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1 Introduction

V. Markov [4] proved that if p ∈ Pn, the space of algebraic polynomials of degree n, and

|p(x)| ≤ 1, x ∈ [−1, 1],

then on the same interval
‖p(k)‖ ≤ T (k)

n (1) , (1.1)

with equality only if p = γTn, where |γ| = 1. Here Tn(x) := cosn arccosx is the Chebyshev
polynomial of degree n, and ‖ · ‖ := ‖ · ‖C[−1,1] is the usual uniform norm.

Duffin and Schaeffer [2] strengthened Markov inequality showing that it remains valid under
the weaker assumption

|p(x)| ≤ 1, x ∈ {cos πi
n }n

i=0,

where x = cos πi
n are exactly the points where |Tn(x)| = 1. They also showed that, if restrictions

|p(x)| ≤ 1 are imposed at any other set of (n+ 1) points in [−1, 1], then Markov bound (1.1) is no
longer true.

Here we consider the problem of estimating the norm ‖p(k)‖ under restriction

|p(x)| ≤ µ(x), x ∈ I,

where µ is an arbitrary non-negative majorant, and I is either the whole interval [−1, 1], or a
discrete set δ of n+ 1 points in [−1, 1].

So, the problems are the following.

Problem 1.1 (Markov inequality with a majorant) For n, k ∈ N, and a majorant µ ≥ 0, find

Mk,µ := sup
|p(x)|≤µ(x)

‖p(k)‖ (1.2)

Problem 1.2 (Duffin–Schaeffer inequality with a majorant) For n, k ∈ N, and a majorant µ ≥ 0,
find

Dk,µ := inf
δ∈[−1,1]

sup
|p(x)|δ≤|µ(x)|δ

‖p(k)‖ (1.3)

(The idea of such setting is borrowed from Duffin–Karlovitz [3].)

In these notations, the results of Markov and Duffin–Schaeffer read:

µ ≡ 1 ⇒ Mk,µ = Dk,µ = ‖T (k)
n ‖,

and the Chebyshev polynomial Tn (which oscillates most between ±1) is extremal for both prob-
lems. In particular, the set δ∗ of its n+ 1 equioscillation points gives the infimum in (1.3).

1



So, the question of interest is: for which other majorants µ the polynomial ω = ωµ that oscil-
lates most between ±µ, the so called snake-polynomial, gives solution to both problems (1.2)-(1.3),
i.e., when do we have the equalities

Mk,µ
?
= ‖ω(k)

µ ‖ ?
= Dk,µ .

Notice that, for any majorant µ, we have

‖ω(k)
µ ‖ ≤Mk,µ ≤ Dk,µ ,

so the poblem will be settled once we show that Dk,µ ≤ ‖ω(k)
µ ‖.

In this paper we establish Duffin-Schaeffer (and, thus, Markov) inequalities for a wide range
of majorants µ.

2 Results

2.1 Earlier results

There are not so many results on Markov-Duffin-Schaeffer inequalities with majorants, therefore
we decided to mention all of them (to the best of our knowldege). We display them in two tables
and make short comments on them. A detailed account on different proofs of classical Markov
inequality and its generalizations could be found in the recent survey [13].

Markov inequalities with a majorant

Majorant µ(x) Derivative k Degree n Value Mk Authors

0◦ 1 all k all n T
(k)
n (1) V. Markov (1892)

1◦
p

1 + (a2 − 1)x2 all k all n ω
(k)
n (1) Vidensky (1958)

2◦
√

ax2 + bx + 1 k = 1 all n max |ω′

n(±1)| Vidensky (1958)

3◦
p

Qm

i=1(1 + c2
i x

2) k = 1 n ≥ m ω′

n(1) Vidensky (1959)

4◦
p

(1 + c2
1x

2)(1 + c2
2x

2) all k n ≥ c2
1,2+2 ω

(k)
n (1) Vidensky (1971)

5◦
p

(1 − x)m1(1 + x)m2 k ≥ m1+m2

2
n ≥ m1+m2

2
‖ω(k)

n−1‖ or ‖ω(k)
n ‖ Pierre and

Rahman (1981)

6◦ 1 − x2 k = 1 n ≥ 2 ‖ω′

n‖ Pierre, Rahman and

Schmeisser (1989)

7◦
√

1 − x2 or 1 − x2 all k n ≥ 2 ω
(k)
n (1) from 1◦ and 5◦-6◦

Let us make some comments.
1◦-7◦. All majorants are of the form

µ(x) =
√
R2m(x), R2m ∈ P2m,

where R2m is a non-negative polynomial of an even degree 2m. For the polynomials p ∈ Pn with
a majorant of this kind, Vidensky [14] found (a kind of) explicit majorant Vk(x) for |p(k)(x)| (i.e.,
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a bound for the pointwise Markov inequality). Also, in this case, there is an explicit (again, to a
certain extent) expression for the corresponding snake-polynomial ωn of degree n if n ≥ m (see
§ 10.1).

1◦-4◦. Those are particular cases where Vidensky managed to proceed from an intermediate
pointwise estimate |p(k)(x)| ≤ Vk(x) to a bound for the uniform norm ‖p(k)‖.

4◦. As we have mentioned, for µ =
√
R2m, a natural restriction on degree n of ωn is

n ≥ m,

thus restriction on n in 4◦ looks artificial (and we remove it in our results).
5◦. For this case, Pierre and Rahman applied original variational approach of V. Markov. The

exact value of ‖ω(k)
n ‖ is generally not known unless it is equal to ω

(k)
n (±1) or ω

(k)
n (0), this is perhaps

why, in 5◦, two candidates for the extremal function appear. We will show that, for symmetric

majorants, we have Mk,µ = ω
(k)
n (1).

6◦. This case required special consideration as it was not covered by 5◦.
7◦. We put this case in a separate line to compare it with the corresponding results in Duffin-

Schaeffer-type inequalities (which follow).

Duffin-Schaeffer inequalities with a majorant

Majorant µ Derivative k Degree n Value Dk Authors

8◦ 1 all k all n T
(k)
n (1)

Duffin, Schaeffer (1941)

Shadrin (1992)

9◦
√

1 − x2
k = 1

k ≥ 2

all n

all n

D1 > ‖ω′
n‖

Dk = ω
(k)
n (1)

Rahman and

Schmeisser (1988)

10◦ 1 − x2 k ≥ 3 all n ω
(k)
n (1) Rahman, Watt (1992)

11◦ any µ
k = n, n− 1

k = n− 2
all n |ω(k)

n (±1)| Shadrin (1992)

Nikolov (2001)

8◦-10◦. There are two different proofs of the classical Duffin-Schaeffer inequality (with the
unit majorant). The cases 9◦-10◦ were obtained using original Duffin-Schaeffer method [2], but
the second method [11] is applicable for those majorants as well. However, further extensions of
both methods, even to the majorants (1−x2)m/2, are hardly possible, and that was our motivation
for searching a new method.

9◦. The case k = 1 for the majorant µ(x) =
√

1 − x2, when ω
(1)
n (1) = M1 < D1, is very

interesting as it shows that equality Mk = Dk should not be always expected.
10◦. Comparing 7◦ with 10◦ we see that, for the majorant µ(x) = 1 − x2, the Markov-type

inequality Mk,µ = ω
(k)
n (1) holds for all k ≥ 1, while the Duffin-Schaeffer-type result Dk,µ =

ω
(k)
n (1) is established only for k ≥ 3. However, the previous case suggests that, for the majorants

(1 − x2)m/2, the equality Mk,µ = Dk,µ might not be true for small k.

