.1 Let k, r, N ∈ N, r ≥ k, and 0 < p ≤ ∞. Then, there exist constants c0 ≤ C(k)max (1, r−
k) and c1 = c1(r, k, p) such that, for all f ∈Mk

p,

E
(k)
c0N,r(f)p ≤ c1EN,r(f)p .(1.3)

Using [8, Lemma 3], the following result on k-monotone approximation by smooth splines is an
immediate corollary of Theorem 1.1.
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Corollary 1.2 Let k, r, N ∈ N, r ≥ k, and 0 < p ≤ ∞, and denote Ẽ
(k)
N,r(f)p := E(k)(f, SN,r∩C(r−2))p.

Then, there exist constants c0 ≤ C(k)max (1, r − k) and c1 = c1(r, k, p) such that, for all f ∈Mk
p,

Ẽ
(k)
c0N,r(f)p ≤ c1EN,r(f)p .

For k = 1 and 2, Theorem 1.1 is an immediate consequence of (1.2). Because functions in M1(a, b)
(unlike those in Mk(a, b) with k ≥ 2) do not have to be continuous everywhere on (a, b), the case
k = 1 is somewhat different from k ≥ 2 (though constructions are much simpler and some auxiliary
statements become trivial if one lets k be equal to 1). Thus, in order to make this paper more readable,
we concentrate below only on the more difficult case k ≥ 2. At the same time, we mention that some
of the statements are valid or can be modified to become valid for k = 1 as well.

Now, all direct results for the best (unconstrained) free knot spline approximation are being readily
extended for the k-monotone case.

Corollary 1.3 Let k, r, N ∈ N, r ≥ k, and let f ∈ Mk
∞ be such that f (r−1) is of bounded variation on

[0, 1]. Then,

E
(k)
N,r(f)∞ ≤ c(r, k)N−r Var[0,1](f

(r−1)) .

This corollary is an immediate consequence of Theorem 1.1 and [4, Theorem 12.4.5]. It is related to
an earlier result of Hu [5] which was actually the first result in k-monotone approximation by free knot
splines: For f ∈Wr

1 ∩Mk
∞, the order of k-monotone approximation by SN,r in L∞ is O(N−r).

The following corollary follows from Petrushev’s estimate of (unconstrained) free knot spline ap-
proximation (see [16, Theorem 7.3] and [4, Theorem 12.8.2]).

Corollary 1.4 Let k, r, N ∈ N, r ≥ k, 0 < p <∞, and 0 < α < r. Then, if f ∈Mk
p ∩Bα,

E
(k)
N,r(f)p ≤ c(α, p, r)N−α|f |Bα ,

where Bα := Bα
γ (Lγ), 1/γ = α + 1/p, denotes the Besov space with the semi-norm |f |Bα defined by

|f |Bα =

(∫ ∞

0

t−αγ−1ωr(f, t)γ
γ dt

)1/γ

.

Let us comment on the constants c0, c1 involved in (1.3), namely on the question, whether it is
possible to have any (or both) of them equal to 1.

Leviatan & Shadrin [8] showed that, in order to retain the same degree of approximation for the
k-monotone free knot splines approximation as for the best one, the increase of the knot number is
unavoidable if r ≥ k + 2. Precisely, for any r ≥ k + 2, N ∈ N, 0 < p ≤ ∞, any c > 0, and c∗ = 2⌊ r−k

2 ⌋,
there exists a function f ∈Mk

∞ such that

E
(k)
c∗N,r(f)p > cEN,r(f)p, r ≥ k + 2.

Thus, the question about whether or not it is necessary to increase the number of knots remains open
only for r = k and k + 1.

On the other hand, for r = k and p = ∞, a part of a theorem by Johnson (see Braess [2, Theorem
VIII.3.4, p. 238]) is that for any k, the best free knot spline approximant of order k to a k-monotone
function in the L∞-norm is k-monotone itself, i.e., in this case, c0 = c1 = 1, r = k, and, for any
f ∈Mk

∞,

E
(k)
N,k(f)∞ = EN,k(f)∞ .(1.4)

It would be interesting to find the exact order of c0(r, k) as a function of r and k. Estimates (1.2) and
(1.4) also suggest another question; namely, whether the value c1 = 1 in (1.3) can be attained with
some c′0 = c′0(r, k).

Notations. We let I = (a, b) if not stated otherwise, and set Lp := Lp(I), ‖ · ‖p := ‖ · ‖Lp(I),
SN,k := SN,k(I), etc., i.e., the interval I is omitted if there is no risk of confusion.
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Further, f (i)(x+) and f (i)(x−) denote the right and the left i-th derivatives of f at x, respectively.
Notations cp,r,k and c(p, r, k) stand for a constant which depends only on the parameters given (p,

r, and k in this case), where, for 0 < p ≤ ∞, dependence on p means dependence on min(1, p).
The “prime”-notation k′ is going to be reserved for ⌊k/2⌋+ 1 throughout this paper:

k′ := ⌊k/2⌋+ 1 .

For f ∈ Lp(a, b) and a set U ⊂ Lp(a, b), we define

PU(f)p := PU(f)Lp(a,b) := {u ∈ U : ‖f − u‖p = E(f, U)p}.

In other words, PU(f)p is the set of all best Lp-approximants to f from U on (a, b).

2 Outline of the proof

The general direction of the proof is the same as it was for k = 1, 2: given a k-monotone function f , one
takes σ ∈ PSN,r

(f)p, a best free knot spline approximant to f (which is not necessarily k-monotone) and
puts some corrections in it trying to convert it into a k-monotone spline preserving the approximation
order. For k = 1 and 2, these corrections were done by explicit constructions which, unfortunately,
have no straightforward generalizations for k ≥ 3, and so our basic idea came from the following general
considerations.

There is another notion of k-monotone approximation in which a function f which is not in Mk

is being approximated by elements from the entire Mk (Mk is a convex cone). There is an extended
literature on this subject where one studies existence and uniqueness of this type best k-monotone
approximant, its characterization and structural properties, see e.g. [18] and the references therein.
When can one have a need to approximate an arbitrary function by a k-monotone one? The only
situation we can think of is the necessity to correct the data which must be k-monotone by some a
priori assumptions. This is exactly the case of shape preserving approximation, and this is how we
correct σ.

Given f ∈ Mk, we take σ ∈ PSN,r
(f)p, a best free knot spline approximant to f , and correct σ by

f∗ ∈ PMk(σ)p, a best approximant to σ from Mk.
Here are two observations concerning this idea.
1) Approximation property of f∗. The function f belongs to Mk, but f∗ is a best approximant to σ

from M
k, hence

‖σ − f∗‖p ≤ ‖σ − f‖p .

Therefore,
cp ‖f − f∗‖p ≤ ‖f − σ‖p + ‖σ − f∗‖p ≤ 2‖f − σ‖p

i.e., f∗ approximates f as well as σ.
2) Spline structure of f∗. A result from the theory of approximation by elements of Mk reads that

(in the “piecewise sense”) either f∗ is identical with σ (which is a spline of order r) or it is a spline
of order k (because the functions g(x) =

∑
α cα(x − xα)k−1

+ , cα > 0, are the boundary points of the
cone Mk). Thus, f∗ is a spline of order r. If f∗ had O(N) knots, then we could stop at this point. The
problem is that it may have too many knots (infinitely many, in fact).

