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Twelve Proofs of the Markov Inequality

Aleksei Shadrin

This is the story of the classical Markov inequality for the k-th deriva-
tive of an algebraic polynomial, and of the remarkably many attempts to
provide it with alternative proofs that occurred all through the last cen-
tury. In our survey we inspect each of the existing proofs and describe,
sometimes briefly, sometimes not very briefly, the methods and ideas be-
hind them. We discuss how these ideas were used (and can be used) in
solving other problems of Markov type, such as inequalities with majo-
rants, the Landau–Kolmogorov problem, error of Lagrange interpolation,
etc. We also provide a bit of some less well-known historical details, and,
finally, for techers and writers in approximation theory, we show that the
Markov inequality is not as scary as it is made out to be and offer two
candidates for the “book-proof” role on the undergraduate level.

1 Introduction

1.1 The Markov inequality

This is the story of the classical Markov inequality for the k-th derivative of
an algebraic polynomial and attempts to find a simpler and better proof that
occured all through the last century. Here is what it is all about.

‖p(k)‖ ≤ ‖T (k)
n ‖ ‖p‖, ∀p ∈ Pn (1.1)

Here (and elsewhere), Pn is the set of all algebraic polynomials of degree ≤ n,
‖f‖ := max

x∈[−1,1]
|f(x)|, and Tn(x) := cosn arccosx is the Chebyshev polynomial

of degree n. Numerically, the constant is given by the formula

‖T (k)
n ‖ = T (k)

n (1) =
n2 [n2 − 12] · · · [n2 − (k−1)2]

1 · 3 · · · (2k − 1)
,
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so that, for example,

‖p‖ ≤ 1 ⇒ ‖p′‖ ≤ n2, ‖p′′‖ ≤ n2(n2 − 1)

3
, ‖p(n)‖ ≤ 2n−1n! .

The inequality is sharp, with equality only if p = γTn where |γ| = 1.
That’s it, simple and elegant.
Proved originally by V. Markov in 1892 in a rather sophisticated way, this

inequality plays an important role in approximation theory, and there have
been remarkably many attempts to provide it with an alternative proof.

I counted twelve proofs in total which divide into four groups. Here they are
to satisfy any taste: long, short, elementary, complex, erroneous, incomplete.

1) original variational proof of V. Markov (1892), which ran to 110 pages,
2) its condensed form given by Gusev (1961),
3) and its “second variation” by Dubovitsky–Milyutin (1965),
4) “small-o” arguments of Bernstein (1938),
5) its variation by Tikhomirov (1975),
6) and another variation by Bojanov (2001),
7) a pointwise majorant of Schaeffer–Duffin (1938),
8) a refinement of Duffin–Schaeffer for the discrete restrictions (1941),
9) trigonometric proof of Mohr (1963),

10) an erroneous proof for Chebyshev systems by Duffin–Karlovitz (1985),
11) a majorant of my own for the discrete restrictions (1992),
12) an incomplete proof of mine for the oscillating polynomials (1996)

[which was an attempt to revive the proof of Duffin–Karlovitz].

In our survey we inspect each of the existing proofs and describe, sometimes
briefly, sometimes not very briefly, the methods and ideas behind them.

We have three goals.
1) The first one is pedagogical. It is a widely held opinion that, besides the

case k=1, there is no “book-proof” of the Markov inequality. Almost each mo-
nograph in approximation theory cites this result, but only two of them, Rivlin
[52] and Schönhage [53] provides a proof, namely that of Duffin-Schaeffer. We
offer two more candidates for the book-proof role (4 pages each). Also, we show
that the original proof of V. Markov is not as scary as it is made out to be.

2) The second goal is methodological. There are many problems of the
Markov type where we need to estimate the max-norm of the k-th derivative
of a function f from a certain functional class F ; they are, in short, the prob-
lems of numerical differentiation. Examples are polynomial inequalities with
majorant, Landau–Kolmogorov inequalities, error bounds of certain interpola-
tion processes, etc. For all these mostly open problems, the classical Markov
inequality is a model where a new method of the proof can be tested, or where
an existing method can be taken from.

3) The final goal is historical. It was the homepage on the History of
Approximation Theory (HAT), opened recently by Pinkus and de Boor [57],
that formed my decision to write this survey, so that I am also eager to uncover
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who proved the Bernstein inequality, why Chebyshev was the first to study
Markov’s inequality, and how it could happen that Voronovskaya did not read
Markov’s memoirs.

1.2 Prehistory

Those who try to respect historical details (e.g., Duffin–Schaeffer) call Markov’s
inequality the inequality of the brothers Markoff, because these details are as
follows.

1889 A.Markov, k = 1, ‖p′‖ ≤ n2 ‖p‖ ,
1892 V.Markov, k ≥ 1, ‖p(k)‖ ≤ ‖T (k)

n ‖ ‖p‖ .
The first Markov, Andrei (1856-1922), was the famous Russian mathematician
(Markov chains), while the second, Vladimir (1871-1897), was his kid brother
who wrote only two papers and died from tuberculosis at age 26.

Both results appeared in Russian in (as Boas put it) not very accessible
papers, so that (to cite Boas once again) they must be ones of the most cited
papers and ones of least read.

A. Markov’s result for k = 1 was published in the “Notices of Imperial
Academy of Sciences” under the title “On a question by D. I.Mendeleev” [51].
In his nice survey, Boas [14] describes the chemical problem that Mendeleev
was interested in and how he arrived at the question about the values of the
1-st derivative of an algebraic polynomial.

V. Markov’s opus “On functions deviating least from zero in a given in-
terval” [7] that contained (amongst others) the result for all k appeared as a
small book, 110 pages of approximately A5-format, with the touching subhead-
ing “A composition of V. A. Markov, the student of St. Petersburg University”,
and with the stern notice “Authorized to print by the decision of the Physico-
Mathematical Faculty of the Imperial St.-Petersburg University, 25 Oct 1891.
Dean A. Sovetov”.

Probably, it was S. Bernstein who discovered and popularized both Markov’s
papers in 1912 when he started his studies in approximation theory. Actually,
Bernstein reproved the case k = 1 by himself, but the result for general k
was beyond his ability (for 26 years). So, quite certain about importance and
difficulty of V. Markov’s achievement, he organized its translation into German
which was published in “Mathematische Annalen” in 1916. Nowadays the text
in German helps, perhaps, not much more than the Russian one, so that only
a few lucky ones could appreciate the flavour of V. Markov’s work. However,
for those not very lucky, there is an exposition in English by Gusev [6] (with
the flavour of Voronovskaya notations). Even though it puts the first half of
V. Markov’s proof in a slightly different form, it reproduces its final part almost
identically.

As to the A. Markov’s paper for k=1, it was reprinted (in modern Russian
orthography) in his Selected Works (1948), but its English translation had to
wait another 50 years for the enthusiasm of de Boor and Holtz (2002).
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We close this section with the remark that, actually, the earliest reference
to Markov’s inequality must be

1854 P.Chebyshev, k = n, ‖p(n)‖ ≤ 2n−1 n! ‖p‖ ,

because his result on the minimum of the max-norm of the monic polynomial,

‖p‖ := ‖xn + cn−1x
n−1 + · · · + c0‖ ≥ 1

2n−1 ,

is nothing but the inequality

‖p‖ ≥ 1
2n−1

1
n! ‖p(n)‖ ,

and that is exactly the Markov inequality for k = n.

1.3 Pointwise problem for polynomials

and other functional classes

We will study the Markov inequality as the problem of finding the value

Mk := sup
‖p‖≤1

‖p(k)‖ .

There are many problems of this (Markov) type where we need to estimate the
max-norm of the k-th derivative of a function f from a certain functional class
F , i.e. to find

Mk,F := sup
f∈F

‖f (k)‖ ,

and in this section we will list several of them which were (and still are) of some
interest to the approximation theory community and to which our studies will
be somehow related. But before we start, let us make some general remarks.

There is no way of getting a uniform bound for ‖f (k)‖ other than bounding
|f (k)(z)| pointwise, for each particular z ∈ [−1, 1]. Therefore, we have to split
the original problem into two subsequent ones.

Problem 1.1. For k integer, find

Mk,F (z) := sup
f∈F

|f (k)(z)| , z ∈ [−1, 1] ,

Mk,F := sup
f∈F

‖f (k)‖ = sup
z∈[−1,1]

Mk,F (z) .

(The pointwise estimate is also useful in applications and is therefore of
independent interest.)

The solution of both problems depends on what is being meant by a solution.
Ideally, a solution is an effective value or a reasonable upper bound for both

suprema.



Aleksei Shadrin 5

Another type of solution is a characterization of the function fz that achieves
the supremum in the pointwise problem for each particular z, i.e., a description
of its particular properties that distinguish it from the other functions of the
given class. In most cases, such a description is not constructive, and cannot
help much in finding the actual quantitative value (or bound) for Mk,F(z).
But sometimes it leads to conclusions about the qualitative behaviour of the
function Mk,F (z), e.g., whether its maximum is attained at the endpoints ±1,
thus helping to solve the global problem. Anyway, knowing a smaller set {fz}
where to choose from is always an advantage.

For the pointwise problem, there is always a one-parameter family of func-
tions which contains extremal functions fz for any z ∈ [−1, 1], this is the family
{fz} itself. One needs however something more constructive, and it is not too
much a surprise that, for the Markov-type problems, this something describes
certain equioscillation properties of fz. It is not so surprising either that the
mostly oscillating function f∗

z is thought to be extremal for the global problem.
Below we formulate the Markov-type problems appearing in this survey and

give a short description of their current status. More details are given within
the text.

Problem 1.2 (Markov problem). For k integer, and p ∈ Pn, find

Mk(z) := sup
‖p‖≤1

|p(k)(z)| , z ∈ [−1, 1] ,

Mk := sup
‖p‖≤1

‖p(k)‖ = sup
z∈[−1,1]

Mk(z) .

V. Markov (1892) proved that, for each z, the extremal polynomial is given by

fz(x) = Zn(x, θz),

where Zn(x, θ) is a one-parameter family of Zolotarev polynomials having at
least n equioscillations on [−1, 1]. He made a very detailed investigation of
the character of the value Mk(z) when z runs through certain subintervals,
and proved, using some very fine methods, that the Chebyshev polynomial Tn
achieves the global maximum Mk.

Problem 1.3 (Markov problem with majorant or Turan problem).
Given a majorant µ ≥ 0, denote by Pn(µ) the set of polynomials p of degree
≤ n such that

|p(x)| ≤ µ(x) , x ∈ [−1, 1] .

For n, k integers, and p ∈ Pn(µ), we want to find the values

Mk,µ(z) := sup
p∈Pn(µ)

|p(k)(z)| , z ∈ [−1, 1] ,

Mk,µ := sup
p∈Pn(µ)

‖p(k)‖ = sup
z∈[−1,1]

Mk,µ(z) .
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As in the classical case µ ≡ 1, the extremal polynomial is given by

fz(x) = Zn,µ(x, θz)

where Zn,µ(x, θ) is a one-parameter family of weighted Zolotarev polynomials
having at least n equioscillations between ±µ (this is a relatively simple con-
clusion). One can expect that the µ-weighted Chebyshev polynomial should
attain the global maximum Mk,µ, but that was proved only for a few classes of
majorants.

Problem 1.4 (Markov problem for perfect splines). A piecewise po-
lynomial function s of degree n with r knots (breakpoints) is called a perfect
spline if

|s(n)| ≡ const.

Denote the set of perfect splines with ≤ r knots by Pn,r. For n, k, r integers,
we want to find

Mk,r(z) := sup
s∈Pn,r

|s(k)(z)| , z ∈ [−1, 1] ,

Mk,r := sup
s∈Pn,r

‖s(k)‖ = sup
z∈[−1,1]

Mk,r(z) .

Karlin [26] was the first (and the last) to study this problem, in 1976, and he
proved that an extremal perfect spline is given by

fz(x) = Zn,r(x, θz) ,

where Zn,r(x, θ) is a one-parameter family of Zolotarev perfect splines in Pn,r
having at least n + r equioscillations on [−1, 1] (thus having r knots or being
Tn,r−1). Compared with polynomial cases this fact is rather nontrivial. Glob-
ally, the Chebyshev perfect spline Tn,r with r knots and n+1+r equioscillations
should be a solution.

Problem 1.5 (Landau-Kolmogorov problem on a finite interval).
Set

Wn+1
∞ (σ) := {f : f (n) abs. cont., ‖f‖ ≤ 1, ‖f (n+1)‖ ≤ σ} .

For n, k integers, and σ > 0, find

Mk,σ(z) := sup
f∈Wn+1

∞ (σ)

|f (k)(z)| , z ∈ [−1, 1] ,

Mk,σ := sup
f∈Wn+1

∞ (σ)

‖f (k)(z)‖ := sup
z∈[−1,1]

Mk,σ(z) .

For σ = 0 we get the classical Markov problem. In 1978, Pinkus [30] showed
that an extremal function is given by

fz(x) = Pn+1,σ(x, θz) ,
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where Pn+1,σ(x, θ) is a one-parameter family of the Pinkus perfect splines.
(Of course, A. Pinkus did not bestow his own name to the perfect splines he
introduced. He called them “perfect splines satisfying ‖P‖ = 1, with exactly
r + 1 knots, n+ 1 + r points of equioscillation, and opposite orientation”, and
even though he denoted their class by P(σ), one can argue that P stood for
“perfect”. I take the credit for putting the more memorable “Pinkus” splines
into use in [31].) As with Karlin’s proof, the arguments are rather elaborate.
In the global problem, the solution must be given by an appropriate Zolotarev
spline Zn+1,r (this is known as Karlin’s conjecture), but that was proved only
in a few particular cases.

Problem 1.6 (Error bounds for Lagrange interpolation). For a con-
tinuous function f , and a knot-sequence δ = (ti)

n
i=0 ⊂ [−1, 1], let `δ be the

Lagrange polynomial of degree n that interpolates f on δ. For n, k integers,
and any δ, find

Mk,δ(z) := sup
‖f(n+1)‖∞≤1

|f (k)(z) − `
(k)
δ (z)| , z ∈ [−1, 1] ,

Mk,δ := sup
‖f(n+1)‖∞≤1

‖f (k) − `
(k)
δ ‖ = sup

z∈[−1,1]

Mk,δ(z) .

This problem attracted a lot of attention, and a large number of various
cases for small values of n and k were considered showing that ωδ(x) :=

1
(n+1)!

∏n
i=0(x − ti) achieves the global maximum. For general n, Kallioniemi

[28] showed in 1976 that

fz(x) = Sn+1(x, θz) ,

where Sn+1(x, θ) is a one-parameter family of perfect splines with just one knot
θ (this is almost immediate), and established the behaviour of Mk,δ(z) when z
runs through certain subintervals, which were surprisingly identical to those in
classical Markov’s problem. In 1995, a complete solution was found [41], i.e., it

was proved that Mk,δ = 1
(n+1)!‖ω

(k)
δ ‖ for all n and k. This is the only complete

result among all Markov-type problems.

Problem 1.7 (Error bounds for general interpolation). We may ge-
neralize the previous problem in two different ways.

1) We may consider instead of the Lagrange interpolation any other interpo-
lation procedure, e.g., spline interpolation of degree n at the points δ = (ti)

N
i=1

(with another given sequence of spline breakpoints).
2) Alternatively, we may notice that

Mk,δ(z) = sup
‖fn+1‖∞≤1

sup
f |δ=0

|f (k)(z)| ,

and consider the problem of estimating the k-th derivative of a function f that
satisfies ‖f (n+1)‖ ≤ 1 and vanishes on δ = (ti)

N
i=1 (which is related to the

problem of optimal interpolation).
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Both problems are almost untouched. We can mention only the paper
by Korneichuk [40] who considered approximation of the 1-st derivative by
interpolating periodic splines on the uniform knot-sequence.

1.4 Zolotarev polynomials

General properties. Here we describe some properties of Zolotarev poly-
nomials which are solutions to the pointwise Markov problem and which bear
a certain similarity with one-parameter families from the other Markov-type
problems.

Definition 1.8. A polynomial Zn ∈ Pn is called Zolotarev polynomial if
it has at least n equioscillations on [−1, 1], i.e. if there exist n points

−1 ≤ τ1 < τ2 < · · · < τn−1 < τn ≤ 1

such that

(−1)n−iZn(τi) = ‖Zn‖ = 1.

There are many Zolotarev polynomials, for example the Chebyshev poly-
nomials Tn and Tn−1 of degree n and n−1, with n+1 and n equioscillation
points, respectively. One needs one parameter more to get uniqueness. A
convenient parametrization (due to Voronovskaya) is through the value of the
leading coefficient:

1

n!
Z(n) ≡ θ ⇔ Zn(x) := Zn(x, θ) := θxn +

n−1∑

i=0

ai(θ)x
i .

By Chebyshev’s result, ‖p(n)‖ ≤ ‖T (n)
n ‖ ‖p‖, so the range of the parameter is

−2n−1 ≤ θ ≤ 2n−1.