2.2 New results

Definition 2.1 Denote by Ω the class of polynomials ω such that

0) ω(x) = c

n∏

i=1

(x− ti), ti ∈ [−1, 1];

1a) ‖ω‖C[0,1] = ω(1), 1b) ‖ω‖C[−1,0] = |ω(−1)|;
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2) ω(x) =

n∑

i=0

aiTi(x), ai ≥ 0.

In particular, this class contains odd and even polynomials with positive Chebyshev expansion
(2), i.e., polynomials of the form

ω(x) =
∑

i

a2i+νT2i+ν(x), a2i+ν ≥ 0, ν ∈ {0, 1}.

Equality (1a) follows, of course, from (2), but assumptions (1)-(2) are independent in the sense
that they are used at different stages of the proof, and may well be relaxed. For example, we
strongly believe that our main Theorem 2.2 is valid under assumption (2) only.

Our main result (with respect to the Markov-Duffin-Schaeffer inequalities with a majorant) is
the following.

Theorem 2.2 Given a majorant µ, let ωµ be the corresponding snake-polynomial of degree n. Then we
have

ω(k−1)
µ ∈ Ω ⇒ Mk,µ = Dk,µ = ω(k)

µ (1) .

Example 2.3 The following table gives some examples of majorants to which this theorem can be
applied.

Duffin-Schaeffer inequalities with a majorant

Majorant µ Derivative k Degree n Value Dk

12◦
√∏m

i=1(1 + c2ix
2) all k n ≥ m ω

(k)
n (1)

13◦ (1 − x2)m/2 k ≥ m+ 1 n ≥ m ω
(k)
n (1)

14◦
√
Rm(x2) k ≥ m+ 1 n ≥ m ω

(k)
n (1)

15◦ any µ(x) = µ(−x) k ≥ n/2 all n ω
(k)
n (1)

16◦
√

(1 + c21x
2)(1 + (a2

2 − 1)x2) k ≥ 2 n ≥ 2 ω
(k)
n (1)

17◦
√
ax2 + bx+ 1

k = 2

k ≥ 3

n ≥ 1
µ(±1)

all n
ω

(k)
n (1)

12◦. This case extends the Markov-type results 3◦-4◦ of Vidensky to arbitrary k, and also
strengthens them in the spirit of Duffin-Schaeffer.

13◦-14◦. The case 13◦ is of course a particular case of 14◦. It covers previous Duffin-Schaeffer-
type results 9◦-10◦, and srengthens the corresponding Markov-type inequality 5◦ for symmetric
majorants. Note that our Duffin-Schaeffer-type results are valid starting from k = m + 1, while
those of Markov type starts with k = m, but this could be a necessary restriction, The case 14◦

shows that the restriction k ≥ m + 1 provides, in fact, Markov-Duffin-Schaeffer-type results for
all symmetric polynomial majorants.

15◦. This is an expected extension of 11◦.
16◦. This majorant is of the form which is in a sense intermediate between the cases 12◦ and

13◦.
17◦. This is an example of a non-symmetric majorant.
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3 Preliminaries

We are dealing with the Markov–Duffin–Schaeffer problem with a majorant µ, where we want to
find the values

Mk,µ = sup
|p(x)|≤µ(x)

‖p(k)‖ , Dk,µ := inf
δ∈[−1,1]

sup
|p(x)|δ≤|µ(x)|δ

‖p(k)‖ .

For any µ ≥ 0 there is a unique polynomial ωµ ∈ Pn, the so-called snake-polynomial, that oscil-
lates n+ 1 times between ±µ, i.e., such that

|ωµ(x)| ≤ µ(x) , x ∈ [−1, 1] ,

and on some set of n+ 1 points δ∗ = (τ∗i )n
i=0 we have

ωµ(τ∗i ) = (−1)iµ(τ∗i ) .

The question of interest is: for which majorants µ it is this polynomial ωµ that gives extremum
to both values above (as in the case µ ≡ 1), in particular, whether it is the set δ∗ that gives the
infimum value Dk,µ.

Notice that, for any majorant µ, we have

‖ω(k)
µ ‖ ≤Mk,µ ≤ Dk,µ ≤ D∗

k,µ,

where
D∗

k,µ := sup
|p(x)|δ∗≤|µ(x)|δ∗

‖p(k)‖ .

so it would be enough to prove that D∗
k,µ = ‖ω(k)

m ‖. However, even with the simplest majorants,
the location of the nodes τ∗i is not known explicitly, so we have to find some arguments that avoid
the use of them.

It is clear that the snake-polynomial ωµ has n zeros inside the interval [−1, 1], i.e., ωµ(x) =
c
∏n

i=1(x− ti), and that these zeros interlace with the “touch-points” (τ∗i ), i.e.,

−1 ≤ τ∗0 < t1 < τ∗1 < · · · < tn < τ∗n ≤ 1 .

Denote by ∆ω the class of knot-sequences δ = (τi) with the same interlacing properties,

−1 ≤ τ0 < t1 < τ1 < · · · < tn < τn ≤ 1 .

Then

D∗
k,µ = sup

|p(x)|δ∗≤|µ(x)|δ∗
‖p(k)‖ = sup

|p(x)|δ∗≤|ω(x)|δ∗
‖p(k)‖

≤ sup
δ∈∆ω

sup
|p(x)|δ≤|ω(x)|δ

‖p(k)‖ =: Sk,ω ,

and respectively

‖ω(k)
µ ‖ ≤Mk,µ ≤ Dk,µ ≤ D∗

k,µ ≤ Sk,ω . (3.1)

So, now, we may try to evaluate the value Sk,ω in terms of ‖ω(k)
µ ‖. It turns out that the pointwise

problem, of finding the values

sk,ω(x) := sup
δ∈∆ω

sup
|p(x)|δ<|ω(x)|δ

|p(k)(x)| , x ∈ [−1, 1],

has a remarkable solution.
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Proposition 3.1 ([13],[5]) Let ω(x) =
n∏

i=1

(x− ti), ti ∈ [−1, 1]. Then

sk,ω(x) = max
{
|ω(k)(x)|, max

i
|φ(k)

i (x)|
}
, (3.2)

where

φi(x) := ω(x)
1 − xti
x− ti

, i = 1, . . . , n. (3.3)

Proof. The original proof by Shadrin [12] followed the idea of Duffin–Karlovits [3]: it was shown
that variation of any single knot τi ∈ (ti, ti+1) does not result in a local extremum of the value
p(k)(x), hence the value sk,ω(x) is achieved when τi is either ti ot ti+1. A simpler proof based on
the properties of Lagrange interpolating polynomials was given later by Nikolov [5]. �

The polynomials φi are quite interesting. They have the same zeros as ω except one ti, and,
because of the factor 1−xti

x−ti
, they satisfy the inequalities

|φi(z)| ≥ |ω(z)|, z ∈ D1, |φi(z)| < |ω(z)|, z 6∈ D1,

where D1 is the unit open disc in the complex plane. These polynomials may be viewed as the
most extreme case of the Zolotarev-like polynomials.

From the pointwise equality (3.2), since Sk,ω = maxx sk,ω(x), it follows that Sk,ω is just the
maximum of the max-norms of the polynomials on the right-hand side. Moreover, we can make
a minor simplification using the fact that

sk,ω(±1) = |ω(k)(±1)| ,

which means that the values of φis at the endpoints are inessential, and therefore it is only the
local maxima of φis that matter. To this end, we introduce the “local norm”

‖f‖∗ := max{|f(x)| : f ′(x) = 0} ,

and the following statement is immediate.