The paper is organized as follows.
1) First of all, to ease the exposition, we switch to a local version of the idea described above, and

correct separately each polynomial part of σ by its best approximation f∗ from Mk[f ], a subclass of
k-monotone functions defined locally (see §3 for precise definition of Mk[f ]).

2) In §3, we cite some known results concerning existence and structure of the elements f∗ ∈
PMk[f ](σ)p. As mentioned earlier, f∗ is a spline of order r, but it may have too many knots to be
in ScN,r, in which case we modify it into an appropriate spline s.

3) Properties of s are formulated as Proposition 4.2 in §4 where we use them to prove Theorem 1.1.
4) The proof of Proposition 4.2 takes the rest of the paper. In §§5–7, we blend f∗ with the polynomial

parts of σ using some results from the theory of moments, and consider some general aspects of this
procedure. In §8, we prepare to show that the blending spline s approximates f as well as f∗, and the
final §9 joins all the parts of the proof together.
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Remark 2.1 The number of knots of f∗ ∈ PMk[f ](σ)p is approximately the same as the number of
distinct zeros of σ − f∗ (see Lemma 3.8 below). In our proofs, we assume that this number may be
arbitrarily large. However, we conjecture that this is not the case, i.e., a best k-monotone approximant
to a piecewise polynomial σ (and perhaps to any piecewise k-monotone function) with M pieces has
only O(M) points of intersection with σ. If it is so, then there is no need in considerations given in
§§5–9. This conjecture is true for k = 1, 2 as one can easily check, and our method gives a simpler proof
for these cases than in [8] and [13]. For k ≥ 3, the problem is open.

Remark 2.2 Actually, the correction of σ made explicitly for k = 1, 2 in [8] and [13], is exactly the
best k-monotone approximation of σ from Mk[f ] under additional restriction that this is also one-sided
approximation. This restriction provides the constant c1 = 1 on the right-hand side of (1.2). For k ≥ 3
we cannot pose such a restriction, hence c1 > 1 in (1.3).

3 Classes Mk[f ] and their Properties

The following lemma lists some basic properties of k-monotone functions for k ≥ 2.

Lemma 3.1 The following statements are equivalent for k ≥ 2:
(0) f ∈Mk(0, 1).
(1) f (k−2) exists and is convex on (0, 1).
(2) f (k−2) is absolutely continuous on any closed subinterval of (0, 1), and has left and right deriva-

tives, f (k−1)(·−) and f (k−1)(·+), which are, respectively, left- and right-continuous and nondecreasing
on (0, 1).

(3) For each closed subinterval [a, b] ⊂ (0, 1), there is a polynomial p ∈ Πk and a bounded nonde-
creasing function µ such that

f(x) = p(x) +
1

k!

∫ b

a

k(x− t)k−1
+ dµ(t), x ∈ [a, b].

Proof. See Bullen [3, Theorem 7, Corollary 8]. See also [12], [17] for various properties of k-monotone
functions (called there “k-convex”) and their applications.

Lemma 3.1(2) allows us to introduce the following classes of function.
By M

k
a+ := M

k
a+(a, b) and M

k
b− := M

k
b−(a, b) we denote the subclasses of those functions f ∈

Mk(a, b) for which the values {f (i)(a+)}k−1
i=0 and {f (i)(b−)}k−1

i=0 , respectively, are finite, and set Mk
∗ :=

Mk
∗(a, b) := Mk

a+ ∩Mk
b−.

For f ∈Mk
a+ and g ∈Mk

b−, we define

M
k
a+[f ] := {h ∈M

k
∣∣∣ h(i)(a+) = f (i)(a+), i = 0, . . . , k − 2; h(k−1)(a+) ≥ f (k−1)(a+)} ,

Mk
b−[g] := {h ∈Mk

∣∣∣ h(i)(b−) = g(i)(b−), i = 0, . . . , k − 2; h(k−1)(b−) ≤ g(k−1)(b−)} .

Finally, let
M

k[f, g] = M
k
a+[f ] ∩M

k
b−[g],

and, for f ∈Mk
∗,

M
k[f ] = M

k[f, f ] .

Note that Mk[f ] is always nonempty (it contains f), while Mk[f, g] can be the empty set. In §7, we
give a sufficient condition on f and g which guarantees that there is a function h from Mk[f, g].

Lemma 3.2 Let f, g ∈ M
k(0, 1), and let [a, b] ⊂ (0, 1). Then f, g ∈ M

k
∗(a, b), and for any h ∈

Mk[f, g](a, b) (if it exists) the function

h̃(x) :=






f(x), x ∈ (0, a],
h(x), x ∈ (a, b),
g(x), x ∈ [b, 1),
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belongs to Mk(0, 1).

Proof. The proof is an immediate consequence of Lemma 3.1(2).

We will use Lemma 3.2 without further reference to build k-monotone functions from k-monotone
pieces. For example, if f ∈ Mk

∗(0, 1), ∪Iℓ = (0, 1) with Iℓ ∩ Iℓ′ = ∅ if ℓ 6= ℓ′, and hℓ ∈ Mk[f ](Iℓ), then
the function h, defined as h := hℓ on Iℓ, belongs to Mk[f ](0, 1).

Now we consider some properties of approximation from Mk[f ].

Lemma 3.3 Let k ≥ 2, 0 < p ≤ ∞ and f ∈ Mk
∗(a, b). Then, for any g ∈ Lp, an element of its best

Lp-approximation from Mk[f ] exists, i.e., the set PMk[f ](g)p is not empty.

Proof. The proof is based on the arguments similar to those used by Zwick [19, Theorem 4] for the
case p =∞. We give it here for completeness. Set

αi := f (i)(a+) and βi := f (i)(b−) , i = 0, . . . , k − 1 ,

and consider a sequence (fj) ⊂Mk[f ] such that, for j ∈ N,

‖fj − g‖pp ≤ E(g, Mk[f ])p
p + 1/j, if 0 < p < 1 ,

and
‖fj − g‖p ≤ E(g, Mk[f ])p + 1/j, if 1 ≤ p ≤ ∞ .

Since f
(k−2)
j (x) = αk−2 +

∫ x

a
f

(k−1)
j (t) dt and ‖f

(k−1)
j ‖∞ ≤ max{|αk−1|, |βk−1|}, we conclude that

(f
(k−2)
j ) is uniformly bounded and equicontinuous on [a, b]. Therefore, there exists a subsequence

(f
(k−2)
js

) which converges to a function h∗ uniformly on [a, b], and this h∗ is necessarily convex and
satisfies h′

∗(a+) ≥ αk−1 and h′
∗(b−) ≤ βk−1. Now, the function f∗ such that f∗ := h∗, if k = 2, and

f∗(x) :=

k−3∑

i=0

αi

i!
(x− a)i +

1

(k − 3)!

∫ b

a

(x− t)k−3
+ h∗(t) dt , k ≥ 3,

is in Mk[f ] and satisfies ‖g − f∗‖p = E(g, Mk[f ])p, i.e., f∗ ∈ PMk[f ](g)p.

Lemma 3.4 (Zwick [20]) Let k ∈ N and f ∈Mk
∗(a, b). Then, there exist two splines zν = zν(f, [a, b]),

ν = 1, 2, such that
z1, z2 ∈M

k[f ] ∩ Sk′,k, k′ = ⌊k/2⌋+ 1,

and
z1 ≤ f ≤ z2 on [a, b] .

If f does not belong to Sk′,k, then the inequalities are strict, respectively, on some nonempty intervals
I1, I2 in [a, b].