As θ traverses the interval [−2n−1, 2n−1], Zolotarev polynomials go through
the following transformations:

−Tn(x) → −Tn(ax+b) → Zn(x, θ) → Tn−1(x) → Zn(x, θ) → Tn(cx+d) → Tn(x) .

The next figure illustrates it for n = 4.
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There are many other parametrizations in use. The classical one is based
on the definition of Zolotarev polynomial as the polynomial that deviates least
from zero among all polynomials of degree n with two leading coefficients fixed:

Zn(x, σ) := xn + σxn−1 + pn−2(x) := arg min
q∈Pn−2

‖xn + σxn−1 + q(x)‖ .

V. Markov used the parametrization with respect to z ∈ [−1, 1], the point where

Z
(k)
n (· , z) attains the value Mk(z) in the pointwise Markov problem.

Zolotarev polynomials subdivide into 3 groups depending on the stucture
of the set A := (τi) of their alternation points.

A) A contains n+ 1 points: then Zn is the Chebyshev polynomial Tn.
B) A contains n points but only one of the endpoints: then Zn is a

stretched Chebyshev polynomial Tn(ax+ b), |a| < 1.
C) A contains n points including both endpoints: then Zn is called a

proper Zolotarev polynomial and it is either of degree n, or the Cheby-
shev polynomial Tn−1 of degree n− 1.
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For a proper Zolotarev polynomial of degree n there are three points β, γ, δ to
either side of [−1, 1] such that

Z ′
n(β) = 0, Zn(γ) = −Zn(δ) = ±1 .

As functions of θ ∈ [−2n−1, 2n−1], the interior alternation points (τi)
n−1
i=2 as well

as β, γ, δ are monotonely increasing (the latter three go through the infinity as
θ passes the zero), so that any of them may be chosen as a parameter, too.

Theorem 1.9. For each z ∈ [−1, 1], the value Mk(z) := sup‖p‖≤1 |p(k)(z)|
is attained by a Zolotarev polynomial Zn. If Zn 6= Tn, then

Mk(z) = |Z(k)
n (z)| ⇔ R(k)(z) = 0,

where R(x) =
∏n
i=1(x − τi).

This result is typical for all Markov-type problems for it says that if

Z(k)
n (z, θz) = sup

θ
Z(k)
n (z, θ) ,

then either R(k)(z) := ∂θZ
(k)
n (z, θ) = 0 or θz is the endpoint of the θ-interval.

The structure. The structure of the (proper) Zolotarev polynomials (let
alone other Zolotarev-type functions) is rather unknown. Basically, {Zn} sat-
isfy the differential equation

1 − y(x)2 =
(1 − x2)(x − γ)(x− δ)

n2(x− β)2
y′(x)2 ,

and Zolotarev himself provided implicit formulas for his polynomials in terms of
elliptic functions, but explicit expressions for Zn are known only for n = 2, 3, 4.
The case n = 2 is trivial, and it is quite easy to construct the family {Z3} (it
has been done already by A. Markov in 1889, and repeated thereafter in many
different forms). But already for n = 4 it seems that nobody really believed
that an explicit form can be found. As a matter of fact it was, by V. Markov
in 1892. Here it is:

Z4(x, t) =
1

c0(t)

4∑

i=0

bi(t)x
i , |t| ≤

√
2 − 1 ,

where

b0(t) = 2t (−3t6 − t4 − t2 + 1) , b1(t) = −t10 + t8 + 2t6 + 10t4 + 7t2 − 3 ,

b2(t) = 2t (3t6 + t4 + t2 − 5) , b3(t) = 4 (−3t4 − 2t2 + 1) ,

b4(t) = 8t , c0(t) =
∑
bi(t) = (1 − t2)(1 − t4)2 ,

(1.2)
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with the alternation points

τ1 = −1 < τ2 =
t3 + t− (1 − t2)

2
< τ3 =

t3 + t+ (1 − t2)

2
< τ4 = 1 .

A. Markov (1889) showed how construction of a Zolotarev polynomial in
the form

Zn(x, β) = p0(x− β)n + p′1(x− β)n−1 + · · · + p′n−2(x− β)2 + p′n

can be reduced to two algebraic equations between the unknonws β, γ and δ,
so that, theoretically, choosing β as a parameter it is possible to express γ and
δ, and then all coeffients p0 and p′i in terms of β.

He also showed that Zn can be found as a solution to a system of linear
differential equations of the 1-st order, and another (non-linear) system was
suggested by Voronovskaya [56, p. 97]. But as far as we know, nobody (in-
cluding A. Markov and Voronovskaya themselves) has ever tried to apply these
methods for constructing Zn for any particular n.

Recently, the interest in an explicit algebraic solution of the Zolotarev prob-
lem was revived in the papers by Peherstorfer [43], Sodin-Yuditsky [44] and
Malyshev [42], but it is only Malyshev who demonstrates how his theory can
be applied to some explicit constructions for particular n.

From our side, we notice that there is a simple numerical procedure of
constructing a polynomial pn, say, on [−1, 1], with any given values (yi) of its
local maxima, i.e., such that with some −1 = x1 < x2 < · · · < xn+1 = 1

pn(xi) = (−1)iyi, i = 1..n+ 1, p′n(xi) = 0, i = 2..n .

If we choose y = (1, 1, . . . , 1, yn, 1), then the resulting polynomial will be
a proper Zolotarev polynomial parametrized by the value Zn(β) = yn and
squeezed to the interval [−1, 1].

2 Variational approach

2.1 General considerations

Maximizing Mk over the one-parameter family. The following ap-
proach is perhaps the only one that can be applied to any problem of the Markov
type in the sense that, initially, it does not rely on any particular properties of
polynomials or splines or whatsoever. (It is another question whether it will
work or not, sometimes it does, sometimes is does not.)

Let {Z(x, θ)} be the one-parameter family of functions that are extremal
for the pointwise Markov-type problem, i.e.,

Mk,F (z) := sup
f∈F

|f (k)(z)| = |Z(k)(z, θz)| = sup
θ

|Z(k)(z, θ)| .
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Here we may assume (say, taking θz = z) that, under our parametrization,

θz ∈ [θz=−1, θz=1] =: [−θ̄, θ̄] .

Set
K(x, θ) := Z(k)(x, θ), (x, θ) ∈ [−1, 1]× [−θ̄, θ̄ ] =: Ω .

The following statement is immediate.

Proposition 2.1. We have

Mk,F = sup
z∈[−1,1]

Mk,F (z) = sup
x,θ

K(x, θ) .

Now, take
T (·) := Z(·, θ̄)

i.e., T is the function from F that attains the value Mk(z) at z = 1 (an
analogue of the Chebyshev polynomial). This is our main candidate for the
global solution, so we want to find whether

Mk,F = sup
x,θ∈Ω

K(x, θ)
?
= ‖T (k)‖ . (2.1)

(Strictly speaking, we should have defined two functions T±(x) := Z(x,±θ̄),
but they usually differ only in sign, or satisfy T−(x) = ±T+(−x) as in the
Landau-Kolmogorov problem.) Notice that, directly from definition,

1) sup
θ
K(±1, θ) = |T (k)(±1)| , 2) sup

x
K(x,±θ̄) = ‖T (k)‖ ,

i.e., on the boundary of the (x, θ)-domain Ω we have

sup
x,θ∈ ∂Ω

K(x, θ) = ‖T (k)‖ .

Therefore, in order to verify (2.1), we have to deal with the following problem.

Problem 2.2. Find whether

sup
x,θ∈Ω

K(x, θ) = sup
x,θ∈ ∂Ω

K(x, θ) . (2.2)

Checking local extrema. A straightforward approach for attacking this
problem is to analyze the interior extremal points of K = K(x, θ):

∂xK(x∗, θ∗) = ∂θK(x∗, θ∗) = 0.

If at every such point the strict inequality

d := (∂xxK)(∂θθK) − (∂xθK)2 < 0 (2.3)



Aleksei Shadrin 13

is valid, then (x∗, θ∗) is a saddle point, hence |K| has no local maxima in the
interior of domain, and therefore (2.2), hence (2.1), are true.

We mention that it makes sense to consider only those (x∗, θ∗), where the
univariate functions |K(·, θ)| and |K(x, ·)| have local maxima in x and in θ
respectively, i.e. such that

sgn∂xxK = sgn∂θθK = −sgnK,

therefore the above inequality (2.3) is not trivial.
Since K(x, θ) := Z(k)(x, θ), the corresponding derivatives become

∂xK := Z(k+1), ∂θK := Z
(k)
θ ,

and
∂xxK := Z(k+2), ∂xθK := Z

(k+1)
θ , ∂θθK := Z

(k)
θθ ,

so that one needs to check whether, for a given one-parameter family of func-
tions Z := Z(·, θ), the equality

Z(k+1)(z) = Z
(k)
θ (z) = 0

implies

d := Z(k+2)(z)Z
(k)
θθ (z) − [Z

(k+1)
θ (z)]2 < 0 . (2.4)

The only problem is that, as has been mentioned, there are no explicit expres-
sions for Zolotarev polynomials or Zolotarev-type functions.

Comment 2.3. V. Markov’s original approach (repeated later in [17] and
[41]) had a slightly different form. Namely, he studied interior extrema of the
univariate (positive or negative) function Mk(x) = Z(k)(x, θx). In this case, if
the following implication is true

M ′
k(z) = 0 ⇒ Mk(z)M

′′
k (z) > 0 , (2.5)

then |Mk(·)| takes at x = z a locally minimal value, and hence the global
maximum of |Mk(·)| is attained by a polynomial (or alike) other than the
Zolotarev one. In fact, (2.5) is equivalent to (2.4) for one can show [41] that
the equality

Mk(x) := sup
θ
Z(k)(x, θ) =: Z(k)(x, θx)

implies

d̂ := Mk(z)M
′′
k (z) =

Z(k)(z)

Z
(k)
θθ (z)

(
Z(k+2)(z) · Z(k)

θθ (z) − [Z(k+1)(z)]2
)
.

At the point z where Z
(k)
θ (z) = 0, the numerator and the denominator are of

opposite sign, hence, d̂ > 0 is equivalent to d < 0.
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2.2 V.Markov’s original proof

Here we show how the variational approach just described works for the Markov
problem, where the extremal set for the pointwise problem consists of Zolotarev
polynomials.

Let {Z(·, θ)} ⊂ Pn be the family of proper Zolotarev polynomials of degree
n with n equioscillation points

−1 = τ1 < τ2 < · · · < τn−1 < τn = 1, τi = τi(θ)

such that

Z(1) = ‖Z‖ = 1, Z ′(β) = 0, |β| = |β(θ)| > 1,

Z(x, θ) =

n∑

i=0

ai(θ)x
i , an(θ) = θ 6= 0 . (2.6)

The following theorem is the central achievement of V. Markov’s original
work [7].

Theorem 2.4 (V. Markov (1892)). If at some point (x, θ) = (z, θz)

Z(k+1)(z) = Z
(k)
θ (z) = 0, (2.7)

then

d := Z(k+2)(z)Z
(k)
θθ (z) − [Z

(k+1)
θ (z)]2 < 0 . (2.8)

To prove this theorem V. Markov established very fine relations between the
functions involved in (2.8). Here they are.

Lemma 2.5. For all (x, θ), we have

Zθ(x) =

n∏

i=1

(x− τi) =: R(x). (2.9)

Proof. First of all, it follows from (2.6) that Zθ(x) = xn + qn−1(x, θ), i.e.
Zθ is a polynomial in x with the leading coefficient equal to 1. As to its roots,
differentiating the identity Z(τi) ≡ Z(τi(θ), θ) ≡ ±1 we obtain

Z ′(τi) · τ ′i(θ) + Zθ(τi) = Zθ(τi) = 0, i = 1..n . �

The next formula provides a basic relation between Zθ = R and Zx = Z ′,
and is decisive in further considerations.

Lemma 2.6. For all (x, θ), we have

nan (x− β)R(x) = (x2 − 1)Z ′(x) . (2.10)
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Proof. Both sides, as polynomials in x, have the same roots and the same
leading coefficients. �

Finally, an expression for Zθθ.

Lemma 2.7. For all (x, θ), we have

nanZθθ(x) = −nR(x) + (x+ β)R′(x) + (β2 − 1)ψ(x) , (2.11)

where
(x − β)ψ(x) = R′(x) − R′(β)

R(β) R(x) , ψ ∈ Pn−1 . (2.12)

Proof. Differentiating the identity (2.10) with respect to θ, and using (2.9)
and the fact that a′n(θ) = 1, we obtain

n(x− β)R(x) − nanβ
′(θ)R(x) + nan(x− β)Rθ(x)

= (x2 − 1)R′(x) = (x2 − β2)R′(x) + (β2 − 1)R′(x) ,

and division by (x − β) and rearrangement of the terms gives

nanRθ(x) = −nR(x) + (x + β)R′(x) + β2−1
x−β R

′(x) + nanβ
′(θ)

x−β R(x) .

Putting x = β in the first equality provides nanβ
′(θ) = −(β2 − 1)R

′(β)
R(β) , so

nanRθ(x) = −nR(x) + (x+ β)R′(x) + β2−1
x−β [R′(x) − R′(β)

R(β) R(x)] .

In the square brackets, we have a polynomial of degree n that vanishes at x = β,
hence it is of the form (x − β)ψ(x), where ψ ∈ Pn−1. �

Proof of Theorem 2.4. We assume that

an < 0, hence β > 1, thus z − β < 0 if z ∈ [−1, 1] . (2.13)

We also assume that (at the point z where Z(k+1)(z) = 0)

Z(k)(z) > 0, hence Z(k+2)(z) < 0 . (2.14)

Under these assumptions (and assumptions (2.7) of the theorem) we will show
that

Z
(k+1)
θ (z) > z2−1

nan(z−β) Z
(k+2)(z) > 0 , (2.15)

Z
(k+1)
θ (z) > nan(z−β)

z2−1 Z
(k)
θθ (z) , (2.16)

and that clearly proves the theorem.
1) Our starting point is again the identity (2.10)

nan(x− β)R(x) = (x2 − 1)Z ′(x) .
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Differentiating it (k+ 1) times with respect to x and setting (x, θ) = (z, θz) we
obtain (taking into account (2.7))

nan(z − β)R(k+1)(z) = (z2 − 1)Z(k+2)(z) + k(k + 1)Z(k)(z) . (2.17)

Both terms on the right-hand side are positive, and also nan(z − β) > 0, so

R(k+1)(z) > z2−1
nan(z−β) Z

(k+2)(z) > 0 , (2.18)

which proves (2.15).

2a) Now we turn to (2.16). From (2.11) and (2.7), we have

nanZ
(k)
θθ (z) = (z + β)R(k+1)(z) + (β2 − 1)ψ(k)(z) ,

and from (2.12) and (2.7) we find (z−β)ψ(k)(z) + kψ(k−1)(z) = R(k+1)(z), i.e.

ψ(k)(z) =
1

z − β
[R(k+1)(z) − kψ(k−1)(z)] ,

so, putting this expression into the previous one, we obtain

nanZ
(k)
θθ (z) = (z + β)R(k+1)(z) + β2−1

z−β [R(k+1)(z) − kψ(k−1)(z)]

= z2−1
z−β R

(k+1)(z) − k(β2−1)
z−β ψ(k−1)(z) .

Hence
R(k+1) − nan(z−β)

z2−1 Z
(k)
θθ (z) = k(β2−1)

z2−1 ψ(k−1)(z) , (2.19)

and since k(β2−1)
z2−1 < 0, it follows that

(2.16) ⇔ ψ(k−1)(z) < 0 .

2b) Consider relation (2.12) for ψ:

(x − β)ψ(x) = R′(x) − R′(β)
R(β) R(x) .

For x ∈ [−1, 1], since β > 1, both factors (x − β) and −R′(β)
R(β) are negative,

hence at the zeros of R′ we have

R′(ti) = 0 ⇒ sgnψ(ti) = sgnR(ti) .

This means that the zeros of the polynomials ψ and R′ interlace, thus, by what
we know now as the Markov interlacing property,

R(k)(z) = 0 ⇒ sgnψ(k−1)(z) = sgnR(k−1)(z) .

At the points where R(k)(z) = 0 we have sgnR(k−1)(z) = −sgnR(k+1)(z),
hence

sgnψ(k−1)(z) = −sgnR(k+1)(z) < 0 ,

the last inequality by (2.18). �
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Comment 2.8. Compared with Markov’s proof, we split the inequality
(2.8) into two parts (2.15)-(2.16), and made one more simplifying assumption
(2.14). We also got rid of expressions for τ ′i(θ) and θ′(z) that were involved in
Markov’s arguments.

From relations (2.17) and (2.19), we find

R(k+1)(z) = (z2−1)
nan(z−β) Z

(k+2)(z) + k(k+1)
nan(z−β) Z

(k)(z) ,

R(k+1)(z) = nan(z−β)
z2−1 Z

(k)
θθ (z) + k(β2−1)

z2−1 ψ(k−1)(z) ,

and we can derive the exact expressions for d in (2.8)

−d = [R(k+1)(z)]2 − Z(k+2)(z)Z
(k)
θθ (z)

= k(β2−1)
nan(z−β) Z

(k+2)(z)ψ(k−1)(z) + k(k+1)
nan(z−β) Z

(k)(z)R(k+1)(z) (2.20)

=
kZ(k)(z)

z−β
k+1 + (β2−1) ψ

(k−1)(z)
R(k+1)(z)

Z(k+2)(z)
Z(k)(z)

− nan

R(k+1)(z)

. (2.21)

The last one is formula (118) of Markov’s work, and he finished his proof by
analyzing its sign.