Corollary 3.2 Let ω(x) =
n∏

i=1

(x− ti), ti ∈ [−1, 1]. Then

Sk,ω = max
{
‖ω(k)‖, max

i
|φ(k)

i ‖∗
}
. (3.4)

From this corollary and the chain of inequalities in (3.1) we obtain the statement that gives
a new way (other than in [2] and [11]) of deriving Markov-Duffin-Schaeffer inequalities with a
majorant.

Proposition 3.3 Given a majorant µ ≥ 0, let ωµ ∈ Pn be the corresponding snake-polynomial. If

max
i

‖φ(k)
i ‖∗ ≤ ‖ω(k)

µ ‖, (3.5)

then
Mk,µ = Dk,µ = ‖ω(k)

µ ‖
(

= Sk,ω

)
. (3.6)

An advantage of studying the inequality (3.5) is that this is purely a polynomial problem on
the class of polynomials ω having all their zeros in [−1, 1], with rather simple and explicitly given
polynomials φi involved.

A disadvantage is that the high derivatives of φis are still difficult to analyze, but we may

reduce the problem to studying the behaviour of φ̂
(m)
i for small m, say, m = 0, 1, where φ̂i are the

polynomials defined in the same way as in (3.3) but with respect to ω̂ = ω
(k−m)
µ .
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Corollary 3.4 Given a majorant µ ≥ 0, let ωµ ∈ Pn be the snake-polynomial for µ, and let ω̂ := ω
(k−m)
µ .

If

max
i

‖φ̂(m)
i ‖∗ ≤ ‖ω̂(m)‖

(
= ‖ω(k)‖

)
, (3.7)

then
Mk,µ = Dk,µ = ‖ω(k)

µ ‖
(

= Sm,bω

)
. (3.8)

Proof. The proof is based on the fact that if a polynomial p satisfies

|p(τi)| ≤ |ω(τi)| ,

where δ = (τi) is any set of n+ 1 points which interlace with the zeros of ω, then its derivative of
any order k −m satisfies similar inequalities:

|p(k−m)(ηj)| ≤ |ω(k−m)(ηj)| ,

where δ̂ = (ηj) is some set of (n+1) − (k−m) points which interlace with the zeros of ω(k−m).
Therefore, with ω̂ := ω(k−m), we have

sk,ω(x) = sup
δ∈∆ω

sup
|p(x)|δ<|ω(x)|δ

|p(k)(x)|

≤ sup
bδ∈∆bω

sup
|q(x)|eδ

<|bω(x)|bδ

|q(k)(x)| = sm,bω(x) ,

hence
‖ω(k)

µ ‖ ≤Mk,µ ≤ Dk,µ ≤ D∗
k,µ ≤ Sk,ω ≤ Sm,bω .

From assumption (3.7), due to (3.4), we obtain Sm,bω = ‖ω̂(m)‖ = ‖ω(k)
µ ‖, and that implies (3.8). �

Nikolov [6] proved that

ω̂ = ω(k) = T (k)
n ⇒ (3.7) is valid with m = 0 (hence (3.8) for µ ≡ 1),

and that gives one more proof of the classical Duffin-Schaeffer inequality.
In this paper, using some ideas from [6], we show that (3.7) is true with m = 1 for the polyno-

mials ω̂ from the class Ω which we defined in (2.1) in the following way.

0) ω̂(x) =
∏n

i=1(x− ti)

1a) ‖ω̂‖C[0,1] = |ω̂(1)|, 1b) ‖ω̂‖C[−1,0] = |ω̂(−1)|
2) ω̂ =

∑n
j=0 ajTj, aj ≥ 0.

Namely, we prove the following statement.

Theorem 3.5 Let ω̂ ∈ Ω. Then
max

i
‖φ̂′i‖∗ ≤ ‖ω̂′‖ .

From this result, Theorem 2.2 easily follows.

Proof of Theorem 2.2. By assumption of Theorem 2.2, ω̂ := ω(k−1) belongs to the class Ω. By
Theorem 3.5, this inclusion implies the inequalities (3.7) which in turn, by Corollary 3.4, imply
(3.8), i.e. the statement of the theorem. �

The rest of the paper consists of two parts. In the first part (§4-§8), we prove Theorem 3.5. The
proof is a bit lengthy, so we describe its structure in §4. In the second part (§9-§10), we take some
particular µ’s and k’s (given in Example 2.3), and verify that, for the snake-polynomial ωµ, the
polynomial ω̂ = ω(k−1) belongs to the class Ω. Thus, for those particular majorants, by Theorem
2.2, we have

Mk,µ = Dk,µ = ω(k)
µ (1).
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4 Structure of the proof of Theorem 3.5

The proof consists of three parts.

Step 1. In § 5, we introduce two functions ψ1(x, t) and ψ2(x, t) with the properties

φ′′i (x) = 0 ⇒ φ′i(x) = ψν(x, ti).

That means that both ψν(·, ti) interpolate φ′i at the points of their local extrema, therefore

max
i

‖φ′i‖∗[0,1] ≤ max
x∈[0,1]

max
ti

min
ν=1,2

|ψν(x, ti)| . (4.1)

Step 2. In § 6-§8, we show that, if

‖ω‖C[0,1] ≤ ω(1), (4.2)

then, with some specific functions fj of the form (4.3) below, we have

1) |ψ1(x, ti)| ≤ max (|f1(x)|, f2(x)|, |f3(x)|), 0 ≤ x ≤ 1, −1 ≤ x− ti
1 − xti

≤ 1

2
;

2) |ψ2(x, ti)| ≤ max (|f1(x)|, |f2(x)|), t1 ≤ x ≤ 1;

3) |ψ2(x, ti)| ≤ max (|f1(x)|, |f2(x)|, |f4(x)|) 0 ≤ x ≤ t1,
1

2
≤ x− ti

1 − xti
≤ 1.

Combined with (4.1), these inequalities imply that

max
i

‖φ′i‖∗[0,1] ≤ max
1≤j≤4

‖fj‖C[0,1] ,

and, by symmetry, on the interval [−1, 0], we have

max
i

‖φ′i‖∗[−1,0] ≤ max
1≤j≤4

‖f̃j‖C[−1,0] ,

where f̃j(x) := fj(−x).
Step 3. The functions |fj | are of the form

|fj(x)| = |fj(ω, x)| = |aj(x)ω
′′(x) + bj(x)ω

′(x)| + cj ‖ω′‖ (4.3)

i.e., they are semi-linear in ω. In § 8, we show that, for ω = Ti, they admit the estimate

‖fj(Ti)‖C[0,1] ≤ T ′
i (1)

(
thus ‖f̃j(Ti)‖C[−1,0] ≤ |T ′

i (−1)| = T ′
i (1)

)
.

This implies that the same estimate is valid for polynomials ωwith positive Chebyshev expansion,
i.e., if

ω =
∑

aiTi, ai ≥ 0 , (4.4)

then
‖fj(ω)‖C[0,1] ≤ ω′(1) .

Indeed, since f(ω, x) is semi-linear in ω, and ai ≥ 0, we have

‖f(ω)‖ = ‖f
(∑

aiTi

)
‖ ≤ ‖

∑
aif(Ti)‖

≤
∑

ai‖f(Ti)‖ ≤
∑

aiT
′
i (1) = ω′(1)

Hence, for polynomials ω which satisfy (4.2) and (4.4), i.e., for ω from the class Ω, we have

max
i

‖φ′i‖∗ ≤ ω′(1),

and that conludes the proof of Theorem 3.5.