Remark 3.5 In [20], more precise conclusions regarding the number of polynomial pieces k′ of the
splines zν and their boundary values are given. The proof is based on the Markov–Krein Theorem from
the theory of moments.

Remark 3.6 We emphasize that k′ denotes ⌊k/2⌋+ 1 throughout this paper.

A simple, yet important, consequence of Lemma 3.4 is the following result on the structural prop-
erties of best Lp-approximants from Mk[f ].

Lemma 3.7 For k ≥ 2, 0 < p < ∞, I = (a, b), let g ∈ C, f ∈ Mk
∗, and f∗ ∈ PMk[f ](g)p. If the

difference g − f∗ has no zeros inside an interval (c, d) ⊂ (a, b), then f∗ ∈ Sk′,k[c, d].
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Proof. The idea of the proof is similar to what was considered by Zwick [20] in the case p = 1. Suppose
that 0 < p <∞. Without loss of generality we can assume that f∗(x) > g(x), x ∈ (c, d). Now, suppose
that f∗ 6∈ Sk′,k[c + ǫ, d − ǫ] for some ǫ > 0. Consider a function f̃ obtained from f∗ by replacing it on

the interval [c + ǫ, d− ǫ] by z1(f∗, [c + ǫ, d − ǫ]) (see Lemma 3.4). Then, f̃ ∈ Mk[f ] and f∗ − f̃ ≥ 0 on
[a, b] with this inequality being strict on a nonempty interval contained in (c + ǫ, d− ǫ).

Since f∗ − g is a continuous positive function on a closed interval [c + ǫ, d − ǫ], there exists δ > 0

such that f∗(x) ≥ g(x) + δ, x ∈ [c + ǫ, d − ǫ]. Therefore, there exists 0 < µ < 1 such that f̂(x) :=

µf∗(x) + (1−µ)f̃(x) satisfies the inequalities g(x) < f̂ ≤ f∗ on [c + ǫ, d− ǫ], and ‖f∗− f̂‖Lp[c+ǫ,d−ǫ] 6= 0.

This implies that ‖f̂ − g‖p < ‖f∗ − g‖p which contradicts our assumption that f∗ ∈ PMk[f ](g)p.
Hence, f∗ ∈ Sk′,k[c + ǫ, d− ǫ] for all ǫ > 0, which implies that f∗ ∈ Sk′,k[c, d].

Lemma 3.8 For k ≥ 2, 0 < p <∞, I = (a, b), let g ∈ C, f ∈Mk
∗, and f∗ ∈ PMk[f ](g)p. Further, let Z

be the set of zeros of g − f∗, i.e.,

Z := {z ∈ I
∣∣∣ g(z) = f∗(z)},

and let Z∗ be the set of all limit points of Z. Then, the following is true.
(1) f∗ = g on Z∗.
(2) If, for a closed interval [c, d] ⊂ I \ Z∗, the difference g− f∗ has (necessarily finitely many) m− 1

distinct zeros in (c, d), then f∗ ∈ Smk′,k[c, d].

Proof. This lemma is a variation of Zwick [20, Theorem 2]. In a similar form (though with Z∗ defined
differently), it appeared in Marano [11]. Part 1 immediately follows from continuity of g and f∗. Part
2 is a consequence of Lemma 3.7.

For p = ∞, Lemma 3.7 is not valid, because local changes influence the integral’s value, but not
necessarily the sup-norm, hence there may be best k-monotone L∞-approximants with the structure
different from that specified in Lemma 3.8. However, for our purposes, it is enough that there is at
least one element from PMk[f ](g)∞ that has the spline structure. The following statement is valid.

Lemma 3.9 For k ≥ 2, p =∞, I = (a, b), let g ∈ C and f ∈Mk
∗. Then, there exists f∗ ∈ PMk[f ](g)∞

such that all the conclusions of Lemma 3.8 hold true.

Proof. The idea of the proof is to take as f∗ an element which minimizes, say, the L2-norm of g − f∗
over f∗ ∈ PMk[f ](g)∞. We omit details.

Now the spline structure of the best k-monotone approximant to any spline readily follows.

Corollary 3.10 For r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), let g ∈ SN,r ∩ C and f ∈Mk
∗. Then, there is a

f∗ ∈ PMk[f ](g)p which is a piecewise polynomial of order r.

4 Proof of Theorem 1.1

The following three propositions are the main components of the proof.

Proposition 4.1 For k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), let f ∈Mk
∗ and (−p) ∈ (Πr\Πk)∩Mk.

Then there exists a spline s such that

s ∈ S(k+1)k′,k ∩M
k[f ]

and
‖p− s‖p = E(p, Mk[f ])p.
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Proof. Let us show that f∗, a best approximant to p from Mk[f ], satisfies all the conclusions of the
proposition (hence, s := f∗). Since, by the definition,

f∗ ∈M
k[f ], ‖p− f∗‖p = E(p, Mk[f ])p,

only the spline structure needs to be proved. Since (−p) is a k-monotone polynomial of degree > k− 1,
it is a strictly k-monotone function in the sense that (−p)(k−2) is strictly convex. Hence the function
(f∗ − p)(k−2) is strictly convex too, thus it has at most two zeros, and, therefore, f∗ − p has not more
than k distinct zeros on I. By Lemma 3.8 (or Lemma 3.9 in the case p = ∞), f∗ ∈ S(k+1)k′,k, and the
proof is complete.

Proposition 4.2 Let k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), f ∈ Mk
∗, and p ∈ Πr ∩Mk. Then

there exist a constant C(k) independent of I and a spline s ∈ SC(k),r ∩Mk[f ] such that

‖p− s‖p ≤ c2E(p, Mk[f ])p, c2 = c2(p, r, k) .

Now, f∗ from PMk[f ](p)p is still a piecewise polynomial of order r, but we cannot take s = f∗ because
two k-monotone functions (f∗ and p in our case) may have any number of intersections, hence f∗ may
have any number of knots. We obtain s as a modification of f∗, which will be done in the following
sections with the proof of Proposition 4.2 given in §9.

Proposition 4.3 Let k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), f ∈Mk
∗, and let p be such that either

p ∈ Πr ∩Mk or (−p) ∈ (Πr \Πk) ∩Mk. Then there exists a spline s such that

s ∈ SC(k),r ∩M
k[f ]

and
‖f − s‖p ≤ c1 ‖f − p‖p , c1 = c1(p, r, k) .(4.1)

Proof. Let s be the spline from either of Propositions 4.1 and 4.2, so that s ∈ SC(k),r ∩Mk[f ] and

‖p− s‖p ≤ c2E(p, Mk[f ])p.(4.2)

We only need to prove (4.1). Using the triangle inequality, and the estimate (4.2) we obtain

cp‖f − s‖p ≤ ‖f − p‖p + ‖p− s‖p ≤ ‖f − p‖p + c2 E(p, Mk[f ])p.

Since f belongs to Mk[f ] in a trivial manner, it follows that

E(p, Mk[f ])p := inf
u∈Mk[f ]

‖p− u‖p ≤ ‖p− f‖p.

Thus
cp‖f − s‖p ≤ (c2 + 1)‖f − p‖p .

Finally, the following lemma shows that, in the proof of Theorem 1.1, instead of an arbitrary
f ∈Mk

p(0, 1), we may consider f ∈Mk
∗(0, 1), i.e., we may assume that the function f and its derivatives

are bounded at the endpoints.