Comment 2.9. An interesting fact is that, as V. Markov himself wrote in
“Appendix to §34” (which was omitted in the German translation), he found
the proof of Theorem 2.4 at the very last moment, when his article was already

in print. Until then he had proofs of the inequality ‖p(k)‖ ≤ ‖T (k)
n ‖ ‖p‖ only in

the cases
k = 1, k = 2, k = n− 2, k = n− 1 ,

each time a different one. (He added an “Appendix” to demonstrate these
proofs; they are quite interesting, by the way.)

2.3 A brief account of V.Markov’s results

Markov’s Theorem 2.4 (with preliminaries) reads as follows:
A) For each z ∈ [−1, 1] the value

Mk(z) := sup
‖p‖≤1

|p(k)(z)|

is attained either by a proper Zolotarev polynomial Zn(·, θ), or by the Cheby-

shev polynomial Tn, or by a transformed Chebyshev polynomial T̃n(x) =
Tn(ax+ b), or by the Chebyshev polynomial Tn−1.

B) If a local extreme value of the (positive) function Mk(·) is attained by a
proper Zolotarev polynomial of degree n, then it is a local minimum.

C) Hence,

Mk = sup
z
Mk(z) = max { ‖T (k)

n ‖, ‖T̃ (k)
n ‖, ‖T (k)

n−1‖,Mk(±1) } ,

and it is not difficult to show that the last maximum is equal to T
(k)
n (1).
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Theorem 2.10 (V. Markov (1892)). For all n, k we have

sup
‖p‖≤1

‖p(k)‖ = T (k)
n (1) .

Actually, in his opus, V. Markov made a very detailed investigation of the
character of the value Mk(z) when z runs through certain subintervals.

0) Given k, define the points (ξi) and (ηi) by

η0 := −1, [(x− 1)T ′
n(x)]

(k) =: ck
∏n−k
i=1 (x − ηi), (2.22)

[(x+ 1)T ′
n(x)]

(k) =: ck
∏n−k
i=1 (x− ξi), ξn−k+1 =: 1. (2.23)

Then ηi−1 < ξi < ηi, and we define (following Voronovskaya [56])

Chebyshev intervals eTi := [ηi−1, ξi] ,

Zolotarev intervals eZi := (ξi, ηi) ,

so that the interval [−1, 1] is split in the following way

Chebyshev Chebyshev Chebyshev
interval interval interval

↓ ↓ ↓
(−1, ξ1] (ξ1, η1) [η1, ξ2] (ξ2, η2) · · · (ξn−k, ηn−k) [ηn−k, 1)

↑ ↑ ↑
Zolotarev Zolotarev Zolotarev
interval interval interval

1) If z belongs to a Chebyshev interval, then

Mk(z) = |T (k)
n (z)|, z ∈ eTi .

Moreover, the Chebyshev intervals contain the roots of T
(k+1)
n (and, as a matter

of interest, those of T
(k−1)
n ), i.e., the local maxima of Mk(·) and |T (k)

n | coincide.

2) If z belongs to a Zolotarev interval eZi , then the value ofMk(z) is achieved
either by a proper Zolotarev polynomial Zn(·, θz), or by a transformed Cheby-
shev polynomial Tn(azx+bz), or by the Chebyshev polynomial Tn−1, each time
on a certain subintervals as illustrated below.

Chebyshev Zolotarev Chebyshev
interval interval interval

z }| { z }| { z }| {

z → [ηi−1, ξi] (ξi, λi] (λi, νi) νi (νi, µi) [µi, ηi) [ηi, ξi+1]

↓ ↓ ↓ ↓ ↓ ↓ ↓

Extr.
pol.

→ −Tn(x) −Tn(azx+bz) Zn(x, θz) Tn−1(x) Zn(x, θz) Tn(czx+dz) Tn(x)

↓ ↓ ↓ ↓ ↓ ↓ ↓

Mk(z) → |T
(k)
n (z)| |T

(k)
n (ξi)|(1+ξi)

k

(1+z)k |Z
(k)
n (z, θz)| |T

(k)
n−1(νi)| |Z

(k)
n (z, θz)| |T

(k)
n (ηi)|(1−ηi)

k

(1−z)k |T
(k)
n (z)|
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Notice the exact behaviour of Mk(·) as a hyperbolic function c
(1±z)k on the

intervals (ξi, λi) and (µi, ηi), where the extremal functions are transformed
Chebyshev polynomials.

3) The next figure represents the graph of Mk(·) for the case of cubic poly-
nomials (n = 3) and the first derivative (k = 1). Bold are the parts where the
value is achieved by the Chebyshev polynomial T3(x) = 4x3 − 3x.

0

2

4

6

8

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

ξ1 λ1 ν1 µ1 η1 ξ2 λ2 ν2 µ2 η2

This graph (which appeared already in Boas [13] without reference) is based
on the exact expressions for the functions involved computed by A. Markov [51]
in 1889. Here they are (for the interval [0, 1]):

n = 3, M1(x) =






3(1 − 4x2), x ∈ [0, ξ], ξ =
√

7−2
6 ;

7
√

7+10
9(1+x) , x ∈ [ξ, λ], λ = 2

√
7−1
9 ;

16x3

(9x2−1)(1−x2) , x ∈ [λ, µ], µ = 2
√

7+1
9 ;

7
√

7−10
9(1−x) , x ∈ [µ, η], η =

√
7+2
6 ;

3(4x2 − 1), x ∈ [η, 1] .

A. Markov also provided the formula ofM1(·) for n = 2, and later, while studing
the case k > 1, V. Markov found for n = 3 an exact analytic form of M2(·)
(M3(·) is a constant). Using his expression for Z4 (see (1.2)) it is possible to
find all Mk(·) for n = 4.

4) Inside each Zolotarev interval, there is exactly one local minimum of
Mk(·), say, at x = σi. A naive conjecture that σi = νi, i.e., that these local
minima Mk(σi) are attained by the Chebyshev polynomial Tn−1 is not true (as
seen from the graph). V. Markov proved that this could happen only in the
middle of the interval:

a) if νi = 0, then σi = 0 ,
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otherwise

b) if νi > 0, then σi ∈ (λi, νi), c) if νi < 0, then σi ∈ (νi, µi).

5) In 1961, Gusev [6] provided two supplements to V. Markov’s results.
Firstly, he showed that while the first derivative M ′

k(·) is continuous on [−1, 1]
(which is rather clear and was used by V. Markov), the second derivative M ′′

k (·)
has jumps at the points ξ, λ, µ, η (but not at ν) where Zolotarev polynomials
change from one type to another.

His second and quite interesting observation was about the measure of
Chebyshev and Zolotarev intervals, namely

mes (eT ) = 2
k

n
, mes (eZ) = 2

n− k

n
.

The proof is quite elementary, so we give it here. By definition,

mes (eZ) =
∑

(ηi − ξi) =
∑
ηi −

∑
ξi ,

where

p(x) := c
n−k∏
i=1

(x− ηi) := [(x− 1)T ′
n(x)]

(k) , c
n−k∏
i=1

(x− ξi) := [(x+1)T ′
n(x)]

(k) .

Then 1
n−k

∑
ηi is the only root of the polynomial p(n−k−1) which is the poly-

nomial [(x− 1)T ′
n(x)]

(n−1), which has the only root 1
n [1 +

∑n−1
i=1 ζi], i.e.,

∑
ηi = n−k

n [1 +
∑n−1

i=1 ζi] (where T ′
n(ζi) = 0).

Similarly,
∑
ξi = n−k

n [−1 +
∑n−1

i=1 ζi], hence the result.

6) We mention that V. Markov’s results for general k were essentially of the
same type as earlier results of A. Markov for the case k = 1. Precisely, for the
pointwise problem for the 1-st derivative, A. Markov showed that Zolotarev
polynomials form the extremal set, proved that the value M1(z) is attained
by either type of these polynomials when z belongs to certain intervals, and
described the behaviour of M1(·) on these intervals exactly in the same way as
it is given in the cases 1)-3) of this section.

He did not get the result about the minima ofM1(·) as in case 4) (which was
the main achievement of his kid brother), but he proved the global inequality
‖p′‖ ≤ n2 ‖p‖ using what we call now Bernstein’s majorant (see §4.1 for details
of his proof).

2.4 Works of Voronovskaya and Gusev

Works of Voronovskaya. Voronovskaya is perhaps best known by her
saturation estimate for the Bernstein polynomials,

Bn(f, x) − f(x) =
x(1 − x)

2n2
f ′′(x) + o(n2) .
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However, most of her studies were on extremal properties of polynomials, which
she summarized in her book “The functional method and its application” [56].
Boas was very enthusiastic about Voronovskaya works. He translated her book
into English in 1970, and, in his two surveys [13]-[14], made a very delightful
report about her results “[which solved] a great variety of extremal problems
that had previously seemed too difficult for anyone to do anything with”.

In particular, Boas attributes to Voronovskaya the solution of the “point-
by-point” Markov problem (for the 1-st derivative). The latter is not correct.
It is true that her 1959 paper “The functional of the first derivative and im-
provement of a theorem of A. A. Markov” [55] does improve upon some results
of A. Markov (1889). But the whole truth is that this improvement (it is about
the minima of M1(·)) can be found in V. Markov (1892). It is only her argu-
ments (for k = 1) that are a bit different (and simpler) than those of V. Markov
(for general k), but the results are the same.

In this respect, astonishing is her final remark: “But neither A. A. Markov
nor V. A. Markov, in studying the question of a bound for the derivatives at
interior points of the fundamental interval, took advantage of the use of the
Zolotarev polynomials [A. Markov, p. 64] and [V. Markov, p. 55], and hence they
could not carry the problem to completion.”

Since it suffices to take a brief look through either of Markov’s papers
in order to find that Zolotarev polynomials occupy the central place in both
articles, it is all the more interesting to look at the pages pointed out by
Voronovskaya. Here are the exact quotations (about the only thing they did
not want to use):

A. Markov [p. 64]: “Without relying on E. I. Zolotarev’s formulas, we show
how it is possible to reduce our problem to three algebraic equations.”

V. Markov [p. 55]: “We notice that Zolotarev in his paper expressed the
solution of the equation in terms of elliptic functions, but we will not focus on
that.”

The only explanation for this story that I can think of is that Voronovskaya
– like most of us – never read either of Markov’s articles, and had no idea
about their actual content. So, when her paper was about to be published, and
somebody advised her to take a closer look at these works, she did not find
the courage to admit that she simply rediscovered the results already 70 years
old. Just another illustration of Boas’ words about A. Markov’s paper as “one
of the most often cited, and one of the least read”.

Gusev’s paper. V. A. Gusev begins his paper [6] in a quite remarkable
way. He is going “to study the problem considerably more completely than
in Bernstein and in Duffin-Shaeffer, and in a considerably shorter way than
in V. Markov”. The logic of this sentence leaves open the possibility that his
way is not shorter than those of Bernstein and Duffin-Schaeffer, and that it
gives not more complete results than those of Markov. And this is true! (well,
almost: he proved two supplementary results, as we have seen). More than this,
Gusev’s proof of Markov inequality is not new, it is essentially a reproduction



22 Twelve Proofs of the Markov Inequality

of Markov’s original proof.
There are some differences in the preliminaries, because V. Markov uses

his own criterion for the norm of linear functional, while Gusev uses that of
Voronovskaya (of course, both are equivalent).

But the very essence of V. Markov’s treatise, the proof that

Z(k+2)(z)Z
(k)
θθ (z) − [Z

(k+1)
θ (z)]2 < 0,

hence a local extremum of Mk(·) if attained by a proper Zolotarev polynomial is
a local minimum, hence the Markov inequality, is reproduced by Gusev almost
without alterations.

“A way considerably shorter than in V. Markov” is a slight exaggeration
too, especially when you find that Gusev uses without proof some of Markov’s
lemmas sending the reader for those to Markov’s paper.

There is, however, a positive side of Gusev’s paper (as well as of Voronov-
skaya), namely a clear and short exposition of Markov’s results (provided more-
over with an English translation). V. Markov’s paper is rather mosaic and ar-
chaic, and this makes it a difficult (albeit pleasurable) read. Gusev squeezed it
to a small set of clear theorems which give a clear picture of behaviour of the
exact upper bound Mk(·). To a certain extent, we followed his exposition in
§2.3.

2.5 Similar results

V. Markov’s variational approach, based on verifying the inequality

d := Z(k+2)(z)Z
(k)
θθ (z) − [Z

(k+1)
θ (z)]2 < 0

for the one-parameter family Z(x, θ) of Zolotarev-type functions, was used in
solution of two other problems of Markov type.

Theorem 2.11 (Pierre-Rahman (1976)). For the Markov problem with
the majorant

µ(x) = (1 − x)m1/2(1 + x)m2/2, k ≥ m1+m2

2 ,

we have
Mk,µ := sup

|p(x)|≤µ(x)

‖p(k)‖ = max
(
‖ω(k)

n ‖ , ‖ω(k)
n−1‖

)
(2.24)

where ωn ∈ Pn is the polynomial oscillating most between ±µ.

The proof is the exact reproduction of Markov’s arguments, but on a much
more complicated technical level. In our notations, their final expression (which
is the last equality on p. 728) has the form

d =
Z(k)(z)

β−z



k(β2−1)
ψ(k−1)(z)

R(k+1)(z)

Z(k+2)(z)

Z(k)(z)
+ (k+1)

“

k −
m1+m2

2

”

ff

R(k+1)(z)

nan

,
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just to compare with formula (2.21) of V. Markov.
For some reasons, Pierre & Rahman did not analyze when the maximum in

(2.24) is attained by ω
(k)
n . It seems to be so if k > m1+m2

2 (when it looks that

‖ω(k)
n ‖ = ω

(k)
n (1)).

Theorem 2.12 (Shadrin (1995)). For the Lagrange interpolation prob-
lem on a knot-sequence δ = (ti)

n
i=0, we have

Mk,δ := sup
‖f(n+1)‖≤1

‖f (k) − `
(k)
δ ‖ =

1

(n+ 1)!
‖ω(k)

δ ‖,

where ωδ(x) :=
∏n
i=0(x− ti).

Here, the one-parameter family Z(x, θ) consists of perfect splines with at
most one knot, and details of the proof are quite different from that of Markov.

However, for the pointwise problem, there are complete analogues of the
Chebyshev and Zolotarev intervals

eTj = (ηj−1, ξj), eZj = [ξj , ηj ] .

Here, the endpoints of the intervals are defined via ωi(x) := ω(x)
x−ti as

η0 := t1, ω
(k)
0 (x) =: c

∏n−k
j=1 (x− ηj),

ω
(k)
n (x) =: c

∏n−k
j=1 (x− ξj), ξn−k+1 := tn.

But now, it is Zolotarev intervals where Mk,δ and ω
(k)
δ (and their local maxima)

coincide:

Mk,δ(z) := sup
‖f(n+1)‖≤1

|f (k)(z) − `
(k)
δ (z)| =

1

(n+ 1)!
|ω(k)
δ (z)|, z ∈ eZδ .

This pointwise estimate is due to Kallioniemi [29] who also generalized Gusev’s
result:

mes (eTδ ) =
k

n
(tn − t0).

3 “Small-o” arguments

3.1 “Small-o” proofs of Bernstein and Tikhomirov

In 1938, in the less-known and nowadays hardly accessible “Proceedings of
the Leningrad Industrial Institute”, Bernstein published the article [1] where
he “found it not unnecessary to point out another and simpler proof” of
V. Markov’s inequality. This article was reprinted in 1952 in his Collected
Works, and since 1996 its English translation, thanks to Bojanov, is also avail-
able.
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The proof we are going now to present is, in fact, not that of Bernstein but
a mixture from different sources with the main part due to Tikhomirov, as it
is given in his exposition [12, pp.111-113] for k = 1 (with our straightforward
extension to any k). For preliminaries (where Tikhomirov used calculus of
variations), we chose the more classical (and elementary) approach of Bernstein
and Markov.

This is a promised “book-proof” on 4 pages, so we start from the very very
beginning pretending we forgot everything dicussed before.

Book-proof. We are going to study the behaviour of the upper bounds of
the k-th derivative of algebraic polynomials

Mk(z) := sup
‖p‖≤1

p(k)(z), z ∈ [−1, 1] ,

Mk := sup
‖p‖≤1

‖p(k)‖ = sup
z∈[−1,1]

Mk(z).

We are going to prove that
Mk = ‖T (k)

n ‖ (3.1)

by showing that, among all the polynomials p∗ that are extremal for Mk(z) for
different z, only Tn can hope to achieve the global maximum of Mk(z).