Remark 4.1 In Step 2, we used the condition ‖ω‖C[0,1] ≤ ω(1) only in the case 3, when dealing
with the function f4, but we believe that well-behaving majorants for ‖φi‖∗ of the form (4.3) exist
for any ω.
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5 Majorants for ‖φ′i‖∗
Set

ω(x) =

n∏

i=1

(x− ti) , ti ∈ [−1, 1],

ωi(x) =
ω(x)

x− ti
,

φi(x) =
1 − xti
x− ti

ω(x) .

We would like to estimate the “local norm” ‖φ′i‖∗, i.e., the largest absolute value of the local
extrema of φ′i inside [0, 1].

For any function f , the function

g(x) := f ′(x) + c(x)f ′′(x)

interpolates f ′ at the points of its local extrema, hence

‖f ′‖∗[0,1] ≤ ‖g‖[0,1] .

Respectively, we are going to construct two majorants for the local extrema of φ′i in the form

ψν(x, ti) = φ′i(x) + cν(x, ti)φ
′′
i (x) .

To this end, set

φ(x, t) :=
1 − xt

x− t
ω(x),

so that
φ

(k)
i (x) = φ(k)(x, ti) .

Since 1−xt
x−t = 1−t2

x−t − t , we have

φ′(x, t) =
1 − xt

x− t
ω′(x) − 1 − t2

(x − t)2
ω(x) , (5.1)

φ′′(x, t) =
1 − xt

x− t
ω′′(x) − 2

1 − t2

(x− t)2
ω′(x) + 2

1 − t2

(x− t)3
ω(x) . (5.2)

Lemma 5.1 Let φ′′i (x) = 0. Then
φ′i(x) = ψ1(x, ti) ,

where

ψ1(x, t) := φ′(x, t) +
1

2
(x− t)φ′′(x, t)

=
1

2
(1 − xt)ω′′(x) − t ω′(x) . (5.3)

Proof. The proof of (5.3) is straightforward from the definition and (5.1)-(5.2) as

φ′(x, t) = −tω′(x) +
1 − t2

x− t
ω′(x) − 1 − t2

(x− t)2
ω(x) . �
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Lemma 5.2 Let φ′′i (x) = 0. Then
φ′i(x) = ψ2(x, ti) ,

where

ψ2(x, t) := φ′(x, t) +
1

2

x− t

1 − xt
(1 − x2)φ′′(x, t)

=
1

2
(1 − x2)ω′′(x) +

x− t

1 − xt
ω′(x) − x(1 − t2)

(x− t)(1 − xt)
ω(x) . (5.4)

Proof. From the definition and expressions (5.1)-(5.2), for the factor at ω′(x) we obtain

1

x− t

(
(1 − xt) − (1 − t2)(1 − x2)

1 − xt

)
=

1

x− t

(x − t)2

1 − xt
=

x− t

1 − xt
,

and for the factor at ω(x)

− 1 − t2

(x− t)2

(
1 − 1 − x2

1 − xt

)
= − x(1 − t2)

(x− t)(1 − xt)
. �

Proposition 5.3 For any polynomial ω with all its zeros in [−1, 1], we have

max
i

‖φ′i‖∗[0,1] ≤ max
x∈[0,1]

max
ti∈[−1,1]

min (ψ1(x, ti), ψ2(x, ti)) ,

where ψν(x, t) are given in (5.3)-(5.4).

6 Majorants for ψ1(x, t) and ψ2(x, t)

6.1 The case 0 ≤ x ≤ 1, −1 ≤ x− ti

1 − xti
≤ 1

2

Lemma 6.1 Let

0 ≤ x ≤ 1, −1 ≤ x− ti
1 − xti

≤ 1

2
.

Then
|ψ1(x, ti)| ≤ max(|f1(x)|, |f2(x)|, |f3(x)|).

where

f1,2(x) :=
1

2
(1 − x2)ω′′(x) ± ω′(x) ,

f3(x) :=
1 − x2

2 − x
ω′′(x) − 2x− 1

2 − x
ω′(x) .

Proof. The function

ψ1(x, t) =
1

2
(1 − xt)ω′′(x) − t ω′(x) ,

is linear in t, thus, for any given x and any t ∈ [a, b], we have the estimate

|ψ1(x, t)| ≤ max(|ψ1(x, a)|, |ψ1(x, b)|). (6.1)

The condition −1 ≤ x− ti
1 − xti

≤ 1

2
is equivalent to

2x− 1

2 − x
≤ ti ≤ 1,

10



thus, we can use (6.1) with a = 2x−1
2−x and b = 1. Then 1 − xa = 1 − x(2x−1)

2−x = 2(1−x2)
2−x , so that

ψ1(x, t)
∣∣∣
t=a

=
1 − x2

2 − x
ω′′(x) − 2x− 1

2 − x
ω′(x) =: f3(x) ,

while

ψ1(x, t)
∣∣∣
t=1

=
1

2
(1 − x)ω′′(x) − ω′(x) =: g(x)

Since |1 − x| ≤ |1 − x2| on the interval [0, 1], we clearly have

|g(x)| ≤
∣∣∣∣
1

2
(1 − x2)ω′′(x)

∣∣∣∣ + |ω′(x)| = max(|f1(x)|, |f2(x)|) . �

6.2 The case t1 ≤ x ≤ 1

Lemma 6.2 Let −1 ≤ ti ≤ t1 ≤ x ≤ 1. Then

|ψ2(x, ti)| ≤ max (|f1(x)|, |f2(x)|)

where

f1,2(x) =
1

2
(1 − x2)ω′′(x) ± ω′(x) .

Proof. By definition (5.4), we have

ψ2(x, ti) =
1

2
(1 − x2)ω′′(x) +

x− ti
1 − xti

ω′(x) − x(1 − t2i )

(x− ti)(1 − xti)
ω(x) .

Because ω′(x) =
∑
ωi(x), and because x(1−t2)

1−xt = x−t
1−xt + t, we obtain

ψ2(x, ti) =
1

2
(1 − x2)ω′′(x) +

x− ti
1 − xti

n∑

j=1

ωj(x) −
x(1 − t2i )

1 − xti
ωi(x)

=
1

2
(1 − x2)ω′′(x) +

x− ti
1 − xti

∑

j 6=i

ωj(x) − ti ωi(x) .

Now, since | x−ti

1−xti
| ≤ 1 and |ti| ≤ 1, the last two terms do not exceed the value of

∑n
i=1 |ωi(x)|.

But for t1 ≤ x ≤ 1 all the terms under the sum are positive, hence

n∑

i=1

|ωi(x)| =

n∑

i=1

ωi(x) = ω′(x)

Therefore,

|ψ2(x, ti)| ≤
∣∣∣∣
1

2
(1 − x2)ω′′(x)

∣∣∣∣ + |ω′(x)| = max (|f1(x)|, |f2(x)|) �

6.3 The case 0 ≤ x ≤ t1,
1

2
≤ x− ti

1 − xti
≤ 1

Consider again the function ψ2 defined in (5.4):

ψ2(x, t) =
1

2
(1 − x2)ω′′(x) +

x− t

1 − xt
ω′(x) − x(1 − t2)

(x− t)(1 − xt)
ω(x) .
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Lemma 6.3 Let

0 ≤ x ≤ t1,
1

2
≤ x− t

1 − xt
≤ 1, ‖ω‖C[0,1] ≤ ω(1) .

Then
|ψ2(x, ti)| ≤ max (|f1(x)|, |f2(x)|, |f4(x)|), (6.2)

where

f1,2(x) =
1

2
(1 − x2)ω′′(x) ± ω′(x) ,

f4(x) :=

∣∣∣∣
1

2
(1 − x2)ω′′(x) +

1

2
ω′(x)

∣∣∣∣ +
1

4
‖ω‖ . (6.3)

Proof. For a fixed x ∈ [0, t1], set

γ :=
x− t

1 − xt
.