Lemma 4.4 Let k ∈ N, 0 < p ≤ ∞, and f ∈Mk
p(0, 1). Then, for any ǫ > 0, there exists fǫ ∈Mk

∗(0, 1)
such that

‖f − fǫ‖p < ǫ.
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Proof. For f ∈ Mk
p(0, 1) and x0 ∈ (0, 1), let Tx0

be the Taylor polynomial of degree k − 1 at x0+ (or
at x0−), i.e.,

Tx0
(x) :=

k−1∑

i=0

1
i!f

(i)(x0+)(x− x0)
i.

Given ǫ, for δ to be prescribed, let

fǫ :=





Tδ, on [0, δ],
f, on [δ, 1− δ],
T1−δ, on [1− δ, 1].

Then obviously fǫ ∈M
k
∗(0, 1) and

‖f − fǫ‖p ≤ cp‖f − Tδ‖Lp[0,δ] + cp‖f − T1−δ‖Lp[1−δ,1].(4.3)

¿From [6, Theorem 1], it follows that, for I = (a, b), f ∈Mk
p(I), and x∗ := a+b

2 , we have

‖f − Tx∗
‖Lp(I) ≤ ck,p ωk(f)Lp(I),

where ωk(f)Lp(I) is the k-th modulus of smoothness of f ∈ Lp(I) (see §8 for the definition), which, as
is well known, has the property that ωk(f)Lp(J) → 0 if |J | → 0, J ⊂ I. Applying this result to the
interval (0, 2δ) ⊂ (0, 1) we obtain

‖f − Tδ‖Lp(0,δ) ≤ ‖f − Tδ‖Lp(0,2δ) ≤ ck,p ωk(f)Lp(0,2δ) → 0 as δ → 0 .

Similarly,
‖f − T1−δ‖Lp(1−δ,1) ≤ ck,p ωk(f)Lp(1−2δ,1) → 0 as δ → 0 .

Proof of Theorem 1.1. By Lemma 4.4, we can assume that f ∈ Mk
∗(0, 1). Let σ ∈ SN,r be a spline

of best Lp-approximation to f on (0, 1). We need to prove that there exists a spline s such that

s ∈ Sc0N,r ∩M
k(0, 1) and ‖f − s‖p ≤ c1 ‖f − σ‖p .

Denote by {Jm} the set of largest subintervals of [0, 1] on which σ is a polynomial of order r, and by
{Iℓ} the set of largest subintervals of Jm’s on which σ(k) has a constant sign. Since σ ∈ SN,r[0, 1], there
are at most N intervals Jm, and, on each Jm, the spline σ(k) is a polynomial of degree r− 1− k, hence
there are at most max(1, r − k) subintervals Iℓ in each interval Jm. Thus, {Iℓ} is a partition of [0, 1]
such that

[0, 1] = ∪Iℓ, #{Iℓ} ≤ N max(1, r − k) ,

and, on each Iℓ,
either σ ∈ Πr ∩M

k, or (−σ) ∈ (Πr \Πk) ∩M
k .

By Proposition 4.3, on each interval Iℓ, there exists a spline sℓ such that

sℓ ∈ SC(k),r ∩M
k[f ](Iℓ)

and
‖f − sℓ‖Lp(Iℓ) ≤ c1 ‖f − σ‖Lp(Iℓ) .(4.4)

Now, define the spline s so that
s := sℓ on Iℓ .

Relations sℓ ∈ SC(k),r(Iℓ) and #{Iℓ} ≤ N max(1, r − k) imply that

s ∈ Sc0N,r(0, 1), c0 = C(k)max(1, r − k),
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while inclusions sℓ ∈Mk[f ](Iℓ) with ∪Iℓ = [0, 1] yield

s ∈M
k[f ](0, 1) ⊂M

k(0, 1) .

Thus,
s ∈ Sc0N,r ∩M

k(0, 1).

Finally, to estimate the degree of approximation of f by s for 0 < p <∞ (modifications for p =∞ are
obvious), from (4.4) we obtain

‖f − s‖p
Lp(0,1) ≤

∑

ℓ

‖f − sℓ‖
p
Lp(Iℓ)

≤ cp
1

∑

ℓ

‖f − σ‖p
Lp(Iℓ)

= cp
1‖f − σ‖p

Lp(0,1)

i.e.,

E
(k)
c0N,r(f)p ≤ c1EN,r(f)p

5 k-monotone interpolation

If p − f∗ has many intersections (see Proposition 4.2), then the spline f∗ ∈ PMk[f ](p) has many knots.
In this case, we will modify f∗ into a spline s with a smaller number of knots by blending f∗ with p.
This procedure is related to the following general problem.

Problem 5.1 Given two k-monotone functions f, g on J , and an interval (a, b) ⊂ J , determine whether
or not there exists a k-monotone function h in Mk[f, g](a, b). Note that existence of such h implies that

there is a function h̃ such that

h̃ ∈M
k(J), and h̃(x) =

{
f(x), x ≤ a,
g(x), x ≥ b.

We will refer to this problem as blending of f, g ∈ M
k(J) on [a, b]. Actually, all we need is a k-

monotone interpolation of data f (i)(a+), g(i)(b−), i = 0, . . . , k − 1, so that we consider this topic more
generally.

Let
x := (xi)

n+k
i=1 := {a = x1 ≤ . . . ≤ xn+k = b}

be a sequence of interpolation knots such that xi < xi+k, and let

y := y(x) := (yi)
n+k
i=1 .

We use the usual convention that, if some of the knots in x are repeated then interpolation of corre-
sponding derivatives takes place. For each j = 1, . . . , n + k, denote by lj the number of points xi such
that xi = xj with i ≤ j, i.e.,

lj := lj(x) := #
{
i
∣∣ 1 ≤ i ≤ j, xi = xj

}
.

Note that, because of the restriction xi 6= xi+k, the inequality lj ≤ k is valid for all j.

Definition 5.2 A data sequence (x, y) := (xi, yi)
n+k
i=1 is called k-monotone if there exists a k-monotone

function f ∈Mk
∗(a, b) such that

f (lj−1)(xj) = yj, j = 1, . . . , n + k .(5.1)
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Note that if all the knots in x are distinct then the sequence (x, y) is k-monotone if f(xi) = yi,
j = 1, . . . , n + k, for some f ∈ Mk

∗(a, b). Also, if lj = k for some j, then f (lj−1)(xj) = f (k−1)(xj) is
understood as f (k−1)(xj+) or f (k−1)(xj−).

Since
f ∈M

k ⇔ [ti, . . . , ti+k]f ≥ 0 ∀(ti),

where not all ti’s are the same, one must necessarily have for a k-monotone sequence (x, y)

[xi, . . . , xi+k]y ≥ 0.

If k = 1 or 2 (i.e., in the case of monotone or convex interpolation), this condition is sufficient as well.
However, it is not sufficient if k ≥ 3, as the following example shows.

Example 5.3 The data set
x y δ1 δ2 δ3

−5 −77
ց 25

ց−3 −27
ր

ց
−3

ց13
ր

ց
0

−1 −1
ր

ց
−3

ր

ց1
ր

ց
1

1 1 ր

ց
3 ր

ց13 ր

ց
0

3 27
ր

ց
3

ր

25
ր

5 77
ր

has nonnegative divided differences of order 3, but, at the same time,

[−5,−3,−1, 0]y + [0, 1, 3, 5]y = − 1
5 [−5,−3,−1]y − 1

15 [−3,−1]y − 1
15 [−1]y + 1

15 [0]y

+ 1
5 [1, 3, 5]y − 1

15 [1, 3]y + 1
15 [1]y − 1

15 [0]y

= 1
5 · 6−

1
15 · 26 + 1

15 · 2 = − 6
15 < 0.