This will be done in two steps.
1) For z = ±1, we will show that p∗ = Tn.
2) For z ∈ (−1, 1) we will show that if p∗ 6= Tn and

Mk(z) = p
(k)
∗ (z), M ′

k(z) = 0
(

= p
(k+1)
∗ (z)

)
,

then there exists a polynomial Pλ ∈ Pn such that, for some zλ,

‖Pλ‖ = ‖p∗‖ − O(λ2), P
(k)
λ (zλ) = p

(k)
∗ (z) + o(λ2),

so that, for λ small enough,

Mk(zλ) ≥
P

(k)
λ (zλ)

‖Pλ‖
>
p
(k)
∗ (z)

‖p∗‖
= Mk(z) .

The latter means that the local extrema of Mk(z) if attained by polynomials
other than Tn are local minima, hence all local maxima of Mk(z) are attained
by the Chebyshev polynomial, hence the conclusion (3.1).

We start with some characterizations of the extremal polynomials.

Lemma 3.1. Let

Mk(z) := sup
p∈Pn

p(k)(z)

‖p‖ =
p
(k)
∗ (z)

‖p∗‖
,

and let {τi}mi=1 be the set of all points for which |p∗(x)| = ‖p∗‖. Then there is
no polynomial q ∈ Pn such that

q(k)(z) = 0 and q(τi)p∗(τi) < 0 . (3.2)
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Proof. If there is such a q, then the polynomial r := p∗ + λq will satisfy

r(k)(z) = p
(k)
∗ (z) and ‖r‖ < ‖p∗‖, a contradiction to the extremality of p∗. �

Lemma 3.2. Let y∗, z ∈ (−1, 1) and (yi)
n−2
i=1 ∈ R. Then there is a unique

polynomial q ∈ Pn such that

q(yi) = 0, q(k)(z) = q(k+1)(z) = 0, q(y∗) = 1,

and it changes its sign exactly at the points yi.

Proof. It follows easily from Rolle’s theorem that the homogeneous inter-
polation problem has only the trivial solution, hence existence of such a q. It
also implies the sign pattern, since if there were a point x∗ besides (yi) where
q vanishes, then the homogeneous problem with y∗ = x∗ would have had a
non-zero solution.

Lemma 3.3. Let p∗ be a polynomial extremal for Mk(z). Then it has at
least n points (τi) of alternation between ±1.

Proof. Let m be the number of alternations and let (τi)
m
i=1 be the points

such that
p∗(τi) = −p∗(τi+1) = ε ‖p∗‖, |ε| = 1.

If m ≤ n− 1, then adding arbitrary (τj)
n−1
j=m+1 with |τj | > 1 to the list, we can

apply Lemma 3.2 to construct the polynomial q such that

q
(
τi+τi+1

2

)
= 0, q(k)(z) = q(k+1)(z) = 0, q(τ1) = −sgnp∗(τ1),

which satisfies the condition (3.2), a contradiction. �

The polynomials of degree n with n alternation points in [−1, 1] are called
Zolotarev polynomials, they divide into 3 groups depending on the stucture of
the set A := (τi) of their alternation points.

A) A contains n+ 1 points. Then p∗ = Tn,
B) A contains n points but only one of the endpoints. Then p∗ can be

continued to the larger interval, say [−1, 1+c], on which it has n+1 alternation
points. Hence, it is a transformed Chebyshev polynomial, p∗(x) = Tn(ax+ b),

|a| < 1. We can exclude this case from consideration since clearly ‖p(k)
∗ ‖ <

‖T (k)
n ‖.
C) A contains n points including both endpoints. Then p∗ is called a proper

Zolotarev polynomial, and we want to show that it does not attain any local
maximum of Mk(z). For this, we need one more characterization property of
Z.

Lemma 3.4. Let Mk(z) = Z(k)(z), where Z has exactly n alternation
points (τi). Then

R(k)(z) = 0, R(x) :=

n∏

i=1

(x− τi).
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Proof. By the Lagrange interpolation formula with the nodes (τi), any
q ∈ Pn can be written in the form

q(x) = cR(x) +

n∑

i=1

q(τi)

R′(τi)
Ri(x), Ri(x) :=

R(x)

x− τi
,

so that

q(k)(z) = cR(k)(z) +

n∑

i=1

q(τi)

R′(τi)
R

(k)
i (z).

If R(k)(z) 6= 0, then we may set q(τi) = −Z(τi) and then use the freedom
in choosing the constant c to annihilate the right-hand side, i.e., to obtain
q(k)(z) = 0, a contradiction to Lemma 3.1. �

Remark 3.5. From the previous lemma, it follows that if Z 6= Tn, then
it can attain some value Mk(z) only for z strictly inside the interval [−1, 1],
whence

Mk(±1) = |T (k)
n (±1)|.

Theorem 3.6 (Tikhomirov (1976)). Let Z ∈ Pn be a proper Zolotarev
polynomial such that

Z(k)(z) = Mk(z), (hence R(k)(z) = 0), Z(k+1)(z) = 0 .

Then the polynomial

Pλ := Z + λR +
λ2

2
c0R

′, c0 :=
R(k+1)(z)

Z(k+2)(z)
,

satisfies for some zλ

‖Pλ‖ = ‖Z‖ − O(λ2), P
(k)
λ (zλ) = Z(k)(z) + o(λ2).

Lemma 3.7. Let f, g, h ∈ C2[a, b] with ‖f‖ = |f(x0)|, and let

f ′(x0) = 0, f(x0)f
′′(x0) < 0, g(x0) = 0, g′(x0) 6= 0.

Then there is an ε > 0 such that

φ(λ) :=
∥∥∥f + λg + λ2

2 h
∥∥∥
C[x0−ε,x0+ε]

=
∣∣∣f(x0) + λ2

2

(
h(x0) − g′(x0)

2

f ′′(x0)

)∣∣∣+ o(λ2).

Proof. Set

ψ(x, λ) := φ′λ(x) := f ′(x) + λg′(x) +
λ2

2
h′(x).

Then

ψ(x0, 0) = 0, ∂xψ(x0, 0) = f ′′(x0) 6= 0, ∂λψ(x0, 0) = g′(x0).
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By the implicit function theorem, there exists a function xλ = x(λ) such that

ψ(x, λ) = 0 ⇔ x = xλ = x0 −
g′(x0)

f ′′(x0)
λ+ o(λ).

This means that, for small λ, the function |f+λg+ λ2

2 h| has a unique maximum
at the point x = x(λ), and

‖φλ‖ =
∣∣∣f(xλ) + λg(xλ) + λ2

2 h(xλ)
∣∣∣

=
∣∣∣f(x0) + λ2 g

′(x0)
2

f ′′(x0)2
f ′′(x0)

2 − λ2 g
′(x0)

f ′′(x0)
g′(x0) + λ2

2 h(x0) + o(λ2)
∣∣∣ .

Proof of Theorem 3.6 1) Firstly, let us apply the previous lemma to the
functional

φ(λ) := ‖P (k)
λ ‖C[z−ε,z+ε] .

In this case, f := Z(k), g := R(k), h := R(k+1), and the conditions of the lemma
are satisfied. We obtain

φ(λ) :=
∣∣∣Z(k)(z) + λ2

2

(
c0R

(k+1)(z) − R(k+1)(z)2

Z(k+2)(z)

)∣∣∣+ o(λ2) = |Z(k)(z)| + o(λ2)

(the expression in parentheses vanishes due to the definition of c0).
2a) Next, we apply the lemma to the functional

φ(λ) := ‖Pλ‖C[τi−ε,τi+ε], τi 6= ±1.

Now f := Z, g = R, h = R′, and in a neighbourhood of each interior alternation

point τi the norm of the polynomial Pλ is equal to the value |Z(τi) + λ2

2 γi| +
o(λ2), where

γi :=
[
c0R

′(τi) − R′(τi)
2

Z′′(τi)

]
= R′(τi)

Z′′(τi)
[c0Z

′′(τi) −R′(τi)] .

To prove that ‖Pλ‖ = ‖Z‖ − O(λ2), it suffices to show that γiZ(τi) < 0, and
because Z(τi)Z

′′(τi) < 0 this is equivalent to the inequality

δi := R′(τi)[c0Z
′′(τi) −R′(τi)] > 0 , τi 6= ±1 . (3.3)

Consider the polynomial

Q(x) := c0Z
′(x) −R(x) . (3.4)

It vanishes at (τi)
n−1
i=2 , and Q(k)(z) = Q(k+1)(z) = 0. Hence, by Lemma 3.2, it

changes its sign only at (τi), and Q′(τi) alternate in sign. So does R′(τi), thus
all δi := R′(τi)Q′(τi) are of the same sign. Let us show that δn−1 > 0. We
have

sgnQ′(τn−1) = sgnQ(t)
∣∣
t→∞

(3.4)
= −sgnR(t)

∣∣
t→∞ = −1 = R′(τn−1) .
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The first equality is because τn−2 is the rightmost zero of Q, the next one is
because Z ′ in (3.4) is of degree n− 1, and the last two follow because R(x) =∏n
i=1(x− τi).
2b) It remains to consider the endpoints, say x = 1, where we have

Pλ(1) = Z(1) +
λ2

2
c0R

′(1) .

As we have seen, sgnQ(1) = sgnQ(t)
∣∣
t→∞ = −1, on the other hand, by (3.4),

sgnQ(1) = sgn c0Z
′(1) = sgn c0Z(1),

hence c0 and Z(1) are of opposite sign, and because R′(1) > 0

|Pλ(1)| = |Z(1)| − O(λ2). �

Comment 3.8. The difference between Tikhomirov’s and Bernstein’s proofs
is that, while Tikhomirov simply presents the polynomial Pλ and then proves
its required properties, Bernstein moves the other way round. He considers the
polynomial

P1(x) = Z(x+ λ) − λφ(x + λ) − λ2ψ(x+ λ),

where φ and ψ are any polynomials satisfying φ(k)(z) = ψ(k)(z) = 0, so that

P
(k)
1 (z − λ) = Z(k)(z).

Then he expands P1 with respect to λ,

P1 = Z + λ[Z ′ − φ] + λ2[12Z
′′ − φ′ − ψ] + o(λ2),

evaluates the value ‖P1‖, and tries to determine φ and ψ in order to get

‖P1‖ = ‖Z‖ − O(λ2) .

With that he arrives at φ = Z ′ − 1
c0
R and ψ = − 1

2φ
′, so that the polynomial

he uses is actually the same as in Tikhomirov:

P1 = Z + (λ/c0)R + (λ/c0)
2

2 c0R
′ .

Comment 3.9. Lemma 3.1 is actually a criterion for a polynomial to at-
tain the norm of the linear functional µ(p) = p(k)(z) (and any other linear
functional on Pn). It was a starting point of V. Markov’s studies [7, §2], and he
derived from it two other criteria which were more convenient for applications.
Notice the similarity between Lemma 3.1 and Kolmogorov’s criterion for the
element of best approximation.

Comment 3.10. The above given “book-proof” of V. Markov’s inequality
is not entirely complete. To bring it to the final Markov form one still needs
to prove that

‖T (k)
n ‖ = T (k)

n (1) =
n2 [n2 − 12] · · · [n2 − (k−1)2]

1 · 3 · · · (2k − 1)
.

Both equalities are usually referred to as “easy to show”, but it takes another
half a page to really show them (we do it in §5.3)
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3.2 “Small-o” proof of Bojanov

Tikhomirov provided his proof with the following comment [54, p. 285]: “This
proof is not quite consistent from the point of view of theory of extremal prob-
lems. To act consistently, one should find a tangent direction (which is here
unique, namely that of R(·)), write down a general variation of the second order

Pλ(x) = Z(x) + λR(x) +
λ2

2
Y (x) ,

and then apply again the necessary conditions of supremum. Such a plan is
fulfilled in the paper by Dubovitsky–Milyutin [3]. Here we took a shorter way
borrowing some parts of our arguments from Bernstein [1]”.

It is not clear whether here Tikhomirov had any particular polynomial Y
in mind. The paper [3] which we discuss in the next section does not make it
clear either.

A version of “small-o” proof with a different polynomial Y was presented in
2002 by Bojanov [2] in his survey on Markov-type inequalities. Bojanov himself
refers to his proof as “a simplification of Tikhomirov’s variational approach as
outlined in a private communication”.

We will fit Bojanov’s proof into the scheme of the previous section, and it
makes our exposition quite different from his own. We discuss some of these
differences in the comments below where we also show that, actually, he uses
the polynomial

Pε(x) = Z(x) + εZθ(x) +
ε2

2
Zθθ(x) , (3.5)

which is the Taylor expansion of the Zolotarev polynomial Z(x, θz + ε) in a
neighbourhood of θz.

Recall that

R(x) := Zθ(x) =

n∏

i=1

(x − τi), τi = τi(θ) , (3.6)

where τi are the equioscillation points of the Zolotarev polynomial Z, and set

Y (x) :=

n−1∑

i=2

ρiRi(x), ρi :=
R′(τi)

Z ′′(τi)
, Ri(x) :=

R(x)

x− τi
. (3.7)

Theorem 3.11 (Bojanov (2002)). Let Z ∈ Pn be a proper Zolotarev
polynomial such that

Z(k)(z) = Mk(z) (hence R(k)(z) = 0), Z(k+1)(z) = 0.

Then the polynomial

Pε := Z + εR+
ε2

2
Y (3.8)

satisfies for some zε

‖Pε‖ = 1 + o(ε2), |P (k)
ε (zε)| = |Z(k)(z)| + O(ε2). (3.9)
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Proof. 1) From definition (3.7) of Y , we find that

Y (τi) = ρiRi(τi) =
[R′(τi)]2

Z ′′(τi)
, i = 2, . . . , n− 1.

Now, Tikhomirov’s Lemma 3.7 applied to Pε says that, in a neighbourhood of
each interior τi, the local maximum of Pε has the value

Pε(τ
ε
i ) = Z(τi) + ε2

2

[
Y (τi) − [R′(τi)]

2

Z′′(τi)

]
+ o(ε2) = 1 + o(ε2) .

Near the endpoints of [−1, 1], the norm ‖Pε‖ will not exceed 1 for small ε
because |Z(x)| ≤ 1 and Z ′(±1) 6= 0.

2) To prove the second equality in (3.9) we apply Lemma 3.7 to P
(k)
ε . So,

in a neighbourhood of z, the local maximum of Pε has the value

P
(k)
ε (zε) = Z(k)(z) + ε2

2

[
Y (k)(z) − [R(k+1)(z)]2

Z(k+2)(z)

]
+ o(ε2),

and because Z(k)(z)Z(k+2)(z) < 0 we have to deal with the inequality

d := Y (k)(z)Z(k+2)(z) − [R(k+1)(z)]2
?
< 0. (3.10)

3) Since Y =
∑n−1
i=2 ρiRi, and (trivially) R′ =

∑n
i=1 Ri, we have

Y (k)(x) =
∑n−1

i=2
R′(τi)
Z′′(τi)

R
(k)
i (x), R(k+1)(x) =

∑n
i=1 R

(k)
i (x), (3.11)

so we may write

d = Z(k+2)(z)
n−1∑
i=2

R′(τi)
Z′′(τi)

R
(k)
i (z) − R(k+1)(z)

n∑
i=1

R
(k)
i (z)

= R(k+1)(z)
n−1∑
i=2

[Z(k+2)(z)
R(k+1)(z)

R′(τi)
Z′′(τi)

− 1
]
R

(k)
i (z)

− R(k+1)(z) [R
(k)
1 (z) +R(k)

n (z)] .

By Markov’s interlacing property (since zeros of R and Ri interlace)

R(k)(z) = 0 ⇒ sgnR(k+1)(z) = sgnR
(k)
i (z) ∀ i,

so we are done once we prove that Z(k+2)(z)
R(k+1)(z)

R′(τi)
Z′′(τi)

− 1 < 0, or, with the previ-

ously used notation c0 := R(k+1)(z)

Z(k+2)(z)
, that

δi := 1
c0Z′′(τi)

[c0Z
′′(τi) −R′(τi)] > 0, τi 6= ±1.

4) The latter is proved like in Tikhomirov’s proof, by considering the poly-
nomial Q = c0Z

′ −R. �
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Comment 3.12. Bojanov wrote his polynomial (3.8) in the form

Pε(x) := Z(x) + ε
n∏
i=1

(x− τi + ε
2ρi)

and dealing with (3.9) he repeated twice the arguments (of Tikhomirov’s lemma)
based on the implicit function theorem.

Also, he used not (3.11) but the formula

Y (k)(z) =
∑n−1
i=2 Ai

[R′(τi)]
2

Z′′(τi)

(
=
∑n

i=1 AiY (τi)
)
,

which stems from the representation of the linear functional µ(p) = p(k)(z) on
Pn,

p(k)(z) =

n∑

i=1

Aip(τi), AiAi+1 < 0, (3.12)

so that, finally, he verified not (3.10) but the inequality

Z(k)(z)
[
− [R(k+1)(z)]2

Z(k+2)(z)
+
∑n−1
i=2 Ai

[R′(τi)]
2

Z′′(τi)

]
> 0. (3.13)

Comment 3.13. Let us show that Pε has the form (3.5). We focus on the
term Y in (3.7)-(3.8) and we claim that it is nothing but Rθ. Indeed, from
definition (3.6) of R, since τ1(θ) ≡ −1 and τn(θ) ≡ 1, we obtain

Rθ(x) =
∑n−1
i=2 (−τ ′i(θ))Ri(x) ,

and, by differentiating the identity Z ′(τi(θ), θ) ≡ 0, we find that

−τ ′i(θ) =
Z ′
θ(τi)

Z ′′(τi)
=
R′(τi)

Z ′′(τi)
= ρi .