Since (1 − xt)2 = (x − t)2 + (1 − x2)(1 − t2), we have

x(1 − t2)

(x − t)(1 − xt)
=

(1−t2)(1−x2)
(1−xt)2

x−t
1−xt

x

1 − x2
=

1 − γ2

γ

x

1 − x2
,

and therefore, for a fixed x,

ψ2(x, t) := ψ(γ) :=
1

2
(1 − x2)ω′′(x) + γ ω′(x) − 1 − γ2

γ

x

1 − x2
ω(x) . (6.4)

For γ ∈ [ 12 , 1], the maximum of ψ(γ) is attained either at the endpoints, or at the points where
ψ′(γ) = 0. In the latter case,

ψ′(γ) = ω′(x) +
1 + γ2

γ2

x

1 − x2
ω(x) = 0,

hence, x
1−x2 ω(x) = − γ2

1+γ2ω
′(x), and putting this expression into (6.4) we obtain

ψ(γ) =
1

2
(1 − x2)ω′′(x) +

(
γ +

γ(1 − γ2)

1 + γ2

)
ω′(x) =

1

2
(1 − x2)ω′′(x) +

2γ

1 + γ2
ω′(x).

So, at the points where ψ′(γ) = 0, we have

|ψ(γ)| ≤
∣∣∣∣
1

2
(1 − x2)ω′′(x)

∣∣∣∣ + |ω′(x)| = max (|f1(x)|, |f2(x)|).

As to the values of ψ(γ) in (6.4) at the endpoints of [12 , 1], they are

ψ(γ)
∣∣∣
γ=1

=
1

2
(1 − x2)ω′′(x) + ω′(x) = f1(x),

ψ(γ)
∣∣∣
γ= 1

2

=
1

2
(1 − x2)ω′′(x) +

1

2
ω′(x) − 3

2

x

1 − x2
ω(x) =: g(x) (6.5)

and it remains to show that |g(x)| ≤ |f4(x)|. The functions g and f4 in (6.3) differ only in the last
term which is 3

2
x

1−x2ω(x) for g(x) and 1
4 ‖ω′‖ for f4(x). By the forthcoming Lemma 7.4,

‖ω‖C[0,1] ≤ ω(1) ⇒
∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
1

3
‖ω′‖ , 0 ≤ x ≤ t1,

and because x
1+x ≤ 1

2 on [0, 1], we have
∣∣∣∣
3

2

x

1 − x2
ω(x)

∣∣∣∣ =
3

2

x

1 + x

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
1

4
‖ω′‖ , �
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7 Estimates for
∣∣∣ω(x)

1−x

∣∣∣, 0 ≤ x ≤ t1

Lemma 7.1 For any γ ∈ [0, 1], and for any c > 0, we have

min (cγ, 1 − γ) ≤ c

c+ 1
.

Proof. When γ runs through [0, 1], the value cγ is increasing from zero, while the value 1 − γ
is decreasing to zero. So, there is a γ∗ for which both values coincides, and for this γ∗ (equal to
1/(c+ 1)) we have

min (cγ, 1 − γ) ≤ cγ∗ =
c

c+ 1
.

Lemma 7.2 Let ‖ω‖C[0,1] ≤ ω(1), and let 0 < x < tm < 1. Then

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
1

m+ 1
‖ω′‖.

Proof. On the one hand, since ω(tm) = 0, we have |ω(x)| = |
∫ x

tm
ω′| ≤ (tm − x)‖ω′‖, hence

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
tm − x

1 − x
‖ω′‖ .

On the other hand, since |ω(x)| ≤ ω(1), we have

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
1 − tm
1 − x

ω(1)

1 − tm
≤ 1 − tm

1 − x

1

m

m∑

i=1

ω(1)

1 − ti
≤ 1 − tm

1 − x

1

m

n∑

i=1

ω(1)

1 − ti
=

1 − tm
1 − x

1

m
ω′(1) .

So, ∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤ min

(
1

m

1 − tm
1 − x

tm − x

1 − x

)
‖ω′‖ ≤ 1

m+ 1
‖ω′‖ ,

the latter inequality by Lemma 7.1, with γ = 1−tm

1−x and c = 1
m . �

If x is located between t2 and t1, then Lemma 7.2 gives the inequality |ω(x)
1−x | ≤ 1

2‖ω′‖ which is
not strong enough. The next lemma improves it.

Lemma 7.3 Let ‖ω‖C[0,1] ≤ ω(1), and let

0 ≤ x ≤ 1, t2 < x < t1 < 1.

Then ∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤ γ ω′(1), γ =
2 −

√
2

2
<

1

3
. (7.1)

Proof. Let s1 be the rightmost zero of ω′(x), i.e.

t2 < s1 < t1, ω′(s1) = 0,

where ti are zeros of ω in the reverse order. Clearly, the ratio ω(x)
1−x attains its maximal value for

some x in [s1, t1], and we will distinquish two cases for location of s1:

1) 0 ≤ s1 ≤ x < t1 < 1 , 2) s1 < 0 ≤ x < t1 < 1 .

Case 1 (0 ≤ s1 ≤ x < t1 < 1).
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1) By assumption, |ω(x)| ≤ ω(1) on the interval [s1, t1] so that, assuming that ω(1) = 1 we let
ω(s1) = −a with some a ∈ (0, 1].

Let p be the quadratic polynomial that interpolates ω at the points (s1, s1, 1), i.e.

p(s1) = ω(s1) = −a, p′(s1) = ω′(s1) = 0, p(1) = ω(1) = 1.

Then, for x ∈ [s1, 1], the Lagrange interpolation formula provides

ω(x) − p(x) =
1

2!
(x− s1)

2(x− 1)ω′′′(ξ), ξ ∈ [s1, 1]

and since ω′′′(ξ) > 0 for ξ > s1, it follows that

ω(x) ≤ p(x), x ∈ [s1, 1], p′(1) < ω′(1) .

–1

–0.5

0

0.5

1

0.6 0.7 0.8 0.9 1

x

–1

–0.5

0

0.5

1

0.6 0.7 0.8 0.9 1

x

Figure 1: The graphs of ω and p Figure 2: The graphs of ω and q

2) Let q ∈ P2 be a quadratic polynomial defined by the conditions

q(1) = ω(1) = 1, q′(1) = ω′(1), q(s∗1) := inf
x
q(x) = −a , (7.2)

and let t∗1 be its zero in the interval [s∗1, 1]

q(t∗1) = 0, t∗1 ∈ [s∗1, 1].

This q is a dilation of p, namely

q(x) = p(λx − (λ− 1)), λ := ω′(1)/p′(1) > 1,

and, because the squeezing coefficient λ is greater than one, we conclude that

s1 < s∗1 (where ω(s1) = p(s1) = q(s∗1) = −1).

When x runs through [s1, s
∗
1], the value ω(x) is increasing from ω(s1) = −a, while the value q(x)

is decreasing to q(s∗1) = −a. So, there is a point x∗ ∈ (s1, s
∗
1) for which both values coincide:

q(x∗) = ω(x∗), s1 < x∗ < s∗1 < 1.

We see that q interpolates ω at (x∗1, 1, 1), hence, by the Lagrange interpolation formula, for x ∈
[x∗, 1],

ω(x) − q(x) =
1

2!
(x− x∗)(x− 1)2ω′′′(ξ), ξ ∈ [x∗, 1],
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and we have q(x) < ω(x), for x∗ < x < 1, in particular,

q(x) < ω(x), s∗1 < x < 1 .