Hence, there is no 3-monotone function passing through (x, y).

Denote by
v := v(x, y) := (vi)

n
1 , vi := [xi, . . . , xi+k]y ,

the sequence of divided differences of y(x), and by

M := M(x) := ( 1
k!Mi), Mi(t) := k [xi, . . . , xi+k](· − t)k−1

+ ,

the sequence of the B-splines of order k with the knot sequence x. Recall that suppMi = [xi, xi+k],
Mi ≥ 0,

∫
Mi = 1, and that, for any f ∈ Ck(a, b) (in fact, condition f ∈Wk

1(a, b) is sufficient),

[xi, . . . , xi+k]f =
1

k!

∫ b

a

Mi(t)f
(k)(t) dt .

Notice that if a k-monotone function f belongs to Ck, then f (k) ≥ 0. Thus, to check whether the data
sequence (xi, yi) is k-monotone , one needs to form the sequence of divided differences (vi) and check
whether there is a non-negative function λ such that

vi =
1

k!

∫
Mi(t)λ(t)dt.

The last problem is the so-called Markov moment problem which we discuss in the next section.
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6 Markov moment problem and k-monotone interpolation

Let U := (ui)
n
i=1 be a sequence of continuous linearly independent real-valued functions on I = (a, b),

and let v := (vi)
n
i=1 be a sequence of real numbers.

Definition 6.1 A sequence v ∈ Rn is called a moment sequence w.r.t. U if, for some bounded non-
decreasing function µ, it admits the representation

vi =

∫ b

a

ui(t)dµ(t), 1 ≤ i ≤ n .

Lemma 6.2 A data sequence (x, y) is k-monotone if and only if the sequence of divided differences
v(x, y) is a moment sequence with respect to M(x), the sequence of B-splines.

Proof. By Lemma 3.1(3), f ∈Mk
∗(a, b) can be represented as

f(x) = p(x) +
1

k!

∫ b

a

k(x− t)k−1
+ dµ(t)(6.1)

where p ∈ Πk and µ is a bounded non-decreasing function. If f
∣∣
x

= y, then

vi := [xi, . . . , xi+k]y = [xi, . . . , xi+k]f =
1

k!

∫ b

a

Mi(t)dµ(t),

i.e., v is a moment sequence w.r.t. M.
Conversely, if for the sequences v(x, y) and M(x) there exists a bounded non-decreasing function

µ such that

vi =
1

k!

∫ b

a

Mi(t) dµ(t) , i = 1, . . . , n ,

then, for any p ∈ Πk, the function f defined by (6.1) is in Mk
∗ and satisfies

[xi, . . . , xi+k]f = vi := [xi, . . . , xi+k]y , i = 1, . . . , n .(6.2)

Finally, in (6.1), we can choose p ∈ Πk so that the equality in (5.1) holds for j = 1, . . . , k, and that
together with (6.2) implies successively that it is also true for j = k + 1, . . . , n + k, hence the sequence
(xi, yi) is k-monotone.

Now, we need a result from the theory of moments which gives a characterization of the moment
sequences.

Definition 6.3 A sequence v ∈ Rn of real numbers is called positive w.r.t. U = (ui)
n
i=1 (recall that U

is a sequence of continuous linearly independent real valued functions on [a, b]) if

n∑

i=1

aiui(t) ≥ 0 , a ≤ t ≤ b , ⇒
n∑

i=1

aivi ≥ 0 .

Theorem 6.4 (Krein & Nudelman [7, Theorem 3.1.1, p. 58]) Let U := (ui)
n
i=1 be a sequence of

continuous linearly independent real-valued functions on I = [a, b] with the property that there exists a
strictly positive polynomial p ∈ spanU. A sequence v ∈ Rn is a moment sequence w.r.t. U if and only
if v is positive w.r.t. U.

Since spanM(x) contains constants, we may combine this theorem with Lemma 6.2 to obtain the
following criterion for k-monotonicity of data.

Corollary 6.5 A data sequence (x, y) is k-monotone if and only if the sequence of divided differences
v(x, y) is positive w.r.t. M(x), i.e., if and only if

n∑

i=1

aiMi(t) ≥ 0 ⇒
n∑

i=1

aivi ≥ 0 , vi = [xi, . . . , xi+k]y .
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7 Blending of k-monotone functions

In this section, we will give a partial solution to Problem 5.1. Namely, in Proposition 7.3, we prove
that, provided f and g have sufficiently many points of intersection, a function h ∈Mk[f, g] exists.

We need two auxiliary statements.
The following lemma is a particular case of Lemma 3.2 in Beatson [1] concerning the spline blending.

Actually, we will use a more detailed statement which is formulated within the proof of Proposition 7.3.

Lemma 7.1 (Beatson [1]) Let k ∈ N, n = 2k2 and let p ∈ Πk be a nonnegative polynomial on [a, b].
Then, for any knot sequence

t := {a = t0 ≤ t1 ≤ . . . ≤ tn < tn+1 = b}

there exists a nonnegative spline s2 ∈ St,k(R) (i.e., s2 is a spline of order r on the knot sequence t) such
that

s2 ≡ 0 on (−∞, a], 0 ≤ s2 ≤ p on [a, b], s2 = p on [b,∞).

The next statement is a well-known property of divided differences.

Lemma 7.2 Let (xj)
n+k
j=1 be any non-decreasing sequence such that xj < xj+k. Then, for any subse-

quence (xi0 , . . . , xik
) of length k + 1, there exist coefficients νj such that, for any continuous f (which

is differentiable at the repeated knots),

[xi0 , . . . , xik
]f =

n∑

j=1

νj [xj , . . . , xj+k]f.

Proposition 7.3 For k ∈ N and n = 2k2, let f, g ∈Mk
∗(a, b) be such that

f(tj) = g(tj) on {a = t0 < t1 < . . . < tn < tn+1 = b}

Then there exists a function h ∈Mk
∗(a, b) such that

h(l)(a+) = f (l)(a+), h(l)(b−) = g(l)(b−), l = 0, . . . , k − 1.

Note that the condition that all points ti in the statement of Proposition 7.3 are distinct is not
essential and is only used here in order to simplify the exposition.

Proof. Let us introduce two sequences x = (xi)
n+2k
i=1 and y = (yi)

n+2k
i=1 :

xj :=






a , 1 ≤ j ≤ k,
tj−k , k + 1 ≤ j ≤ n + k,
b , n + k + 1 ≤ j ≤ n + 2k;

yj :=






f (j−1)(a+) , 1 ≤ j ≤ k,
f(xj) = g(xj) , k + 1 ≤ j ≤ n + k,

g(j−n−k−1)(b−) , n + k + 1 ≤ j ≤ n + 2k .