Hence, Y = Rθ, and Bojanov’s polynomial (3.8) is

Pε(x) = Z(x) + εR(x) +
ε2

2
Rθ(x) ,

or, since R = Zθ,

Pε(x) = Z(x, θz) + εZθ(x, θz) + ε2

2 Zθθ(x, θz) = Z(x, θz + ε) + o(ε2).

So, Pε is nothing but the second order Taylor expansion of the Zolotarev poly-
nomial Z(x, θz + ε) with the perturbed parameter θ in a neighbourhood of
θz . In particular, the equality ‖Pε‖ = 1 + o(ε2) is now straightforward, and
moreover, the key inequality (3.10) to be verified turns out to be

d := R
(k)
θ (z)Z(k+2)(z) − [R(k+1)(z)]2

?
< 0, (3.14)

exactly the same as V. Markov considered. Basically, all three proofs – by
V. Markov, Bernstein–Tikhomirov and Bojanov – deduce that

Mk(z) = Z(k)(z, θz), Z(k+1)(z) = 0 ⇒ |Z(k)(z, θz)| < |Z(k)(zε, θz + ε)| .
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3.3 Proofs of Dubovitsky–Milyutin and Mohr

Dubovitsky–Milyutin’s proof. The main goal of [3], as postulated in
section 5◦, is to show, “as a result of the analysis of Euler equations for the
first and second variation, that the optimal polynomial [that attains the global
maximum Mk] is uniquely determined and is the Chebyshev polynomial Tn”.
The first two pages describe some general theory, the proof itself takes another
two pages.

In our notations, they start with the formula

p(k)(z)

Z(k)(z)
=

∫
p(x)

Z(x)
dµ

(
:=

n∑

i=1

(−1)iµip(τi)

)
(6)

(which is the analogue of (3.12)). After a while, the proof arrives at verification
of the following inequality (which is the last but one formula on the very last
page):

[R(k+1)(z)]2

Z(k)(z)Z(k+2)(z)
−
∫

[R′(x)]2

Z(x)Z ′′(x)
dµext

?
< 0 . (10)

With µext being the same measure µ from (6) but without the endpoints (so
to say), this inequality is identical to inequality (3.13) considered by Bojanov,
which as we showed is the same as the inequality (3.14) considered by Markov.

At this point, nothing says that we are approaching the end, but then the
magic happens. The next and final expression appears like a rabbit pulled from
a hat. Quotation: “Since R(x)(x−β) = Z ′(x)(x2−1), therefore by making use
of R(k)(z) = Z(k+1)(z) = 0 and identity (6), we can reduce (10) to

1

R(k+1)(z)

»

R′(β)R(x) −R(β)R′(x)

x− β

–(k−1)

x=z

+
k(k + 1)Z(k)(z)R(β)

(z − β)Z(k+2)(z)(β2 − 1)
> 0 .” (11)

The last two paragraphs swiftly show that both summands are positive (they
are indeed), and that’s the end of the article.

I don’t think that this “proof” can be taken seriously.
First of all, both Markov and Bojanov spent more than a page on rather

fine calculations before they brought their analogues of (10) to some clearer
forms. It is hard to believe that Dubovitsky–Milyutin managed to do it in a
few lines (which they did not even bother to present).

Secondly, no matter how you transform (10), the final relation should be
still equivalent to that of Markov. In (11), the expression in square brackets is
equal to what we denoted in (2.12) by −R(β)ψ(x), so (11) is identical to

−R(β)ψ(k−1)(z)

R(k+1)(z)
+

k(k + 1)Z(k)(z)R(β)

(z − β)Z(k+2)(z)(β2 − 1)
> 0 . (11′)

This looks very close to Markov’s formula (2.20), but there is no match.

Trigonometric proof of Mohr. Mohr starts his paper [8] by making the
change of variable, x = cos θ, thus switching from algebraic polynomials p(x) to
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the cosine polynomials φ(θ). With such a switch, the Markov problem becomes
the problem of finding

Mk := sup
‖φ‖≤1

‖φ[k]‖
(
Mk(ξ) := sup

‖φ‖≤1

|φ[k](ξ)|
)
,

where

φ[1] = − 1

sin θ

∂

∂θ
φ , ‖φ‖ = max

θ∈[0,π]
|φ(θ)| .

Mohr wants to show that “this supremum is attained exactly for φ(θ) = cosnθ”,
so in §1.7 he assumes that

Mk = Γ[k](ξ) , (3.15)

with some cosine polynomial Γ and some ξ ∈ [0, π], and in §2 tries to prove
that the case when Γ has less than n+ 1 equioscillation points is impossible.

1) I did not understand the reasons to move to trigonometry as Mohr con-
siders his cosine polynomials only on the interval [0, π], i.e., he does not make
any use of periodicity (as one could expect). With such a move, nothing really
changes except for complicating the matter of things.

2) At the begining, the proof develops as in the algebraic case. In particular,
Mohr shows (§§2.1-2.5) that the extremal polynomial Γ has at least n points
of equioscillation, and if it has exactly n points, then its resolvent satisfies
R[k](ξ) = 0, therefore ξ is strictly inside [0, π], hence Γ[k+1](ξ) = 0. (The latter
means, by the way, that Mk(ξ) is not necessarily the global maximum, but only
an extreme value of Mk(·).)

3) However, the final part starting from §2.13 is taking more and more
strange forms, and in §2.15, assuming actually that

Mk(ξ) = Γ[k](ξ), R[k](ξ) = 0, Γ[k+1](ξ) = 0, (3.16)

Mohr managed to construct a family of polynomials φ such that

‖φ‖ ≤ 1, φ[k](ξ) > Γ[k](ξ) . (3.17)

This is of course a contradiction to the initial guess (3.15), so one might have
concluded that the intermediate assumption that Γ has exactly n equioscilla-
tions was false. But it is also a contradiction to (3.16), which as we know may
well be true for some Γ of Zolotarev type. I think that Mohr somehow got it
wrong (in his formula (30), I suspect).

4) Even more strange is that Mohr does not consider relations (3.17) as
something extraordinary, and spends two pages more in deriving further state-
ments before he finally arrives at a contradiction.

3.4 Limitations of variational and “small-o” methods

All three authors – Bernstein, Tikhomirov and Bojanov – while using the small-
o arguments, arrived actually, at exactly the same conclusion which was pro-
vided by V. Markov.
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Theorem 3.14. The local extreme values of Mk(·) attained by a polyno-
mial other than Tn are local minima, or, equivalently, all local maximal values
of Mk(·) are attained by the Chebyshev polynomial ±Tn.

The only difference is that V. Markov proved that Mk(·) indeed have local
maxima and minima.

What is important in such a conclusion is that it shows that we cannot apply
the variational or a “small-o” method to the Markov-type problem, unless we
are sure that the local behaviour of Mk,F (·) follows the pattern given by the
theorem above.

Example 3.15. Consider the Landau–Kolmogorov problem

Mk,σ(z) = sup
f∈Wn+1

∞ (σ)

|f (k)(z)|, z ∈ [−1, 1] ,

where Wn+1
∞ (σ) = {f : ‖f‖ ≤ 1, ‖f (n+1)‖ ≤ σ}. For σ = 0 it reduces to

the Markov problem for polynomials, hence for small σ, the pointwise bound
Mk,σ(z) should be close to the Markov pointwise bounds Mk(z).

The function Mk(z) has (n−k) local minima and (n−k−1) local maxima
as illustrated on the graph below (for n = 3 and k = 1). Now, according to
Pinkus’ results [30], the Chebyshev-like function T∗ ∈ Wn+1

∞ (σ) that attains
the value Mk,σ(z) at z = 1 takes other values of Mk,σ(z) only at a finite

set of (n−k) points, and similarly for T̂∗ which is extremal for z = −1. As
σ → 0, these points will tend to the ends of Zolotarev intervals (ξi) and (ηi),
respectively, and we see that, for small σ, there are local maxima of Mk,σ(·)
that are achieved by functions of Zolotarev type (the maximum at z = 0 on
the figure).
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Hence, for small σ, we cannot prove that T∗ is the global solution using
variational or “small-o” methods. It does not mean that this is not true, most
likely it is, but we certainly need other methods to prove it. In fact, the same
picture is true for any σ > 0 when the extremal functions for z = 1 and for
z = −1 are two proper Zolotarev splines (our Conjecture 6.1 in [31] that, for
σ > σ0, the function Mk,σ(·) is monotone on [0, 1] is not true, although it may

still be true for σ = ‖T (n+1)
n+1,r ‖).
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4 Pointwise majorants

4.1 The case k = 1

Here we show how Andrei Markov proved the global inequality for the 1-st
derivative using the fact that Zolotarev polynomials form the extremal set for
the pointwise problem.

Theorem 4.1 (A. Markov (1889)). We have

sup
‖p‖≤1

‖p′‖ = T ′
n(1) = n2 . (4.1)

Proof. For a fixed θ, the Zolotarev polynomial Zn(x, θ) satisfies the differ-
ential equation

1 − y(x)2 =
(1 − x2)(x − γ)(x− δ)

n2(x− β)2
y′(x)2 ,

or

y′2 =
(x− β)2

(x− γ)(x− δ)
· n

2(1 − y2)

1 − x2
,

where β, γ, δ are of the same sign, and

|x| ≤ 1 < |β| < |γ| < |δ|.
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The latter implies

0 <
(x− β)2

(x− γ)(x− δ)
< 1 ,

whence

y′2 ≤ n2(1 − y2)

1 − x2
≤ n2

1 − x2
.
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The same inequality is valid for the Chebyshev polynomial Tn, for its transfor-
mations Tn(ax+ b) with |a| < 1, and for Tn−1. Hence

M1(z) ≤
n√

1 − z2
⇔ |p′(x)| ≤ n√

1 − x2
‖p‖ , (4.2)

and we have arrived at the Bernstein inequality for algebraic polynomials
(which A. Markov did not stop on).

The last step is described in every monographs:

a) if |x| ≤ cos π
2n , then n√

1−x2
≤ n2,

b) if |x| > cos π
2n , then |p′(x)| ≤ |T ′

n(x)|‖p‖ ≤ n2 ‖p‖.

Comment 4.2. Nowadays, the usual way to prove the Bernstein “alge-
braic” inequality (4.2) (hence A. Markov’s inequality (4.1)) is through the Bern-
stein inequality for trigonometric polynomials

‖t′n‖ ≤ n ‖tn‖ , (4.3)

since the latter has a very simple proof based on the so-called comparison
lemma:

‖tn‖ < 1, |tn(η)| = | cosnξ| ⇒ |t′n(η)| < n| sinnξ| .

However, Bernstein himself moved the other way round [46]. Firstly, exactly in
the same way as A. Markov (see the next comment), he derived (4.2). With the
substitution x = cos θ, this gives the trigonometric version (4.3) only for even
polynomials tn(θ) =

∑
ak cos kθ, so he proved one more algebraic inequality

∣∣ ∂
∂x (p(x)

√
1 − x2)

∣∣ ≤ n√
1 − x2

max |p(x)
√

1 − x2|, p ∈ Pn−1 ,

which provides (4.3) for odd tn(θ) =
∑
bk sin kθ. Finally, he got the general

result by a tricky combination of those two.

Comment 4.3. Bernstein [46] derived the “Bernstein” inequality (4.2)
exactly in the same way as A. Markov, which we have just described. He
accompanied his result with the following footnote: “This is the statement
of A. Markov’s theorem given in his aforementioned paper. Unfortunately,
I became acquainted with that paper, as well as with the composition of
V. A. Markov, only when preliminary algebraic theorems, which constitute the
content of the present chapter, were found and derived independently by my-
self. No doubt earlier acquaintance with the ideas of these scientists would have
simplified my task and, probably, the presentation of this chapter. However,
I considered it unnecessary to put changes into my fully accomplished proofs,
because of the auxiliary character of the above-mentioned theorems ...” and
there are further 2-3 lines of these beautiful poetry.
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4.2 Bernstein’s results

Bernstein was very enthusiastic about Markov’s inequality. Not only made he
Markov’s results available to the western public, but he also put a lot of effort
into deepening and improving them. It was not until 1938 that he managed to
find a simpler proof, but meanwhile he produced several important refinements.

1) First of all, by iterating his inequality for the 1-st derivative,

|p′(x)| ≤ n√
1 − x2

‖p‖, (4.4)

Bernstein found [45] a pointwise majorant for all k:

|p(k)(x)| ≤
( √

k√
1 − x2

)k
n(n− 1) · · · (n− k + 1) ‖p‖. (4.5)

The proof for the case k = 3 gives the general flavour:

|p′′′(x)| ≤ n− 2√
x2

1 − x2
‖p′′‖C[−x1,x1]

≤ n− 2√
x2

1 − x2

n− 1√
x2

2 − x2
1

‖p′‖C[−x2,x2]

≤ n− 2√
x2

1 − x2

n− 1√
x2

2 − x2
1

n√
1 − x2

2

‖p‖C[−1,1],

where x1, x2 are any numbers satisfying x2 < x2
1 < x2

2 < 1, and the choice

x2
1 − x2 = x2

2 − x2
1 = 1 − x2

2 = 1−x2

k is clearly optimal and does the job.
The estimate (4.5) shows in particular that, for a given k, the order of the

k-th derivative of p ∈ Pn inside the interval is O(nk) thus differing essentially
from the order O(n2k) at the endpoints.

2a) He did not stop with that and, in 1913, established [46] the exact asymp-
totic bound:

Mk(x) ∼
(

n√
1 − x2

)k
.

For this proof, Bernstein found an exact form of the polynomial q ∈ Pn−2 that
deviates least from the function

φ(x) = cxn + σxn−1 +
A

x− a
, |a| > 1,

and, letting A→ 0, derived asymptotic formulas for Zolotarev polynomial.

2b) In the same paper [46], still bothered by complexity of V. Markov’s
proof, he suggested simpler arguments that provide asymptotic form of Markov’s
inequality

|p(k)(x)| < Mk(1 + εn), εn = O(1/n2). (4.6)
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Here they are. Assuming that ‖p‖C[−1,1] = 1, it is quite easy to show that

|p(k)(1)| ≤ T
(k)
n (1), and applying this inequality to the interval [−1, x] we obtain

the majorant

|p(k)(x)| ≤ T (k)
n (1)

(
2

x+ 1

)k
=: F (x).

Comparing it with the previous majorant (4.5),

|p(k)(x)| ≤
( √

k√
1 − x2

)k
n!

(n− k)!
=: G(x),

we notice that, on [0, 1], the functions F and G are decreasing and increas-
ing respectively, hence the common bound for |p(k)(x)| is given by the value
F (x∗) = G(x∗) which results in (4.6).

3) Finally, in 1930, Bernstein generalized [48] his classical inequality (4.4)
to the case when p is bounded by a polynomial majorant: if

|pn+m(x)| ≤ µ(x) =
√
P 2(x) + (1−x2)Q2(x) ,

where P and Q are two polynomials of degree m and and (m−1) respectively,
which have interlacing zeros, then

|p′n+m(x)| ≤

s

ˆ

nP (x) + xQ(x) + (x2−1)Q′(x)
˜2

+ (1−x2)
ˆ

P ′(x) + nQ(x)
˜2

1 − x2
.

(4.7)

As a consequence, he concluded (without proofs) that if f(x) > 0 is any
continuous function, then

|pn(x)| ≤ f(x) ⇒ |p′n(x)| ≤
nf(x)√
1 − x2

(1 + O(1/n)) ,

and, moreover,

|pn(x)| ≤ f(x) ⇒ ‖p(k)
n ‖ ≤ T (k)

n (1)f(±1)(1 + O(k2/n)) .

(With respect to the last two results, I have some doubts. I think that the
value En(f) of the best approximation to f should be somehow involved.)

4.3 Schaeffer–Duffin’s majorant

In 1938, the same year when Bernstein produced his proof of Markov’s in-
equality using small-o arguments, two American mathematicians, R. Duffin and
A. Schaeffer, came out with another proof [9], the main part of which was a

generalization of the pointwise Bernstein inequality p′(x) ≤ n2
√

1−x2
‖p‖ to higher

derivatives. It is a very nice and short paper, so we only sketch briefly the main
elements of the proofs.

Let Tn be the Chebyshev polynomial and Sn(x) := 1
n

√
1 − x2 T ′

n(x).
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Theorem 4.4 (Schaeffer-Duffin (1938)). Let p ∈ Pn be such that

|p(x)| ≤ 1 ≡ |Tn(x) + iSn(x)| .

Then

|p(k)(x)| ≤ Dk(x) := |T (k)
n (x) + iS(k)

n (x)| .