3) It follows that, for any x ∈ [s1, t1], there is a point yx ∈ [s∗1, t
∗
1] such that

ω(x) = q(yx) < 0, x < yx < t∗1 ,

whence ∣∣∣∣
ω(x)

1 − x

∣∣∣∣ =

∣∣∣∣
q(yx)

1 − x

∣∣∣∣ <
∣∣∣∣
q(yx)

1 − yx

∣∣∣∣ .

So, if

max
y∈[s∗

1
,t∗

1
]

∣∣∣∣
q(y)

1 − y

∣∣∣∣ ≤ γq′(1), (7.3)

then, because q′(1) = ω′(1),

max
x∈[s1,t1]

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤ γω′(1) .

4) Finally, let us find the least constant γ in (7.3) for the quadratic polynomial q given by
conditions (7.2), i.e.,

q(1) = 1, q(t∗1) = 0, q′(s∗1) = 0, q(s∗1) = −a .

It is easy to see that γ is maximized if −a = −1, and that its value does not depend on the position
of s∗1, so we may take s∗ = 0, and consider inequality (7.3) just for the polynomial

q(y) = 2y2 − 1, y ∈ [0, 1√
2
] .

For such a q, we have

[
q(x)

1 − x

]′
= 0 ⇒ q′(x)(1 − x) + q(x) = 0 ⇒ 2x2 − 4x+ 1 = 0 ⇒ x0 =

2 −
√

2

2

whence

γ =
1

q′(1)

∣∣∣∣
q(x0)

1 − x0

∣∣∣∣ =

∣∣∣∣
q′(x0)

q′(1)

∣∣∣∣ =
4x0

4
=

2 −
√

2

2
<

1

3
.

Case 2 (s1 < 0 ≤ x < t1 < 1).
Recall that ti are zeros of the polynomial ω ∈ Pn in the reverse order, and s1 is the rightmost

zero of its first derivative ω′, so that in the case under consideration we have

1 ≤ tn ≤ · · · ≤ t2 ≤ s1 ≤ 0 ≤ t1 ≤ 1 . (7.4)

1) Let us find out what the rightmost position of t1 ∈ [0, 1] could be if we require that s1 ≤ 0.
It is known that, for a polynomial ω(x) =

∏n
i=1(x − ti), zeros si of ω′ are monotonely increasing

functions of ti. Therefore, with t1 ∈ [0, 1] fixed, the leftmost position s∗1 of s1 is attained for the
polynomial ω∗ with the leftmost positions of all other zeros from t2 to tn, which are −1, i.e.,

ω∗(x) = (x− t1)(x + 1)n−1 .

Then
ω′
∗(x) = (x+ 1)n−2(x + 1 + (n− 1)(x− t1))

and its first zero s∗1 from the right satisfies

t1 =
ns∗1 + 1

n− 1
.
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So, for any polynomial ω ∈ Pn which satisfies (7.4), we have

s∗1 < s1 ≤ 0 ⇒ t1 ≤ 1

n− 1
≤ 1

2
, n ≥ 3 .

2) Now, consider the ratio

γ = sup
ω

sup
x∈[0,t1]

ω(x)

1 − x

1

ω′(1)
,

where zeros of ω satisfy

1 ≤ tn ≤ · · · ≤ t2 ≤ 0 ≤ t1 ≤ 1

2
. (7.5)

Since ω′(1) ≥ (1 − t2) · · · (1 − tn), we have

γ ≤ sup
ti∈(7.5)

sup
x∈[0,t1]

x− t1
1 − x

x− t2
1 − t2

· · · x− tn
1 − tn

.

The first factor satisfies x−t1
1−x ≤ 1

2 , with equality when x = 0 and t1 = 1
2 . The remaining factors

satisfy x−ti

1−ti
≤ 3

4 , with equality when x = t1 = 1
2 and ti = −1. So, in Case 2,

γ ≤ 1

2

(
3

4

)n−1

≤ 1

2

(
3

4

)2

=
9

32
<

1

3
, n ≥ 3 . �

On combining Lemma 7.2 (for x < t2) and Lemma 7.3 (for t2 < x < t1) we obtain the following
statement which we used in proving Lemma 6.3.

Lemma 7.4 Let ‖ω‖C[0,1] ≤ ω(1), and let 0 ≤ x ≤ t1 < 1. Then

∣∣∣∣
ω(x)

1 − x

∣∣∣∣ ≤
1

3
‖ω′‖ .

8 Proof of Theorem 3.5

1) We summarize results of §5-§6 in the following statement.

Theorem 8.1 Let ω satisfy the following condition:

1a) max
x∈[0,1]

|ω(x)| = ω(1) .

Then
max

i
‖φ′i‖∗[0,1] ≤ max

1≤j≤4
‖fj(ω)‖C[0,1],

where

f1(ω, x) :=
1

2
(1 − x2)ω′′(x) + ω′(x) ,

f2(ω, x) :=
1

2
(1 − x2)ω′′(x) − ω′(x) ,

(8.1)

f3(ω, x) :=
1 − x2

2 − x
ω′′(x) − 2x− 1

2 − x
ω′(x) ,

f4(ω, x) :=

∣∣∣∣
1

2
(1 − x2)ω′′(x) +

1

2
ω′(x)

∣∣∣∣ +
1

4
‖ω′‖ .

By symmetry, on the other half of the interval [−1, 1] we obtain the following statement.
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Theorem 8.2 Let ω satisfy the following condition:

1b) max
x∈[−1,0]

|ω(x)| = |ω(−1)| .

Then
max

i
‖φ′i‖∗[−1,0] ≤ max

1≤j≤4
‖f̃j(ω)‖C[−1,0],

where

f̃1(ω, x) :=
1

2
(1 − x2)ω′′(x) − ω′(x) ,

f̃2(ω, x) :=
1

2
(1 − x2)ω′′(x) + ω′(x) ,

(8.2)

f̃3(ω, x) :=
1 − x2

2 + x
ω′′(x) − 2x+ 1

2 + x
ω′(x) ,

f̃4(ω, x) :=

∣∣∣∣
1

2
(1 − x2)ω′′(x) − 1

2
ω′(x)

∣∣∣∣ +
1

4
‖ω′‖ .

2) In order to complete the proof of Theorem 3.5 (see Step 3 in §4), we need to prove the
following statement.

Theorem 8.3 If ω = Tn, then

‖fj(Tn)‖[0,1] ≤ T ′
n(1) = n2, j = 1, 2, 3, 4.

(That implies the same estimate for ‖f̃j(Tn)‖C[−1,0]).

We will provide the proof in several lemmas, first for f3 and f1, and then for f2 and f4.

Lemma 8.4 We have

|f3(x)| :=

∣∣∣∣
1 − x2

2 − x
T ′′

n (x) − 2x− 1

2 − x
T ′

n(x)

∣∣∣∣ ≤ T ′
n(1), x ∈ [0, 1]. (8.3)

Proof. Since
(x2 − 1)T ′′

n (x) + xT ′
n(x) = n2Tn(x), (8.4)

the left-hand side becomes

1 − x2

2 − x
T ′′

n (x) − 2x− 1

2 − x
T ′

n(x) =
(1 − x2)T ′′

n (x) − xT ′
n(x)

2 − x
+

1 − x

2 − x
T ′

n(x)

=
(1 − x)T ′

n(x) − n2Tn(x)

2 − x
,

and our inequality is equivalent to

∣∣(1 − x)T ′
n(x) − n2Tn(x)

∣∣ ≤ (2 − x)‖T ′
n‖ = (2 − x)n2.