It is convenient to arrange this data set (x, y) as follows:

y1

q

(yj)
n+k+1
j=1 → f(a) . . . f (k−1)(a) f(xk+1) . . . f(xn+k) f(b)

↑ ↑ ↑ ↑ ↑
x1= . . . = xk = a < xk+1 ≤. . .≤ xn+k < b= xn+k+1 =. . .= xn+2k

↓ ↓ ↓ ↓ ↓
g(a) g(xk+1) . . . g(xn+k) g(b) . . . g(k−1)(b) ← (yj)

n+2k
j=k

q

y2

Set

x∗ := (x1, . . . , xk, xn+k+1, . . . , xn+2k) := (

k︷ ︸︸ ︷
a, . . . , a,

k︷ ︸︸ ︷
b, . . . , b) ,

y∗ := (y1, . . . , yk, yn+k+1, . . . , yn+2k) :=
(
f(a), . . . , f (k−1)(a), g(b), . . . , g(k−1)(b)

)
.

(7.1)
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We need to interpolate y∗ on x∗ by a k-monotone function h. Denote by

M(x∗) =: (Bi)
k
i=1, v(x∗, y∗) =: (wi)

k
i=1

the sequences of the B-splines and of divided differences, respectively, which correspond to (x∗, y∗). By
Corollary 6.5, existence of a k-monotone interpolant h to the data (7.1) will follow if we show that

k∑

i=1

aiBi(t) ≥ 0 ⇒
k∑

i=1

aiwi ≥ 0.(7.2)

We start with some preliminaries.
1) Let (vj)

n+k
j=1 and (Mj)

n+k
j=1 be the sequences of divided differences and B-splines, respectively,

constructed with respect to the entire set (xj , yj)
n+2k
j=1 . Consider two sets of the following subsequences:

x1 := (xj)
n+k+1
j=1 , y1 := (yj)

n+k+1
j=1 , v1 := (vj)

n+1
j=1 , M1 := (Mj)

n+1
j=1 ;

x2 := (xj)
n+2k
j=k , y2 := (yj)

n+2k
j=k , v2 := (vj)

n+k
j=k , M2 := (Mj)

n+k
j=k .

(7.3)

By assumption, k-monotone f interpolates y1 on x1, and k-monotone g interpolates y2 on x2, thus,
both sets of data (xν , yν), ν = 1, 2, are k-monotone. Then Corollary 6.5 implies that

vν is positive w.r.t. Mν , ν = 1, 2.(7.4)

2) Since (vj), (Mj) are divided differences of certain functions on x, while (wi), (Bi) are divided
differences of the same functions on x∗ ⊂ x, by Lemma 7.2, there exist expansions

wi =

n+k∑

j=1

cijvj , Bi(x) =

n+k∑

j=1

cijMj(x)

with the same coefficients (cij) in both of these equations. This implies that, for any (ai)
k
i=1 ⊂ R, the

expansions
k∑

i=1

aiBi(x) =
n+k∑

j=1

cjMj(x),
k∑

i=1

aiwi =
n+k∑

j=1

cjvj ,

have the same coefficients cj =
∑k

i=1 aicij .
3) The B-splines (Bi) ∈M(x∗) have the form

Bi(t) := k [

k+1−i︷ ︸︸ ︷
a, . . . , a,

i︷ ︸︸ ︷
b, . . . , b](· − t)k−1

+ =
k

(b− a)k

(
k − 1

i− 1

)
(t− a)i−1(b− t)k−i, i = 1, . . . , k,

i.e., they are Bernstein basis polynomials of order k, so that

∑
aiBi ∈ Πk, ∀(ai).

Now, let us prove (7.2). Suppose that, for some sequence (ai),

pa(x) :=

k∑

i=1

aiBi(x) ≥ 0.

Since pa is a polynomial of order k, and

pa(x) :=

k∑

i=1

aiBi(x) =

n+k∑

j=1

cjMj(x) ≥ 0, and n ≥ 2k2,
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the method of the proof of Beatson’s Smoothing Lemma [1, Lemma 3.2] shows that there is an index l,
k ≤ l ≤ n + 1, such that

s1(x) :=

l∑

j=1

cjMj(x) ≥ 0, s2(x) :=

n+k∑

j=l+1

cjMj(x) ≥ 0.(7.5)

(We will not repeat Beatson’s argument here and only mention that the sign variation diminishing
property of B-spline series (see [4, Section 5.10], for example) as well as their finite support are used.)
¿From definitions (7.3) it follows that sν ∈Mν , ν = 1, 2, which allows us to conclude that, since vν are
positive w.r.t. Mν (see (7.4)), (7.5) implies

l∑

j=1

cjvj ≥ 0,

n+k∑

j=l+1

cjvj ≥ 0.

Finally,
k∑

i=1

aiwi =

n+k∑

j=1

cjvj =

l∑

i=1

cjvj +

n+k∑

j=l+1

cjvj ≥ 0.

Hence, (7.2) is proved, and the proof of the proposition is now complete.

Now, having proved existence of a function h ∈Mk[f, g], we may use Lemma 3.4 to derive existence
of a spline z ∈Mk[f, g].

Corollary 7.4 For k ∈ N, n = 2k2, let f, g ∈Mk
∗(a, b) be such that

f(tj) = g(tj) on {a = t0 < t1 < . . . < tn < tn+1 = b} .

Then, there exists a spline z such that

z ∈ Sk′,k ∩M
k[f, g].

Note that, for k = 1 or 2, that is for monotone or convex functions f and g, a procedure of k-
monotone blending of f and g is quite evident geometrically.

8 Auxiliary Whitney type estimates

In this section, we give some Whitney type estimates for approximation of polynomials p ∈ Πr by
splines and polynomials of degree k.

As usual, ωk(f, δ, I)p denotes the kth modulus of smoothness of f with the step δ on the interval I,

ωk(f, δ, I)p := sup
0<h≤δ

∥∥∆k
h(f, ·, I)

∥∥
Lp(I)

,

where ∆k
h(f, x, I) is the kth forward difference,

∆k
h(f, x, I) :=

{ ∑k
i=0

(
k
i

)
(−1)k−if(x + ih), if [x, x + kh] ⊂ I,

0, otherwise.

It is also convenient to denote

ωk(f)p := ωk(f)Lp(I) := ωk(f, |I|, I)p.

Lemma 8.1 Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), p ∈ Πr, and let s be a spline of order k with at most
C(k) pieces in I (i.e., s ∈ SC(k),k). Then,

‖p− s‖p ≥ cp,r,kωk(p)p .
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Proof. Let J be a largest subinterval of I between two successive knots of s (and, hence, |J |/|I| ≥
1/C(k)), and let q ∈ Πk be the restriction of s to J . Then, using Whitney’s inequality,

E(p, Πk)Lp(I)
p,k
∼ ωk(p)Lp(I),(8.1)

and the Markov’s type inequality (see [4, (4.2.10) and (4.2.16)])

‖p‖Lp(I) ≤ cp,r(|I|/|J |)
r−1+1/p‖p‖Lp(J) ,

we find

‖p− s‖Lp(I) ≥ ‖p− q‖Lp(J) ≥ cp,r(|J |/|I|)
r−1+1/p‖p− q‖Lp(I)

≥ cp,r,kE(p, Πk)Lp(I) ≥ c′p,r,kωk(p)p .

Lemma 8.2 Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), p ∈ Πr, and let lk(p) be the Lagrange polynomial of
order k interpolating p at any k (not necessarily distinct) points inside I. Then,

‖p− lk(p)‖p ≤ cp,r,kωk(p)p .

Proof. Taking into account Lebesgue’s inequality

‖p− lk(p)‖p ≤

(
sup
q∈Πr

‖lk(q)‖p
‖q‖p

+ 1

)
E(p, Πk)p

and Whitney’s inequality (8.1), it suffices to prove that

‖lk(q)‖p ≤ cp,r,k ‖q‖p, ∀q ∈ Πr.