Proof (Sketch). The formulation of the theorem is a bit misleading because
what Schaeffer–Duffin really assume is that, by Bernstein’s inequality,

|p′(x)| < D1(x) = |T ′
n(x) + iS′

n(x)| =
n√

1 − x2
, p 6= ±Tn

(and it is essential that S′
n is unbounded near the endpoints). From that it

follows that, for every α ∈ (0, π) and for every λ ∈ [−1, 1], the function

F ′(x) := cosαT ′
n(x) + sinαS′

n(x) − λp′(x)
(

= n sin(nt−α)√
1−x2

− λp′(x)
)

has at least n distinct zeros in (−1, 1). They also prove that F (n+1) = cS(n+1)

does not change sign, hence, on (−1, 1), F (k) has exactly (n + 1 − k) zeros all
of which are simple. Finally, they show that, if one supposes that, at some
x0 ∈ (−1, 1),

|p(k)(x0)| ≥ Dk(x0),

then one can choose particular α and λ so that F (k) has a double zero at such
x0, a contradiction that proves the theorem. �

Lemma 4.5. For all k, we have

a) Dk(·) is a strictly increasing function on [0, 1),

b) the (n−k) zeros of T
(k)
n interlace with (n−k+1) zeros of S

(k)
n .

Proof (Sketch). This lemma is trivial for k = 1 because D1(x) = n√
1−x2

and S′
1(x) = −nTn(x)√

1−x2
(hence a simple proof of A. Markov’s inequality), but for

general k Schaeffer–Duffin had to come through the following arguments.

Both functions T
(k)
n and S

(k)
n are independent solutions of the differential

equation

(1 − x2)y′′(x) − (2k + 1)xy′(x) + (n2 − k2)y(x) = 0,

hence, by Sturm’s theorem, their zeros interlace. The latter equation may also
be rewritten in the equivalent form

d

dx

{
(1 − x2)[fk+1(x)]

2 + (n2−k2)[fk(x)]
2
}

= 4kx [fk+1(x)]
2 , (4.8)
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to which [T
(k)
n (x)]2 and [S

(k)
n (x)]2, hence also [Dk(x)]

2, are particular solutions.
Substituting the power series of [Dk(x)]

2 into (4.8), they derive by induction
on k that

[Dk(x)]
2 =

∞∑

i=0

a2ix
2i, a2i > 0. �

Proof of V. Markov’s inequality. From two previous results, Schaeffer–
Duffin derived V. Markov’s inequality

‖p(k)‖ ≤ ‖T (k)
n ‖ ‖p‖

exactly in the same way as A. Markov’s inequality for the 1-st derivative ‖p′‖ ≤
n2‖p‖ can be derived from the Bernstein inequality |p(x)| ≤ n√

1−x2
‖p‖.

Namely, for x∗ being the rightmost zero of S
(k)
n , it follows that

a) if |x| ≤ x∗, then |p(k)(x)| ≤ Dk(x) ≤ Dk(x∗) = T
(k)
n (x∗),

b) if |x| > x∗, then |p(k)(x)| ≤ |T (k)
n (x)| (by Rolle’s theorem).

and the proof is completed. �
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1) At the (n − k + 1) zeros of

S
(k)
n (x)

Mk(x) = Dk(x) = |T (k)
n (x)| .

2) Otherwise

Mk(x) < Dk(x) .

Dk(x)

Mk(x)

For k= 1, the Schaeffer–Duffin majorant coincides with that of Bernstein,
D1(x)=

n√
1−x2

, but they did not try to find its exact form for any other k. We

performed some computations ourselves.

Lemma 4.6. For all k, we have

1

n2
[Dk+1(x)]

2 =

k∑

m=0

bm
(1 − x2)k+1+m

,

where bm =
(
k+m
2m

)
12 · 32 · · · (2m− 1)2 · (n2−(m+1)2) · · · (n2−k2).
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Proof. Assuming that 1
n2 [Dk(x)]

2 =
∑k−1
m=0

am

(1−x2)k+m , from (4.8) we ob-

tain

1

n2 − k2
b0 = a0,

1

n2 − k2
b1 =

k + 1

k − 1
a1, . . . ,

1

n2 − k2
bk−1 =

2k − 1

1
ak−1,

and the last coefficient bk = 12 · 32 · · · (2k−1)2 is found from

k
X

m=0

bk = [Dk(0)]2, Dk(0) =



n(n2 − 12)(n2 − 32) · · · (n2 − (k − 2)2), odd k;
n2(n2 − 22)(n2 − 42) · · · (n2 − (k − 2)2), even k.

In particular, we get

1

n2
[D2(x)]

2 =
(n2−1)

(1 − x2)2
+

1

(1 − x2)3
,

1

n2
[D3(x)]

2 =
(n2−1)(n2−4)

(1 − x2)3
+

3(n2−4)

(1 − x2)4
+

9

(1 − x2)5
,

1

n2
[D4(x)]

2 =
(n2−1)(n2−4)(n2− 9)

(1 − x2)3
+

6(n2−4)(n2−9)

(1 − x2)4
+

45(n2−9)

(1 − x2)5
+

225

(1 − x2)6
.

4.4 Generalization: Vidensky majorant

In 1951, Vidensky [20] extended results of Schaeffer–Duffin to the case when
restrictions on p are given by an arbitrary polynomial majorant:

|p(x)| ≤ µ(x) =
√
R2m(x),

where R2m is any polynomial of degree ≤ 2m that is non-negative on [−1, 1].
By Lucas theorem, for any n ≥ m, such a polynomial can be represented in
the form

R2m(x) = P 2
n(x) + (1 − x2)Q2

n−1(x),

where Pn and Qn−1 satisfy the following conditions:

a) Pn ∈ Pn and Qn−1 ∈ Pn−1;

b) all zeros of Pn and Qn−1 lie in [−1, 1] and interlace;

c) the leading coefficients of Pn and Qn−1 are positive.

Moreover,

Pm+n(x) + i
√

1−x2Qm+n−1(x)

=
[
Pm(x) + i

√
1−x2Qm−1(x)

]
[Tn(x) + iSn(x)]

(4.9)

Theorem 4.7 (Vidensky (1951)). Let p ∈ Pn be such that

|p(x)| ≤ µ(x) ≡ |Pn(x) + i
√

1 − x2Qn−1(x)| .

Then
|p(k)(x)| ≤ Vk(x) :=

∣∣∣P (k)
n (x) + i

[√
1 − x2Qn−1(x)

](k)∣∣∣ .
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In his proof, Vidensky follows the same route as Schaeffer–Duffin, taking as
the starting point the generalization of the classical Bernstein inequality (that
was established by Bernstein himself, see (4.7))

|p′(x)| < V1(x) =
∣∣P ′
n(x) + i

[√
1 − x2Qn−1(x)

]′∣∣ , p 6= ±Pn .

However, it was not a straightforward journey, because the Schaeffer–Duffin
arguments heavily relied on the fact that both Tn(x) and

√
1 − x2 1

nT
′
n(x) sat-

isfy one and the same differential equation, whereas Pn and
√

1 − x2Qn−1(x)
have no such property in general. One of Vidensky innovations was a state-
ment about functions with interlacing zeros that generalized the well-known
V. Markov’s result about polynomials.

Lemma 4.8. Let f1, f2 ∈ C1[a, b] be two functions such that any linear
combination c1f1 + c2f2 has ≤ n zeros counting multiplicity. If both f1 and
f2 have n zeros, all simple, and these zeros interlace, then zeros of f ′

1 and f ′
2

interlace too.

Proof (Sketch). Let (ti)
n
i=1 be the zeros of f1, then by the interlacing

conditions the function g = c1f1 + c2f2 alternates in sign on the sequence
(ti)

n
i=1, hence all of its zeros are simple. The latter means that, for any x, the

system

c1f1(x) + c2f2(x) = 0,

c1f
′
1(x) + c2f

′
2(x) = 0

has only the trivial solution, thus

f1(x)f
′
2(x) − f ′

1(x)f2(x) 6= 0, ∀x ∈ [a, b] .

From here we get that at the points (si)
n−1
i=1 where f ′

1(si) = 0, we have

sgn f ′
2(si) = sgn f1(si) = (−1)iγ,

and the conclusion follows. �

The only result of Schaeffer–Duffin (based on the differential equation) for
which Vidensky did not find an appropriate substitution was monotonicity of
Dk, i.e., he did not find any general tools to verify the inequality

Vk(x)
?
≤ Vk(x∗).

This is however the crucial point in the pass from the pointwise estimate to
the global one, and as a result Vidensky could not obtain the Markov-type
inequality for an arbitary majorant. In a series of paper [21]-[23], he covered
a number of particular cases where he suceeded to prove monotonicity of Vk
using monotonicity of Dk.
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Theorem 4.9 (Vidensky (1958-71)). Let

µ2(x) =
∏m
i=1(1 + a2

ix
2), k = 1,

or µ2(x) = (1 + a2x2)(1 + b2x2), k ≥ 1,

or µ2(x) = 1 + (a2 − 1)x2, k ≥ 1.

Then [Vk(x)]
2 =

∑∞
0 c2ix

2i with c2i ≥ 0, whence

Mk,µ := sup
|p(x)|≤µ(x)

‖p(k)‖ = ‖ω(k)
µ ‖ ,

where ωµ = Pn is the polynomial oscillating most between ±µ.

These works of Vidensky remained largely unknown, and some of his results
were rediscovered later. For example, the Markov-type inequality with circular
majorant µ(x) =

√
1 − x2 was reproved in 70s by Pierre and Rahman in [19],

[16], [17]. Bojanov and Naidenov [24]-[25] proved the interlacing property for
perfect splines and alike using arguments quite similar to those of Vidensky.

We close this section with our own observation about the explicit form of
the function Vk(x) which Vidensky did not try to compute. Now, there is no
differential equation that allows us to find the exact formula for Dk for all n, k
as in the previous section, but we can derive some recurrence relations instead.

Lemma 4.10. For each k

[Vk(x)]
2 =

[pk(x)]
2 + (1 − x2)[qk(x)]

2

(1 − x2)2k−1
,

where pk and qk are polynomials from Pm+k−1 and Pm+k−2, respectively.

Proof. The formula follows from the representation

[
Pm+n(x) + i

√
1−x2Qm+n−1(x)

](k)

= (−i)
[
pk(x) + i

√
1 − x2qk(x)

(1 − x2)k−1/2

]
[Tn(x) + iSn(x)]

which is derived from (4.9) by induction using the relation

T ′
n(x) + iS′

n(x) = (−i) n√
1 − x2

[Tn(x) + iSn(x)] .

Moreover, we have the recurrence formula

p1(x) = nPm(x) + xQm−1(x) − (1 − x2)Q′
m−1(x),

q1(x) = nQm−1(x) + P ′
m(x),

pk+1(x) = (1−x2)[p′k(x) + nqk(x)] + (2k−1)xpk(x);

qk+1(x) = (1−x2)q′k(x) + 2(k−1)xpk(x) − npk(x)

However, it is not clear whether it is possible to extract from here information
about momotonicity of Vk (assuming, say, that µ is monotone). �
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5 Markov–Duffin–Schaeffer inequalities

5.1 Duffin–Schaeffer refinement

for the discrete restrictions

In 1941, Duffin–Schaeffer [5] (now in alphabetical order) presented another
proof of the Markov inequality that moreover strengthened Markov’s result
in two different directions. Namely, they showed that in order to reach the
conclusion

|p(k)(x)| ≤ T (k)
n (1)

it is sufficient, instead of the uniform bound ‖p‖ ≤ 1, to assume that |p(x)| ≤ 1
at the n + 1 points x ∈ {cos πin }ni=0 only. At the same time they showed that,
under this weaker assumption, the Markov inequality can be extended to the
complex plane.

They started out by taking a rather general point of view. Namely, given a
polynomial q with n distinct real zeros,

q(z) = c
n∏

ν=1

(z − xν), q′(z) = q(z)
n∑

ν=1

1

z − xν
, (5.1)

they tried to figure out the class K of polynomials and the conditions on q for
which the derivative q′ takes the values larger than the derivative of any other
polynomial p ∈ K. By the Lagrange interpolating formula with the nodes (xν),
we have

p′(z) =

n∑

ν=1

p′(xν)

q′(xν)

q(z)

z − xν
,

and it is suggestive to consider those p ∈ Pn that satisfy |p
′(xν)
q′(xν) | ≤ 1, so that

p′(z) = q(z)
n∑

ν=1

εν
z − xν

, εν ∈ [−1, 1]. (5.2)

It is clear that we may restrict ourselves to the polynomials for which εν = ±1,
in particular, for real x we obtain

|p′(x)| ≤
n∑

ν=1

∣∣∣∣
q(x)

x− xν

∣∣∣∣ . (5.3)

Now, one needs to find a way to compare the two sums in (5.1) and (5.2), and
Duffin–Schaeffer’s choice was the following elementary lemma from complex
analysis.

Lemma 5.1. Let p(z) = anz
n + · · ·a0 be any polynomial, and let q(z) =

bnz
n + · · · b0 be a polynomial with all its zeros lying to one side of a line ` in

the complex plane. If
|p(z)| ≤ |q(z)| on `,
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then

|p(k)(z)| ≤ |q(k)(z)| on ` , k = 1..n.

Theorem 5.2. Let q(z) = c
∏n
ν=1(z − xν) with distinct xν ∈ R, and let

p ∈ Pn be a polynomial that satisfies

|p′(x)| ≤ |q′(x)| at the zeros of q.

If all zeros of q lie to the left of some b ∈ R, and for some ξ0 ∈ R we have

|q(ξ0 + iy)| ≤ |q(b + iy)|, ∀y ∈ R , (5.4)

then

|p(k)(ξ0 + iy)| ≤ |q(k)(b+ iy)| , ∀y ∈ R . (5.5)

Proof. There is no loss of generality in assuming that ξ0 = 0.
1) Set

q̂(z) := c

n∏

ν=1

(z − |xν |), so that q̂′(z) = q̂(z)

n∑

ν=1

1

z − |xν |
.

Then, from (5.2), we derive

∣∣∣∣
p′(iy)

q(iy)

∣∣∣∣ =

∣∣∣∣∣

n∑

ν=1

εν
iy − xν

∣∣∣∣∣ =

∣∣∣∣∣

n∑

ν=1

εν(xν + iy)

x2
ν + y2

∣∣∣∣∣ =
∣∣∣∣∣

n∑

ν=1

ενxν
x2
ν + y2

+ i

n∑

ν=1

ενy

x2
ν + y2

∣∣∣∣∣

≤
∣∣∣∣∣

n∑

ν=1

|xν |
|xν |2 + y2

+

n∑

ν=1

iy

|xν |2 + y2

∣∣∣∣∣ =

∣∣∣∣∣

n∑

ν=1

1

iy − |xν |

∣∣∣∣∣ =

∣∣∣∣
q̂′(iy)

q̂(iy)

∣∣∣∣ .

Since clearly

|q̂(iy)| = |q(iy)|, ∀y ∈ R , (5.6)

we conclude that

|p′(iy)| ≤ |q̂′(iy)|, ∀y ∈ R . (5.7)

2) Now we are ready to apply Lemma 5.1. From (5.7), since all zeros of q̂′

lie to the right of the line ` = {iy}, we obtain

|p(k)(iy)| ≤ |q̂(k)(iy)|, ∀y ∈ R . (5.8)

Now we use Lemma 5.1 to evaluate |q̂(k)(iy)|. From (5.6) and (5.4) (with
ξ0 = 0), it follows that |q̂(iy)| ≤ |q(b + iy)| for all y ∈ R, and because all zeros
of q lie to the left of ` = iR, we conclude

|q̂(k)(iy)| ≤ |q(k)(b + iy)|, ∀y ∈ R , (5.9)

and that together with (5.8) proves (5.5). �
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Theorem 5.3 (Duffin–Schaeffer (1941)). If p ∈ Pn satisfies

|p(x)| ≤ 1, x ∈ {cos πin }ni=0 ,

then

|p(k)(x+ iy)| ≤ |T (k)
n (1 + iy)|, ∀x ∈ [−1, 1], ∀y ∈ R . (5.10)

Proof. Theorem 5.3 is reduced to Theorem 5.2 by means of the following
statements.

Lemma 5.4. If a polynomial p ∈ Pn satisfies

|p(x)| ≤ |Tn(x)| wherever |Tn(x)| = 1

then
|p′(x)| ≤ |T ′

n(x)| at the zeros of Tn .

Lemma 5.5. We have

|Tn(x+ iy)| ≤ |Tn(1 + iy)|, ∀x ∈ [−1, 1], ∀y ∈ R .

We omit the proofs, and make only short comments. The main remark is
that, unlike the rather general Theorem 5.2, these proofs depend on specific
properties of the Chebyshev polynomials.

1) The first lemma is derived by differentiating the Lagrange formula with
the nodes (cos πin ),

p(x) =

n∑

ν=0

p(tν)

ω′(tν)

ω(x)

x− tν
, ω(x) := (x2 − 1)T ′

n(x),

and using the differential equation (x2 − 1)T ′′
n (x) + xTn(x) = n2Tn(x) .