The latter is obvious because |T ′
n(x)| ≤ n2 and |Tn(x)| ≤ 1. �

Lemma 8.5 We have

|f2(x)| :=

∣∣∣∣
1

2
(1 − x2)T ′′

n (x) − T ′
n(x)

∣∣∣∣ ≤ T ′
n(1), x ∈ [0, 1]. (8.5)
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Proof. By (8.4), our inequality is equivalent to

∣∣∣∣
1

2
(x2 − 1)T ′′

n (x) +
x

2
T ′

n(x) +
(
1 − x

2

)
T ′

n(x)

∣∣∣∣ =

∣∣∣∣
n2

2
Tn(x) +

(
1 − x

2

)
T ′

n(x)

∣∣∣∣ ≤ n2,

and we are done once we prove that
∣∣(1 − x

2 )T ′
n(x)

∣∣ ≤ n2

2 , that is

|T ′
n(x)| ≤ n2

2 − x
=: g(x).

The function g is convex and monotonely increasing on [0, 1], moreover g(1) = g′(1) = n2, hence

g(x) ≥ g(0) =
n2

2
, g(x) ≥ n2x.

1) If x ∈ [x0, 1], where x0 := cos π
n is the rightmost zero of T ′

n, then T ′
n is convex and T ′

n(x) varies
monotonely from 0 to n2, hence

0 ≤ T ′
n(x) ≤ n2x− x0

1 − x0
≤ n2x ≤ g(x) .

2) If x ∈ [0, x0], then using the Bernstein inequality and the inequality sin t ≥ 2
π t for t ∈ [0, π

2 ], we
obtain

|T ′
n(x)| ≤ n√

1 − x2
≤ n√

1 − x2
0

=
n

sin π
n

≤ n

2/n
=
n2

2
≤ g(x) , n ≥ 2.

3) Finally, for n = 0, 1, both sides of (8.5) are identical. �

Lemma 8.6 Let γ ∈ [0, 2]. Then

|gγ(x)| :=
∣∣(1 − x2)T ′′

n (x) + γT ′
n(x)

∣∣ ≤ 2√
3 − γ

T ′
n(1), x ∈ [0, 1]. (8.6)

Proof. We divide the proof into two lemmas.

Lemma 8.7 Let
gγ(x) := (1 − x2)T ′′

n (x) + γT ′
n(x).

Then, at the points x ∈ [0, 1] where g′γ(x) = 0, we have

|gγ(x)| ≤ n2
√
Gγ(yx),

where

Gγ(yx) :=
(γ + yx)2

1 + (γ − 1)yx + y2
x

, yx :=
(n2 − 1)(1 − x2)

x+ γ
≥ 0 . (8.7)

Proof. From the differential equation

(1 − x2)T ′′
n (x) = xT ′

n(x) − n2Tn(x), (8.8)

it follows that
gγ(x) = (x+ γ)T ′

n(x) − n2Tn(x). (8.9)

and, respectively,
g′γ(x) = (x+ γ)T ′′

n (x) − (n2 − 1)T ′
n(x).
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If g′γ(x) = 0, then we may assume that x + γ 6= 0, since otherwise we obtain T ′
n(x) = 0, hence

gγ(x) = −n2Tn(x), so that (8.6) is valid. So, if g′γ(x) = 0, we may conclude

T ′′
n (x) =

n2 − 1

x+ γ
T ′

n(x) ,

and, multiplying both sides with (1 − x2) and using (8.8), we obtain

xT ′
n(x) − n2 Tn(x) =

(n2 − 1)(1 − x2)

x+ γ
T ′

n(x) =: yxT
′
n(x)

or, after rearrangement,
n2 Tn(x) = (x− yx)T ′

n(x). (8.10)

Putting this expression into (8.9), we find that, at the points of local extrema,

gγ(x) = (γ + yx)T ′
n(x). (8.11)

Next, we square (8.10), and substitute the left-hand side by

n4Tn(x)2 = n4 − n2 (1 − x2)T ′
n(x)2 ,

and that gives
n4 = [n2 (1 − x2) + (x − yx)2]T ′

n(x)2.

This formula expresses the value T ′
n(x) in terms of x, and we put this expression instead of T ′

n(x)
into the right-hand side of (8.11) to obtain

gγ(x)2 = n4 (γ + yx)2

n2 (1 − x2) + (x− yx)2
.

Finally, from definition (8.7) of yx it follows that n2(1 − x2) = (x + γ)yx + (1 − x2), so for the
denominator Dγ(x) in the expression above we have the estimate

Dγ(x) = (x+ γ)yx + (1 − x2) + (x− yx)2 = 1 + (γ − x)yx + y2
x ≥ 1 + (γ − 1)yx + y2

x .

That proves (8.7). �

Lemma 8.8 Let

Gγ(y) :=
(γ + y)2

1 + (γ − 1)y + y2
. (8.12)

Then, for any y ∈ [0,∞] and for any γ ∈ [0, 2],

Gγ(y) ≤ 4

3 − γ
.

Proof. For a fixed γ ∈ [0, 2], we need to determine the maximum of the value Gγ(y) over y ≥ 0.
We have

Gγ(0) = γ2, Gγ(∞) = 1 ,

while differentiation with respect to y gives

G′
γ(y) = 0 ⇒ (γ + y)

[
2(1 + (γ − 1)y + y2) − (γ + y)((γ − 1) + 2y)

]
= 0

⇔ (γ + y) [2 − (1 + γ)y − γ(γ − 1)] = 0

From two roots

y1 = −γ, y2 =
2 + γ − γ2

1 + γ
= 2 − γ ,

19



only the second one should be considered, and we have

Gγ(y2) =
4

1 + (γ − 1)(2 − γ) + (2 − γ)2
=

4

3 − γ
.

So, for γ ∈ [0, 2], we have

Gγ(y) ≤ max

(
γ2, 1,

4

3 − γ

)
.

Now, clearly 4
3−γ ≥ 1, and we also have 4

3−γ ≥ γ2, because

4 − (3 − γ)γ2 = 4 − 3γ2 + γ3 = (1 + γ)(4 − 4γ + γ2) = (1 + γ)(2 − γ)2 ≥ 0 ,

hence

Gγ(y) ≤ 4

3 − γ
. �

Corollary 8.9 We have

|f1(x)| :=

∣∣∣∣
1

2
(1 − x2)T ′′

n (x) + T ′
n(x)

∣∣∣∣ ≤ T ′
n(1), (8.13)

|f4(x)| :=

∣∣∣∣
1

2
(1 − x2)T ′′

n (x) +
1

2
T ′

n(x)

∣∣∣∣ +
1

4
‖T ′

n‖[0,1] ≤ T ′
n(1).

Proof. For the first inequality we apply the estimate (8.6) with γ = 2,

|f1(x)| =
1

2

∣∣gγ(x)
∣∣
γ=2

≤ T ′
n(1),

For the second one, the same estimate with γ = 1 gives

∣∣∣∣
1

2
(1 − x2)T ′′

n (x) +
1

2
T ′

n(x)

∣∣∣∣ =
1

2

∣∣gγ(x)
∣∣
γ=1

≤ 1√
2
T ′

n(1),

and, because 1√
2
< 3

4 , we obtain |f4(x)| ≤
(

1√
2

+ 1
4

)
T ′

n(1) ≤ T ′
n(1). �

9 Derivatives of (x2 − 1)mTn(x) and (x2 − 1)mT ′
n(x)

In this section, we will find the orders k of the derivatives of f(x) := (x2 − 1)mTn(x) and g(x) :=
(x2 − 1)mT ′

n(x) that have positive Chebyshev expansions. These results will be used in the next
section for establishing the same property for the derivatives of certain snake-polynomials.