We make use of Markov’s inequality

‖q(k)‖∞ ≤ cp,r,k|I|
−k−1/p‖q‖p

and the well–known error bound for the Lagrange interpolation

‖f − lk(f)‖∞ ≤ ck|I|
k‖f (k)‖∞

to obtain
‖q− lk(q)‖p ≤ |I|

1/p‖q− lk(q)‖∞ ≤ ck|I|
1/p|I|k‖q(k)‖∞ ≤ cp,r,k‖q‖p .

Lemma 8.3 Let k ∈ N, f ∈ Mk(a, b), and let lk(f, x; x1, . . . , xk) be the Lagrange (Hermite-Taylor)
polynomial of degree ≤ k − 1 interpolating f at the points xi, 1 ≤ i ≤ k, where a =: x0 < x1 ≤ . . . ≤
xk < xk+1 := b. Then

(−1)k−i (f(x)− lk(f, x; x1, . . . , xk)) ≥ 0 , x ∈ (xi, xi+1) , i = 0, . . . , k .

In other words, f − lk changes sign at x1, . . . , xk.

Proof. First of all, if all the points xi, 1 ≤ i ≤ k, are distinct, this is Theorem 5 in Bullen [3].
In the case when some of xi (but not all) coincide, the statement of the lemma is a consequence of

the following result which follows from [4, Theorem 4.6.3]: For a given f ∈ C(k−2)(a, b), the Lagrange-
Hermite polynomial lk(X) = lk(f, x; x1, . . . , xk) is a continuous function of X = (x1, . . . , xk) at each
point X∗ = (x∗

1, . . . , x
∗
k) ∈ (a, b)k such that not all x∗

i , i = 1, . . . , k, are the same.
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In the case, when all points coincide, i.e., , x1 = . . . = xk = ξ, lemma follows from the following
statement which can be proved by induction on k: Let k ∈ N, f ∈ Mk(a, b) and ξ ∈ (a, b). If tk is a

Taylor polynomial of degree ≤ k − 1 for f at ξ, i.e., , t
(i)
k (ξ) = f (i)(ξ±) for i = 0, . . . , k − 1 (or, more

precisely, t
(i)
k (ξ) = f (i)(ξ) for i = 0, . . . , k − 2 and t

(k−1)
k (ξ) is either f (k−1)(ξ+) or f (k−1)(ξ−)), then,

f(x)− tk(x) ≥ 0, x ∈ (ξ, b) , and (−1)k (f(x) − pk(x)) ≥ 0, x ∈ (a, ξ) .

The following is an immediate corollary of Lemma 8.3.

Corollary 8.4 For k ∈ N, f ∈Mk
∗(a, b), and for a set of interpolation points {a = x0 ≤ . . . ≤ xk = b},

let
lk := lk(f ; x0 . . . , xk−1) and l̃k := l̃k(f, x1 . . . , xk)

be two Lagrange (Hermite-Taylor) interpolants to f on the given sets. Then f lies between lk and l̃k on
[a, b], i.e.,

min {lk, l̃k} ≤ f ≤ max {lk, l̃k}.

Lemma 8.5 Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), p ∈ Πr ∩Mk, 0 ≤ µ ≤ k − 1, and let g ∈ Mk be a
function such that

g(i)(a) = p(i)(a) , i = 0, . . . , µ(8.2)

and
g(i)(b) = p(i)(b) , i = 0, . . . , k − µ− 1 .(8.3)

(Here, in the cases µ = 0 and µ = k − 1, g(k−1)(b) and g(k−1)(a) are understood as g(k−1)(b−) and
g(k−1)(a+), respectively.) Then,

‖p− g‖p ≤ cp,r,kωk(p)p .

Proof. Consider the following Lagrange (Hermite–Taylor) polynomials of order k on [a, b]:

lk := lk(p;

µ+1︷ ︸︸ ︷
a, . . . , a,

k−µ−1︷ ︸︸ ︷
b, . . . , b) and l̃k := l̃k(p;

µ︷ ︸︸ ︷
a, . . . , a,

k−µ︷ ︸︸ ︷
b, . . . , b) .

By Corollary 8.4, both k-monotone functions p and g lie between lk and l̃k in [a, b], i.e.,

min{lk, l̃k} ≤ min{p, g} ≤ max{p, g} ≤ max{lk, l̃k} .

Therefore,
‖g − p‖p ≤ ‖lk − l̃k‖p ≤ cp‖lk − p‖p + cp‖p− l̃k‖p ≤ cp,r,kωk(p)p ,

where the last inequality follows from Lemma 8.2.

In our proof, we need a slightly stronger statement in the case µ = 0.

Lemma 8.6 Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), p ∈ Πr ∩Mk, and let h ∈Mk be a function such that

h(a) = p(a) and h(i)(b) = p(i)(b) , i = 0, . . . , k − 2 , h(k−1)(b−) ≤ p(k−1)(b) .(8.4)

Then
‖p− h‖p ≤ cp,r,kωk(p)p .(8.5)
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Proof. First of all, assume that there exists δ > 0 such that p ∈Mk(a, b + δ), and set

g =

{
h, on [a, b) ,
p, on [b, b + δ] .

Then g is k-monotone on [a, b+ δ] and satisfies all other assumptions of Lemma 8.5 (with µ = 0), hence

‖g − p‖Lp[a,b+δ] ≤ cp,r,kωk(p)Lp[a,b+δ] .

Letting δ → 0, we obtain

‖h− p‖Lp[a,b] ≤ lim
δ→0
‖g − p‖Lp[a,b+δ] ≤ cp,r,k lim

δ→0
ωk(p)Lp[a,b+δ] = cp,r,k ωk(p)Lp[a,b] .

Now, if for any δ > 0, p 6∈Mk(a, b + δ) one can replace p by

p̃(x) := p(x) + ǫ(x− a)(x− b)k−1 .

Then, p̃ ∈ Πmax{r,k+1} ∩Mk(a, b + ∆) for some ∆ > 0,

p̃(a) = p(a) , p̃(i)(b) = p(i)(b), 0 ≤ i ≤ k − 2,

and
p̃(k−1)(b) = p(k−1)(b) + (k − 1)!ǫ(b− a) ≥ p(k−1)(b) ≥ h(k−1)(b−) .

Now, using the same argument as above and letting ǫ → 0 and ∆ → 0 completes the proof of the
lemma.

9 Proof of Proposition 4.2

The following statement summarizes results of §§5-8.

Proposition 9.1 Let k ∈ N, n = 2k2, 0 < p ≤ ∞, I = (a, b), p ∈ Πr ∩Mk, and let g∗ ∈ SC(k),k ∩Mk
∗

be such that
g∗(tj) = p(tj) on {a = t0 < t1 < . . . < tn < tn+1 = b}

Then, there exists a spline z such that

z ∈ Sk′,k ∩M
k[g∗, p]

and
‖p− z‖p ≤ c2‖p− g∗‖p, c2 = c2(p, r, k) .(9.1)

Proof. First of all, Corollary 7.4 implies that there exists a spline z ∈ Sk′,k ∩Mk[g∗, p]. Now, since z
satisfies condition (8.4) of Lemma 8.6 (which follows from the definition of the class Mk[g∗, p] and the
fact that g∗(a) = p(a)) we have the estimate

‖p− z‖p ≤ cp,r,kωk(p)p .