2) The second lemma is not that straightforward, and Duffin–Schaeffer’s
proof is a bit tricky and lengthy, where the specific form of the roots of Tn play
an important role. �

Comment 5.6. Duffin–Schaeffer’s original proof of Theorem 5.2 develops
a bit differently from our presentation. They use Lemma 5.1 only once, in
deriving the inequality (5.9) for k = 1, and then combine the latter with (5.7),
thus proving Theorem 5.2 firstly for k = 1. They proceed further by induction
on k, and for that they prove that

if |p(k)(x)| ≤ |q(k)(x)| wherever q(k−1)(x) = 0,

then |p(k+1)(x)| ≤ |q(k+1)(x)| wherever q(k)(x) = 0 .

We cut this step and used Lemma 5.1 to derive both estiamtes (5.8) and (5.9)
for all k at once.
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Comment 5.7. Lemma 5.1 appeared originally in 1926 in Bernstein’s mo-
nograph [47] as “Troisieme corollaire” on pp. 55-56, with a rather lengthy proof
(if you move all the way through). Later, Bernstein also showed [48] that it
is valid for a circle c instead of a line ` (by mapping c onto ` using a Möbius
transform). Duffin–Schaeffer were perhaps unaware of this result and in their
work gave their own short proof based on Rouche’s theorem (without making
it an independent statement). In 1947, de Bruijn [50] generalized the result for
the boundary of any convex domain and made the proof even shorter. His proof
is however too concise, so here is the one from Rivlin’s book [52] on p. 142.

Proof. Since q has no zeros in the half-plane H , and deg p ≤ deg q, the

function p/q is analytic in H , hence by the maximum principle maxz∈H |p(z)q(z) | =

maxz∈` |p(z)q(z) | ≤ 1. Thus, for any |λ| > 1, the polynomial p−λq has no zeros in

H , and by the Gauss-Lucas theorem the same its true for any of its derivative
p(k) − λq(k), hence |p(k)(z)| ≤ |q(k)(z) in H ∪ `. �

Comment 5.8. The Duffin–Schaeffer inequality (5.10) makes not much
sense for the points z = x+ iy outside the unit (or even smaller) disc, because
for such z a better estimate can be obtained by simpler tools.

Let q(x) =
∏n
ν=1(x−xν ) and let (τν) satisfy τ0 < x1 < τ1 < · · · < xn < τn.

Then, for any p ∈ Pn such that

|p(τν)| ≤ |q(τν)|,

we have the inequality

|p(k)(z)| ≤ |q(k)(z)|, z 6∈ D,

where D is the open disc with (ξ, η) its diameter. Here ξ (resp. η) is the

leftmost (rightmost) zero of the polynomial ω
(k)
n (ω

(k)
0 ), where ωi(x) = ω(x)

x−τi

and ω(x) =
∏

(x− τi).

So, under the assumption of Theorem 5.3, we have

|p(k)(x+ iy)| ≤ |T (k)
n (x+ iy)|, x+ iy 6∈ Drk

,

with rk being the rightmost zero of the polynomial [(x− 1)T ′
n(x)]

(k).

5.2 Duffin-Schaeffer inequalities with majorant

A natural question is whether the Duffin-Schaeffer refinement can be extended
to the Markov inequalities with a majorant. Namely, given a majorant µ(x) ≥
0, let ωµ ∈ Pn be the polynomial oscillating most between ±µ which is very
likely to attain the supremum

Mk,µ := sup
|p(x)| ≤µ(x)

‖p(k)‖ .
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If that is the case, then for δ∗ := (τ∗i ), the set of the oscillating points of ωµ,
we define a Duffin-Schaeffer-type constant

D∗
k,µ := sup

|p(x)|δ∗ ≤ |µ(x)|δ∗
‖p(k)‖ ,

and ask whether the two values are the same (as they are for µ ≡ 1). Moreover,

since for any µ we have ‖ω(k)
µ ‖ ≤Mk,µ ≤ D∗

k,µ, we may try to solve the Duffin-
Schaeffer problem even if the solution to the Markov problem is not known.

With Duffin-Schaeffer’s general Theorem 5.2, all we have to do is to establish
analogues of Lemmas 5.4-5.5 for the corresponding polynomial ωµ. However,
this turns out to be a rather difficult task.

First of all, the set δ∗ = (τ∗i ) where ωµ touches the majorant µ becomes
not that simple as with the case µ = 1, or is even unknown in the explicit
form. But even if you know it (say, as with µ(x) = (1 − x2)m/2) you have to
go through a rather delicate analysis to get that

|p(m0+1)(x)| ≤ |ω(m0+1)(x)| at the zeros of ω(m0)

(it may also be not true for the derivatives of order ≤ m0).
Secondly, as we mentioned, the inequality

|ω(m0)(x+ iy)| ≤ |ω(m0)(1 + iy)|

was not that easy to establish even for ω = Tn, and this is another quite serious
obstacle in getting Duffin-Schaeffer-type result even for the simplest majorants
(using Theorem 5.2).

This explains why there were only two results obtained in this direction.

Theorem 5.9 (Rahman–Schmeisser (1988)).

µ(x) =
√

1 − x2 ⇒
{
‖ω(k)

µ ‖ = Mk,µ < Dk,µ , k = 1;

‖ω(k)
µ ‖ = Mk,µ = Dk,µ , k > 1.

Theorem 5.10 (Rahman–Watt (1992)).

µ(x) = 1 − x2 ⇒ ‖ω(k)
µ ‖ = Mk,µ = Dk,µ , k > 2.

Recently, Nikolov [38] suggested a method that allowed to prove the in-
equality

|ω(x+ iy)| ≤ |ω(1 + iy)|, x ∈ [−1, 1], y ∈ R,

for a sufficiently large class of polynomials, namely the ultraspherical polyno-
mials ω = P (α,α) orthogonal with the weight (1− x2)α−1/2 (where α > −1/2).
This could lead to the Duffin–Schaeffer inequalities with the majorant µ(x) =
(1 − x2)−α/2 which is however unbounded for α > 0.
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5.3 Another proof of Duffin–Schaeffer inequality

Duffin and Schaeffer derived their inequality starting with the Lagrange repre-
sentation of the derivative of a polynomial p′ based on the roots of an a priori
given polynomial q. In 1992, we took a more natural approach [10] choosing
as a starting point the Lagrange formula with exactly those points where the
discrete restrictions on p are actually given. The main tool of this approach is
the following lemma about polynomials with interlacing zeros.

Lemma 5.11 (V. Markov (1892)). If the zeros of p(x) =
∏n
i=1(x − si)

and q(x) =
∏n
i=1(x− ti) interlace, i.e.,

si ≤ ti ≤ si+1 all i,

then the zeros of p(k)(x) =:
∏n−k
i=1 (x−ξi) and q(k)(x) =:

∏n−k
i=1 (x−ηi) interlace

too (and, moreover, strictly):

ξi < ηi < ξi+1 all i.

There are many (short) proofs of this remarkable lemma, the simplest one
is perhaps by Rivlin [52, p.125], but one may choose also from V. Markov [7,
§34], Bojanov [24], or take that of Vidensky [20] that we gave in Lemma 4.8.

We will write p � q if the polynomials p(x) =
∏n
i=1(x − ti) and q(x) =∏n

i=1(x − si) have interlacing zeros, i.e., ti ≤ si ≤ ti+1. Then the Markov’s
lemma can be written as: p � q implies p(k) ≺ q(k).

Now we begin another version of the book-proof of Markov’s inequality.

Book-proof. Given a polynomial q ∈ Pn and a sequence δ of n+ 1 points,
we will study the value

sup
|p(x)|δ≤|q(x)|δ

|p(k)(x)| , x ∈ [−1, 1] ,

and we want to find when it can be majorized by ‖q(k)‖. We obtain the Markov–
Duffin–Schaeffer inequality by setting δ = (cos πin ) and q = Tn.

Definition 5.12. Given δ = (τi)
n
i=0 on [−1, 1], set

ω(x) :=

n∏

i=0

(x− τi), ωi(x) :=
ω(x)

x− τi
,

and let (ηj) and (ξj) be defined as

η0 := −1, ω
(k)
0 (x) =: c

∏n−k
j=1 (x− ηj),

ω
(k)
n (x) =: c

∏n−k
j=1 (x− ξj), ξn−k+1 := +1.

For k ∈ N, we define

the Chebyshev intervals: eTj = [ηj−1, ξj ], eTδ = ∪n−k+1
j=1 eTj ,

the Zolotarev intervals: eZj = (ξj , ηj), eZδ = ∪n−ki=1 e
Z
j .
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Lemma 5.13. For any k, δ, j, the intervals eTj and eZj are non-empty and,
on any Chebyshev interval, we have

sgnω
(k)
0 (x) = · · · = sgnω(k)

n (x) on eTj .

Proof. We have ωn � · · · � ω0, hence ω
(k)
n ≺ · · · ≺ ω

(k)
0 . Thus, zeros

of ω
(k)
n and ω

(k)
0 strictly interlace, i.e., ξj < ηj < ξj+1, thus eTj and eZj are

well-defined. Further, the j-th zero of any ω
(k)
i is located between those of ω

(k)
n

and ω
(k)
0 , which are ξj and ηj , respectively, i.e. on the Zolotarev interval, hence

ω
(k)
i does not change its sign on the Chebyshev interval. It remains to notice

that the leading coefficients of all ωi’s are equal 1, thus at their j-th zeros they
change sign in the same way. �

Proposition 5.14. Let q(x) =
∏n
i=1(x − ti), and let δ = (τi)

n
i=0 be such

that τi−1 < ti < τi, i.e., q alternates in sign on δ. If p ∈ Pn satisfies

|p(x)| ≤ |q(x)| on δ, (5.11)

then, for any k,
|p(k)(x)| ≤ |q(k)(x)| on eTδ .

Proof. By the Lagrange interpolation formula with nodes (τi),

p(x) =

n∑

i=0

p(τi)

ω′(τi)

ω(x)

x− τi
=

n∑

i=0

p(τi)

ω′(τi)
ωi(x)

hence,

|p(k)(x)| =

∣∣∣∣∣

n∑

i=0

p(τi)

ω′(τi)
ω

(k)
i (x)

∣∣∣∣∣ ≤
n∑

i=0

∣∣∣∣
p(τi)

ω′(τi)

∣∣∣∣
∣∣∣ω(k)
i (x)

∣∣∣
(5.11)

≤
n∑

i=0

∣∣∣∣
q(τi)

ω′(τi)

∣∣∣∣
∣∣∣ω(k)
i (x)

∣∣∣ .

Now, both sequences q(τi) and ω′(τi) alternate in sign, hence sgn q(τi)
ω′(τi)

=

const for all i, and, by Corollary 5.13, on any Chebyshev interval eTj , we have

sgnω
(k)
i (x) = const for all i as well. Thus,

n∑

i=0

∣∣∣∣
q(τi)

ω′(τi)

∣∣∣∣
∣∣∣ω(k)
i (x)

∣∣∣ =

∣∣∣∣∣

n∑

i=0

q(τi)

ω′(τi)
ω

(k)
i (x)

∣∣∣∣∣ = |q(k)(x)|,

i.e., |p(k)(x)| ≤ |q(k)(x)|. �

Theorem 5.15 (Shadrin (1992)). Let q have all its zero in [−1, 1]. If

|p(x)| ≤ |q(x)| at the zeros of (x2 − 1) q′(x),

then

|p(k)(x)| ≤ max
{
|q(k)(x)|, | 1k (x2 − 1)q(k+1)(x) + xq(k)(x)|

}
.
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Proof. We have ω(x) = c
∏n
i=0(x− τi) = (x2 − 1)q′(x), hence

ω0(x) = (x− 1)q′(x), ω
(k)
0 (x) =:

∏n−k
j=1 (x− ηj),

ωn(x) = (x+ 1)q′(x), ω
(k)
n (x) =:

∏n−k
j=1 (x− ξj)

and by the previous proposition,

|p(k)(x)| ≤ |q(k)(x)| on eTj = [ηj−1, ξj ], (5.12)

so that it is sufficient to prove that

|p(k)(x)| < |r(x)| on eZj = (ξj , ηj) ,

where r(x) := rk(x) := 1
k (x2 − 1)q(k+1)(x) + xq(k)(x).

1) From the equalities ω
(k)
n/0(x) = (x± 1)q(k+1)(x)+ kq(k)(x), it follows that

r(x) =
1

k
(x + 1)ω

(k)
0 (x) − q(k)(x) =

1

k
(x− 1)ω(k)

n (x) + q(k)(x).

From the definition of (ξj) and (ηj), we have (x + 1)ω
(k)
0 (x)

∣∣
x∈{ηj} = 0 and

(x − 1)ω
(k)
n (x)

∣∣
x∈{ξj} = 0, hence

r(ηj) = −q(k)(ηj), r(ξj) = +q(k)(ξj), ∀j.

2) Comparing these relations with (5.12) we obtain the inequalities

|p(k)(x)| ≤ |r(x)| on (ηj), (ξj)

and, because q clearly does not change its sign on the Chebyshev interval
[ηj−1, ξj ], we also get the following sign pattern: sgn r(ηj−1) = −sgn r(ξj).

3) So, for any γ ∈ [0, 1], at the endpoints of eTj = [ηj−1, ξj ], we have

|γp(k)(x)| ≤ |r(x)|, sgn r(ηj−1) = −sgn r(ξj),

hence each of the polynomials r ± γp(k) ∈ Pn−k+1 has a zero in each eTj , i.e.,

the complete set of n− k + 1 zeros on eTδ .
4) Thus, for any γ ∈ [0, 1], there are no zeros of r ± γp(k) on eZj = (ξj , ηj),

therefore, |p(k)(x)| < |r(x)| and we are done. �

Theorem 5.16. Let q have all its zero in [−1, 1], and let

|p(x)| ≤ |q(x)| at the zeros of (x2 − 1) q′(x).

If
| 1k (x2 − 1)q(k+1)(x) + xq(k)(x)| ≤ ‖q(k)‖ ,

then
‖p(k)‖ ≤ ‖q(k)‖ .
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Lemma 5.17. For all n, and all x ∈ [−1, 1],

|T (k)
n (x)| ≤ T

(k)
n (1) , (5.13)∣∣∣ 1k (x2 − 1)T

(k+1)
n (x) + xT

(k)
n (x)

∣∣∣ ≤ T
(k)
n (1) , (5.14)

T
(k)
n (1) = n2[n2−12]···[n2−(k−1)2]

1·3···(2k−1) . (5.15)

Proof. We have

Tn(x) = cosnθ, T ′
n(x) =

n sinnθ

sin θ
, x = cos θ.

1) The equality sinnθ = 2 sin θ [cos(n−1)θ+ cos(n−3)θ+ · · · ] implies that,
for k = 1,

T (k)
n (x) =

n−k∑

i=0

aikTi(x), aik ≥ 0. (5.16)

Differentiating and expanding the terms on the right-hand side we arrive at
the same result for all k. Obviously, the maximum of the sum occurs at x = 1,
hence (5.13)

2) The equality sin2 nθ+cos2 nθ = 1 transforms into the identity 1−x2

n2 [T ′
n(x)]

2+
[Tn(x)]

2 = 1, whose differentiation gives

(x2 − 1)T ′′
n (x) + xT ′

n(x) = n2Tn(x).

Differentiating further we obtain the formula

(x2 − 1)T (k+1)
n (x) + (2k − 1)xT (k)

n (x) = [n2 − (k − 1)2]T (k−1)
n (x).

For x = 1 this reads: T
(k)
n (1) = n2−(k−1)2

2k−1 T
(k−1)
n (1), and that proves (5.15).

3) If k = 1, the left-hand side of (5.14) is evaluated as

|(x2 − 1)T ′′
n (x) + xT ′

n(x)| = |n2Tn(x)| ≤ n2 = T ′
n(1),

i.e., (5.14) is true for k = 1. If k > 1, then we also have

| 1k (x2 − 1)T ′′
n (x) + xT ′

n(x)| = | 1kn2Tn(x) + k−1
k xT ′

n(x)| ≤ n2 = T ′
n(1),

and from

T
(k)
n (x) =

∑n−k+1
i=0 bikT

′
i (x) , T

(k+1)
n (x) =

∑n−k+1
i=0 bikT

′′
i (x) , bik ≥ 0 ,

it follows that
∣∣∣ 1k (x2 − 1)T

(k+1)
n (x) + xT

(k)
n (x)

∣∣∣ =
∣∣∑

i bik[
1
k (x2 − 1)T ′′

i (x) + xT ′
i (x)]

∣∣

≤ ∑
i bik

∣∣ 1
k (x2 − 1)T ′′

i (x) + xT ′
i (x)

∣∣

≤ ∑
i bikT

′
i (1) = T

(k)
n (1) .
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Theorem 5.18. If p ∈ Pn satisfies

|p(cos πin )| ≤ 1, i = 0..n,

then

|p(k)(x)| ≤ max
{∣∣∣T (k)

n (x)
∣∣∣ , | 1k (x2 − 1)T (k+1)

n (x) + xT (k)
n (x)|

}
≤ T (k)

n (1) .