On the other hand, for g∗ ∈ SC(k),k, Lemma 8.1 yields

‖p− g∗‖p ≥ cp,r,kωk(p)p .

Combining both estimates we obtain (9.1).

Remark 9.2 Applying Proposition 9.1 to p̃(t) := (−1)kp(−t) and g̃∗(t) := (−1)kg∗(−t) we conclude
that there also exists a spline z̃ ∈ Sk′,k ∩Mk[p, g∗] for which (9.1) is valid.
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Also, we need the following elementary statement.

Lemma 9.3 Let (xj)
∞
j=1 be such that xi 6= xj if i 6= j, and limj→∞ xj = L, and let, for some k ≥ 2,

f be (k − 2)-times continuously differentiable in some ǫ-neighborhood of L and have onesided (k − 1)st
derivatives at L. If f(xj) = 0 for all j, then f (i)(L) = 0 for i = 0, . . . , k− 2 and either f (k−1)(L+) = 0
or f (k−1)(L−) = 0.

Proof of Proposition 4.2. If 0 < p < ∞, let f∗ be a best Lp-approximant to p ∈ Πr ∩Mk from the
set Mk[f ] whose existence is guaranteed by Lemma 3.3, and so Lemma 3.8 is valid. If p =∞, we choose
f∗ to be a best L∞-approximant to p from the set Mk[f ] which satisfies Lemma 3.9.

We need to prove that there exists a spline s such that

s ∈ SC(k),r ∩M
k[f ](9.2)

and
‖p− s‖p ≤ c2 ‖p− f∗‖p.(9.3)

Lemmas 3.8 and 3.9 imply that, on any interval (c, d) where the difference f∗(x)−p(x) has exactly m−1
distinct zeros, we have

f∗ ∈ Smk′,k, k′ = ⌊k/2⌋+ 1 .(9.4)

Denote by Z the set of all zeros of the function f∗ − p, i.e.,

Z :=
{

x ∈ [a, b]
∣∣∣ f∗(x) = p(x)

}
,

and let Z∗ be the set of all limit points of Z. Also, let #Z denote the cardinality of Z. (Note, that the
set Z does not take into account multiplicity of zeros. This is not essential, and is only done to simplify
the exposition.)

The proof is quite transparent. If Z consists of only a few (less than 4k2 + 4) points, (9.4) implies
that f∗ has to be in SC(k),k, and so there is nothing to prove. If #Z is not less than 4k2 +4 but is finite,
we use Proposition 9.1 to blend f∗ and p on intervals containing the first and the last 2k2 + 2 points
from Z (and, hence, f∗ which has many “knots” between these intervals is replaced by the polynomial
p there). Finally, if Z is an infinite set, the set Z∗ is necessarily not empty and connected. Hence, Z∗

is a closed subinterval of (or a point in) [a, b]. We will show that f∗ ≡ p on Z∗, and so it’ll remain to
apply the above mentioned argument in the case #Z < ∞ to the set [a, b] \ Z∗ which is a union of at
most two intervals.

We now fill in the details, and consider the following three cases.

Case 1: #Z < 4k2 + 4.

According to (9.4),
f∗ ∈ SC(k),k, C(k) ≤ (4k2 + 4)k′,

so we let s = f∗.

Case 2: 4k2 + 4 ≤ #Z <∞

Denote by Iν := [aν , bν ], ν = 1, 2, the smallest closed subintervals of [a, b] which contain the first and the
last 2k2+2 points of Z, respectively (i.e., a1 = min(Z) and b2 = max(Z)). By (9.4), f∗ ∈ S(2k2+1)k′,k(Iν),
ν = 1, 2 , and, hence, by Proposition 9.1 and Remark after it we conclude that there exists two splines
s1, s2 such that

s1 ∈ Sk′,k ∩M
k[f∗, p](I1), s2 ∈ Sk′,k ∩M

k[p, f∗](I2),

and
‖p− sν‖Lp(Iν) ≤ c2 ‖p− f∗‖Lp(Iν) .(9.5)
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Also, note that f∗ ∈ Sk′,k[a, a1] and f∗ ∈ Sk′,k[b2, b], and define

s(x) =





f∗(x) , x ∈ [a, a1] ∪ [b2, b] ,
s1(x) , x ∈ [a1, b1] ,
p(x) , x ∈ [b1, a2] ,
s2(x) , x ∈ [a2, b2] .

Then,
s ∈ SC(k),r ∩M

k[f ](a, b), C(k) ≤ 4k′ + 1,

and, clearly, (9.3) is satisfied.

Case 3: #Z =∞

Clearly, the set of all limit points Z∗ is not empty in this case. Also, Z∗ is closed, and we now show that
it has to be connected. This will imply that Z∗ = [c, d] ⊂ [a, b] (not excluding the possibility that c = d).
Taking into account that f∗ − p is (k − 2)-times continuously differentiable and has onesided (k − 1)st
derivatives on [a, b] (which is guaranteed by the assumption that f∗ ∈ Mk[f ]), we apply Lemma 9.3 to
conclude that, for every x ∈ Z∗, at least one of two relations takes place:

f
(i)
∗ (x±) = p(i)(x) , i = 0, . . . , k − 1 .

Thus, if {c, d} ⊂ Z∗, then p ∈Mk[f∗](c, d), so that the function

g∗(x) =

{
f∗(x) x ∈ [a, b] \ [c, d] ,
p(x) , x ∈ [c, d]

is in Mk[f∗](a, b) ⊂Mk[f ](a, b). Also, if f∗ 6≡ p on [c, d], then g∗ approximates p better (in the Lp-metric)
than f∗ on [a, b] if 0 < p < ∞ and not worse than f∗ if p = ∞. Therefore, we know (can assume) that
f∗ ≡ p on [c, d], hence [c, d] ⊂ Z∗.

Thus, we can assume that Z∗ = [c, d] for some [c, d] ⊂ [a, b]. We also assume that a < c ≤ d < b, the
cases when c = a or d = b being analogous (and simpler).

Since (a, c) ∩ Z∗ = ∅, any closed subinterval of (a, c) contains finitely many points from Z.
Now, if # ((a, c) ∩ Z) < 2k2 + 2, (9.4) implies that f∗ ∈ S(2k2+2)k′,k[a, c] and we define the spline s1

to be f∗ on [a, c].
If, on the other hand, # ((a, c) ∩ Z) ≥ 2k2 + 2, then there exists c′ ∈ (a, c) such that c′ ∈ Z, and the

interval (a, c′) contains exactly 2k2 + 1 points from Z. The same construction as in Case 2 allows us
to obtain a k-monotone spline s̃1 ∈ S2k′,k(a, c′) ∩Mk[f∗, p] which “blends” f∗ with p (in a k-monotone
fashion) on (a, c′), and approximates p as well as f∗. Now, we define s1 by

s1(x) =

{
s̃1(x) , x ∈ [a, c′] ,
p(x) , x ∈ [c′, c] .

The same argument can now be used “at the right end” to yield a construction of s2 ∈ S(2k2+2)k′,k[d, b]
satisfying all conditions required.

Finally, we set

s(x) =





s1(x) , x ∈ [a, c] ,
p(x) , x ∈ [c, d] ,
s2(x) , x ∈ [d, b] .

Then,
s ∈ SC(k),k ∩M

k[f ][a, b], C(k) ≤ (4k2 + 4)k′ + 1 ,

which completes the proof of Case 3, and of Proposition 4.2.
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