Comment 5.19. Kalliomiemi [28] was the first to notice that the discrete
restrictions of Duffin–Schaeffer imply the same pointwise estimate

|p(k)(x)| ≤ |T (k)
n (x)| on the Chebyshev set eT ,

as in the case of the stronger uniform restrictions ‖p‖ ≤ 1. He derived it using
the Voronovskaya criterion for the norm of the linear functional µ(p) = p(k)(x),
and such a result could have been easily extracted already from V. Markov’s
work, but nobody before paid attention to this fact.

Proposition 5.14 (which appeared in [10]) is from the same “very simple,
but not noticed before” class. For example, in [52, pp. 125-127], Rivlin gives
exactly the same statements as Lemmas 5.11 and 5.13 (they are going back to
V. Markov), and even uses them to establish the pointwise estimate outside the
interval, yet he does not notice that they also provide the pointwise estimate
on the Chebyshev intervals.

Comment 5.20. Let

D∗
k(x) := sup

|p(x)|δ∗≤1

|p(k)(x)| . (5.17)

where δ∗ = (τ∗i ) = (cos πin ). This is the exact upper bound for the value
of the k-th derivative of a polynomial p under the discrete Duffin–Schaeffer
restrictions.

By the interlacing property, at any given point x ∈ [−1, 1], with some i = ix,

sgnω
(k)
0 (x) = · · · = sgnω

(k)
i (x) = −sgnω

(k)
i+1(x) = · · · = −sgnω(k)

n (x)

and from the Lagrange formula it follows that the set of the extremal polyno-
mials for the pointwise problem (5.17) consists of those ps ∈ Pn that satisfy

sgn ps(τi) = −sgnps(τi+1), i 6= s, sgn ps(τs) = sgn ps(τs+1) .

The set of these polynomials may be viewed as a discrete analogue of the one-
parameter family of Zolotarev polynomials.

The next figure illustrates how the graphs of D∗
k, Mk and our majorant rk

relate to each other.
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1) On the Chebyshev intervals:

Mk(x) = D
∗
k(x) = |T (k)

n (x)| .

2) On the Zolotarev intervals

Mk(x) < D
∗
k(x) < |rk(x)| .

rk(x)

D∗

k(x)

Mk(x)

5.4 Duffin-Schaeffer inequalities for polynomials

and the Landau-Kolmogorov problem

Theorem 5.16 is much more convenient for applications than Theorem 5.2 of
Duffin-Schaeffer because, of the two assumptions

| 1k (x2 − 1)q(k+1)(x) + xq(k)(x)| ≤ |q(k)(1)| , (5.18)

|q(x+ iy)| ≤ |q(1 + iy)| ,

the first one is much easier to verify.
1) Theorem 5.16 was used to obtain many other estimates, the so-called

Duffin-Schaeffer (DS-) inequalities for polynomials.

Definition 5.21. The polynomial q(x) =
∏n
i=1(x − ti) and the mesh δ =

(τi)
n
i=0 such that τ0 ≤ t1 ≤ τ1 ≤ · · · ≤ tn ≤ τn are said to admit the DS-

inequality if
sup

|p(x)|δ≤|q(x)|δ
‖p(k)‖ = ‖q(k)‖ . (5.19)

Two typical results (see [37] for further references).
a) Bojanov and Nikolov [35] showed that (5.19) is true for the ultraspherical

polynomial q = P
(α,α)
n , and for the mesh δ consisting of the points of its local

extrema. Actually, we may take any polynomial q whose (k−1)-st derivative
has a positive Chebyshev expansion, i.e., q(k−1) =

∑
aiTi with ai ≥ 0.

b) Milev and Nikolov [36] obtained a refinement of Schur’s inequality for

the polynomials vanishing at the endpoints. Let T̂n(x) := Tn(x cos π
2n ) be the

Chebyshev polynomial stretched to satisfy T̂n(±1) = 0 and let (τi) be the
points of its local extrema. Then

p(±1) = 0, |p(τi)| ≤ 1 ⇒ ‖p(k)‖ ≤ T̂ (k)
n (1) .
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2) In principle, Theorem 5.15 can be applied to obtain Duffin-Schaeffer
inequalities with majorant, but it is unlikely that one can get here anything
more than results for µ(x) = (1 − x2)m/2 for small values of m.

3) Whereas Duffin-Schaeffer’s inequality gives only a uniform bound, The-
orem 5.18 provides also the pointwise estimate inside the interval [−1, 1]. This
was used by Eriksson [27] to derive the Landau-Kolmogorov inequality

‖f (k)‖ ≤ n− k

n

‖T (k)
n ‖

‖Tn‖
‖f‖ +

k

n

‖T (k)
n ‖

‖T (n)
n ‖

‖f (n)‖ .

5.5 Erroneous proof by Duffin–Karlovitz

In 1984, Duffin and Karlovitz [4] revisited the Duffin-Schaeffer inequality and
tried to generalize it from polynomials to arbitrary Chebyshev systems.

They started with a formalization of the problem. The discrete restriction
|p(x)| ≤ 1 on a set of n + 1 points in [−1, 1] is equivalent to bounding by the
node norm

‖f‖δ := max
i

|f(τi)|

that is defined for any given knot-sequence δ = (τi)
n
i=0, where

−1 ≤ τ0 < τ1 < . . . < τn ≤ 1.

Problem 5.22 (Duffin–Schaeffer inequality). For integer n, k, find

Dk := inf
δ∈[−1,1]

sup
‖p‖δ≤1

‖p(k)‖ . (5.20)

In these notations the Markov–Duffin–Schaeffer results state that

Mk = Dk = ‖T (k)
n ‖,

and the Chebyshev polynomial Tn, which equioscillates (n+ 1) times between
±1, is extremal for both problems. In particular, the n+1 points of its equioscil-
lation form the set δ∗ giving the infimum in (5.20). Duffin and Karlovitz tried
to find out which properties of Tn are crucial for such a result, and they came
to the following conclusion.

Theorem 5.23 (Duffin–Karlovitz (1984)). Let p∗ ∈ Pn and δ∗ = (τ∗i )
give the infimum for Dk, i.e.

Dk = ‖p(k)
∗ ‖ , ‖p∗‖δ∗ = 1.

Then τ∗0 = −1, τ∗n = +1, and

p′∗(τ
∗
i ) = 0, i = 2, . . . , n−1.
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“Proof”. Duffin and Karlovitz reasoned as follows.
1) Denote by `i the Lagrange fundamental polynomials corresponding to

the knot-sequence δ. Then, since p(x) =
∑n
i=0 p(τi)`i(x), we have

Dk,δ := sup
x∈[−1,1]

sup
‖p‖δ=1

|p(k)(x)| = sup
x∈[−1,1]

n∑

i=0

|`(k)i (x)| =:
n∑

i=0

|`(k)i (xδ)| ,

and it is clear that the polynomial that attains the value Dk,δ is given by

pδ(x) =
n∑

i=0

pδ(τi)`i(x) , pδ(τi) = sgn `
(k)
i (xδ) = ±1, (5.21)

so that

Dk,δ = ‖p(k)
δ ‖ = |p(k)

δ (xδ)| .

2) Two remarks. Firstly, the polynomials `
(k)
i vanish of course at certain

x, but one can show that, at the point x = xδ that is a local maximum of the

polynomial p
(k)
δ , all the values `

(k)
i (xδ) are non-zero (as we wrote in (5.21)).

Secondly, an optimal δ∗ contains n+1 disinct nodes (for if the distance between
two consecutive nodes in δ tends to zero, then, the valueDk,δ becomes arbitrary
large).

3) Let p∗ and δ∗ be optimal for Dk, i.e.

Dk = inf
δ
‖p(k)
δ ‖ = ‖p(k)

∗ ‖ = p
(k)
∗ (x∗) , ‖p∗‖δ∗ = 1.

Now, we perturb δ∗ by an amount ε, i.e., τ εi = τ∗i ± εi, and let

Dk,ε = ‖p(k)
ε ‖ = p(k)

ε (xε) .

Then the inequality Dk ≤ Dk,ε reads

p
(k)
∗ (x∗) ≤ p(k)

ε (xε) . (5.22)

Since p
(k)
∗ has a global maximum at x∗, we also have p

(k)
∗ (xε) ≤ p

(k)
∗ (x∗), hence

p
(k)
∗ (xε) ≤ p(k)

ε (xε). (5.23)

4) We may assume that, if ε → 0, then xε → x∗, pε → p∗, `i,ε → `i,∗,
therefore

sgn p∗(τ
ε
i ) = sgn p∗(τ

∗
i )

(5.21)
= sgn `

(k)
i,∗ (x∗) = sgn `

(k)
i,ε (xε)

(5.21)
= sgn pε(τ

ε
i ) 6= 0.

(5.24)
5) Now suppose that, for some i0,

|p∗(τ∗i0 )| = 1, p′∗(τ
∗
i0 ) > 0.
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Take τ εi0 = τ∗i0 + εi0 and τ εi = τ∗i otherwise, so that

|p∗(τ εi0)| > 1 = |pε(τ εi0 )| , p∗(τ
ε
i ) = pε(τ

ε
i ) = ±1.

Then, taking in account the sign pattern in (5.24), we obtain

|p(k)
∗ (xε)| =

∣∣∣∣∣

n∑

i=0

p∗(τ
ε
i )`

(k)
i,ε (xε)

∣∣∣∣∣ >
∣∣∣∣∣

n∑

i=0

pε(τ
ε
i )`

(k)
i,ε (xε)

∣∣∣∣∣ = |p(k)
ε (xε)| ,

a contradiction to (5.23). Similarly, if p′(τ∗i0) < 0, then we take τ εi0 = τ∗i0 − εi0 ,
and arrive at the same contradiction. �

It is a very nice “proof” and it is not easy to find what is wrong. I provide my
explanation in the comments below, so that an interested reader may attempt
this exercise.

Comment 5.24. The proof is correct if we assume that, for an optimal δ∗,
there is a unique optimal polynomial p∗, and it seems that Duffin & Karlovitz
overlooked that this could not be the case.

Formally, wrong is the sequel of the arguments. In Step 4, we may assume
that if ε → 0, then the sign pattern (5.24) is valid, but one should add “going
to a subsequence if necessary”. And going to a subsequence of (ε) (with p∗ and
x∗ fixed) means that, in Step 5, we are not free to choose ε as we want to. Say,
if p′∗(τi0 ) > 0, then a subsequence may turn out to be with the entries εi0 < 0.

The assumption that an optimal p∗ satisfies p′∗(τi0 ) > 0 is not contradictory
if (and only if), for the sequence of δε defined as in Step 5, the sequences of
pε and xε would tend to some other p̂∗ and x̂∗, respectively, which are also
optimal for Dk. Moreover, such p̂∗ must satisfy p̂′∗(τi0 ) < 0

Comment 5.25. Theorem 5.23 is of course true for polynomials (by Duffin–
Schaeffer’s inequality). It may well be true for the Chebyshev systems, although
Duffin–Karlovitz failed to prove it. However, its analogue for the Duffin–
Schaeffer problem with majorant is no longer true. Consider the two values

Mk,µ = sup
|p(x)|≤µ(x)

‖p(k)‖ , Dk,µ := inf
δ∈[−1,1]

sup
|p(x)|δ≤µ(x)δ

‖p(k)‖

Then, for the majorant µ(x) =
√

1 − x2, and for k = 1 we have

D1,µ > M1,µ = ‖ω′
µ‖ .

This is the result of Rahman–Schmeisser mentioned in Theorem 5.9.

5.6 Inequality for the oscillating polynomials

Generally, in the Markov–Duffin–Schaeffer problem with majorant we want to
find the values

Mk,µ = sup
|p(x)|≤µ(x)

‖p(k)‖ , Dk,µ := inf
δ∈[−1,1]

sup
|p(x)|δ≤|µ(x)|δ

‖p(k)‖ .
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For any µ ≥ 0 there is a unique polynomial ωµ ∈ Pn, the so-called snake-
polynomial, that oscillates n+ 1 times between ±µ, i.e., such that

|ωµ(x)| ≤ µ(x) , x ∈ [−1, 1] ,

and on some set of n+ 1 points δ∗ = (τ∗i )ni=0 we have

ωµ(τ
∗
i ) = (−1)iµ(τ∗i ) .

The question of interest is for which majorants µ it is this polynomial ωµ that
gives the supremum to both values above (as in the case µ ≡ 1), in particular,
whether it is the set δ∗ that gives the infimum to Dk,µ. Notice that, for any
majorant µ,

‖ω(k)
µ ‖ ≤Mk,µ ≤ Dk,µ ≤ D∗

k,µ,

where
D∗
k,µ := sup

|p(x)|δ∗≤|µ(x)|δ∗
‖p(k)‖ .

so it may well be sufficient to estimate from above the valueD∗
k,µ only. However,

even with the simplest majorants, the location of the nodes τ∗i is not known,
and we have to find some general arguments (as Duffin–Karlovitz tried to).

In 1996, we tried [11] to revive approach of Duffin-Karlovitz, where instead
of varying knots along the graph of the majorant µ, we decided to vary them
along the graph of ωµ.

It is clear that the snake-polynomial ωµ has n zeros inside the interval
[−1, 1], ωµ(x) = c

∏n
i=1(x− ti), and that these zeros interlace with (τ∗i ), i.e.,

−1 ≤ τ∗0 < t1 < τ∗1 < · · · < tn < τ∗n ≤ 1 .

Denote by ∆ω the class of knot-sequences δ = (τi) with the same interlacing
properties. Then

D∗
k,µ = sup

|p(x)|δ∗≤|µ(x)|δ∗
‖p(k)‖

= sup
|p(x)|δ∗≤|ω(x)|δ∗

‖p(k)‖ ≤ sup
δ∈∆ω

sup
|p(x)|δ≤|ω(x)|δ

‖p(k)‖ =: Sk,ω ,

and we may try to evaluate the value Sk,ω in terms of ‖ω(k)‖. It turns out that
the pointwise problem,

Sk,ω(x) := sup
δ∈∆ω

sup
|p(x)|δ<|ω(x)|δ

|p(k)(x)| ,

has a remarkable solution.

Proposition 5.26 (Shadrin (1996)). Let ω(x) =
n∏
i=1

(x−ti), ti ∈ [−1, 1].

Then
Sk,ω(x) = max

{
|ω(k)(x)|, max

i
|φ(k)
i (x)|

}
,
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where

φi(x) := ω(x)
1 − xti
x− ti

, i = 1, . . . , n.

Proof. Our original proof followed the idea of Duffin–Karlovits: we showed
that variation of any single knot τi ∈ [ti, ti+1] does not result in a local ex-
tremum of the value |p(k)(x)|, hence the value Sk,ω is achieved when τi is either
ti ot ti+1. A simpler proof was given later by Nikolov [37]. �

The polynomials φi are quite interesting. They have the same zeros as ω
except one ti, and because of the factor 1−xt

x−t they satisfy the inequalities

|φi(z)| > |ω(z)|, z ∈ D1, |φi(z)| ≤ |ω(z)|, z 6∈ D1,

where D1 is the unit open disc in the complex plane.
From this proposition and considerations at the beginning of the section we

obtain the statement that gives a new way of deriving Markov–Duffin-Schaeffer
inequalities with a majorant.

Theorem 5.27. Given a majorant µ ≥ 0, let ωµ ∈ Pn be the corresponding
snake-polynomial. If

max
i

‖φ(k)
i ‖ ≤ ‖ω(k)

µ ‖, (5.25)

then
Mk,µ = Dk,µ = ‖ω(k)

µ ‖
(

= Sk,ω
)
. (5.26)

An advantage of studying the inequality (5.25) is that this is purely a poly-
nomial problem on the class of polynomials ω having all their zeros in [−1, 1],
with quite a simple and explicitly given polynomials φi involved. These polyno-
mials may be viewed as the most extreme case of the Zolotarev-like polynomials.

However, it was only recently when some real improvements have been
made.

1) Nikolov [39] proved that

ω = Tn ⇒ (5.25) (hence (5.26) for µ ≡ 1).

This gives one more proof of the classical Markov–Duffin–Schaeffer inequality.
2) Recently, in our joint paper with Nikolov [32], we extended this result:

ω(k−1) =
∑

aiTi, ai ≥ 0 ⇒ (5.25) (hence (5.26)).

This allows to establish the Markov–Duffin–Schaeffer inequalities for a large
class of majorants, e.g.

µ2(x) =
∏m
i=1(1 + a2

ix
2), k ≥ 1;

or µ2(x) = (1 − x2)m, k > m.

This improves results of Vidensky (Theorem 4.9) and Pierre–Rahman (Theo-
rem 2.11).
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5.7 Conclusion

More than a hundred years have passed since Vladimir Markov, “a student of
Sankt-Petersburg University”, proved his inequality. Since then it has received
a dozen alternative proofs, hundreds of generalizations and it is still a lively
part of Approximation Theory. So much power in just a single line:

‖p(k)‖ ≤ ‖T (k)
n ‖ ‖p‖, ∀p ∈ Pn.
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