Lemma 9.1 Let
f(x) := (x2 − 1)mTn(x).

Then
f (k)(x) =

∑
aiTi(x), ai ≥ 0 ∀n ⇔ k ≥ 2m.

Proof. We will use the fact that both T ′
n and xTn(x) have positive Chebyshev expansions.

1a) For m = 1,

[(x2 − 1)Tn(x)]′′ = (x2 − 1)T ′′
n (x) + 2 · 2x · T ′

n(x) + 2 · Tn(x)

= (n2 + 2)Tn(x) + 3xT ′
n(x)

=
∑
ajTj(x) , aj ≥ 0 .
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1b) And for m ≥ 2,

[(x2 − 1)m Tn(x)]′′ = (x2 − 1)m T ′′
n (x) + 2 · 2x ·m(x2 − 1)m−1 T ′

n(x)

+
[
2m(x2 − 1)m−1 + 4x2 ·m(m− 1)(x2 − 1)m−2

]
Tn(x)

= (x2 − 1)m−1
{
(x2 − 1)T ′′

n (x) + 4mxT ′
n(x) + [2m+ 4m(m− 1)]Tn

}

+ (x2 − 1)m−2 · 4m(m− 1)Tn(x)

= (x2 − 1)m−1
∑
ajTj + (x2 − 1)m−2

∑
bjTj , aj, bj ≥ 0 ,

so that

[
(x2 − 1)m Tn(x)

](2m)
=

{[
(x2 − 1)mTn(x)

]′′}(2(m−1))

=
{
(x2 − 1)m−1

∑
ajTj + (x2 − 1)m−2

∑
bjTj

}(2(m−1))
,

and we apply the induction assumption to the last terms.
2) Now, let us prove that condition k ≥ 2m is necessary for f (k) to have a positive Chebyshev

expansion, if n is big enough. We have

f (k)(x) =
k∑

s=0

(
k

s

) [
(x2 − 1)m

](s) · T (k−s)
n (x),

and since (for n = s(mod2))

T (s)
n (0) = O(ns), T (s)

n (1) = O(n2s) ,

we have
f (k)(0) = (x2 − 1)m

∣∣
x=0

· T (k)
n (0) + · · · = O(nk) ,

while

f (k)(1) =

(
k

m

)
[(x2 − 1)m](m)

∣∣
x=1

· T (k−m)
n (1) + · · · = O(n2k−2m) .

Hence
|f (k)(0)| ≤ |f (k)(1)|, n ≥ n0 ⇔ k ≤ 2k − 2m ⇔ 2m ≤ k .

Lemma 9.2 Let
g(x) := (x2 − 1)mT ′

n(x).

Then
g(k)(x) =

∑
aiTi(x), ai ≥ 0 ∀n ⇔ k ≥ 2m− 1 .

1a) Similarly to the previous case, for m = 1

[(x2 − 1)T ′
n(x)]′ = (x2 − 1)T ′′

n (x) + 2xT ′
n(x) = n2 Tn(x) + xT ′

n(x) =
∑

ajTj(x).

1b) And for m ≥ 2

[(x2 − 1)m T ′
n(x)]′′ = (x2 − 1)m−1

∑
ajT

′
j(x) + (x2 − 1)m−2

∑
bjT

′
j(x) ,

so that

[
(x2 − 1)m T ′

n(x)
](2m−1)

=
{

(x2 − 1)m−1
∑

ajT
′
j(x) + (x2 − 1)m−2

∑
bjT

′
j(x)

}(2(m−1)−1)

and we apply the induction assumption to the last terms.
2) Necessity. We have

g(k)(0) = O(nk+1), g(k)(1) = O(n2(k+1)−2m),

hence

|g(k)(0)| ≤ |g(k)(1)|, n ≥ n0 ⇔ k + 1 ≤ 2(k + 1) − 2m ⇔ 2m− 1 ≤ k.
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10 Duffin-Schaeffer inequalities for various majorants

10.1 Preliminaries

The material in this subsection is borrowed from Vidensky [14].
1) Let R2m be a polynomial of degree 2m, which is non-negative on [−1, 1], i.e.

R2m ∈ P2m, R2m(x) > 0, x ∈ [−1, 1].

Then, for any n ≥ m, it can be represented in the form

R2m(x) = P 2
n(x) + (1 − x2)Q2

n−1(x),

where Pn and Qn−1 satisfy the following conditions:

a) Pn ∈ Pn and Qn−1 ∈ Pn−1;

b) all zeros of Pn and Qn−1 lie in [−1, 1] and interlace;

c) the leading coefficients of Pn and Qn−1 are positive;

d) Pn is the snake-polynomial for µ =
√
R2m.

Moreover,

Pm+n(x) = Re
[
Pm(x) + i

√
1 − x2Qm−1(x)

] [
Tn(x) + i

√
1 − x2Un−1(x)

]

= Pm(x)Tn(x) + (x2 − 1)Qm−1(x)Un−1(x) ,

2) For n ≥ m, the polynomials Pn satisfy three-term recurrence relation

Pn+1(x) = 2xPn(x) − Pn−1(x)

and they are polynomials orthogonal with the weight 1
µ(x)

1√
1−x2

, i.e.,

∫ 1

−1

xk Pn(x)
1

µ(x)

dx√
1 − x2

= 0, k = 0, ..., n− 1, n ≥ m.

3) For the special case

R2m(x) =

m∏

j=1

(1 + (a2
j − 1)x2),

the formula for Pm+n takes the form

Pm+n(x) = Re

m∏

j=1

(
ajx+ i

√
1 − x2

) [
Tn(x) + i

√
1 − x2Un−1

]
. (10.1)

3) Also, for the majorants µ =
√
R2m, Vidensky [14] established the following bound in the

pointwise Markov inequality:

mk,µ(x) := sup
|p(x)|≤µ(x)

|p(k)(x)| ≤ Vk(x) ,

where

Vk(x) =

∣∣∣∣
(
Pm+n(x) + i

√
1 − x2Qm+n−1

)(k)
∣∣∣∣ .

In particular,

V1(x) =

√
[nP (x) + xQ(x) + (x2 − 1)Q′(x)]2 + (1 − x2)[P ′(x) + nQ(x)]2

1 − x2
, (10.2)

where P = Pm, Q = Qm−1.
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10.2 The majorant µ(x) =
√
Rm(x2)

Lemma 10.1 Let
µ(x) =

√
R2m(x), R2m(x) = R2m(−x).

Then, for any k ≥ m, and for any n ≥ 0, we have

ω
(k)
m+n(x) =

m+n∑

i=0

aiTi(x), ai ≥ 0. (10.3)

Proof. We have

ωm+n(x) = Pm+n(x) = Pm(x)Tn(x) + (x2 − 1)Qm−1(x)
1

n
T ′

n(x) ,

where both polynomials Pm and Qm−1 are either odd or even, all their (symmetric) zeros are in
[−1, 1], and they have positive leading coefficients. Consider two cases.

1) The case m = 2m0. Then

Pm(x) = P2m0
(x) = c

m0∏

i=1

(x2 − t2i ) = c

m0∏

i=1

(x2 − 1 + a2
i )

=

m0∑

i=0

b2i (x
2 − 1)m0−i ,

and

(x2 − 1)Qm−1(x) = (x2 − 1)Q2m0−1(x) = cx(x2 − 1)

m0−1∏

i=1

(x2 − s2i )

= cx(x2 − 1)

m0−1∏

i=1

(x2 − 1 + c2i )

= x

m0∑

i=0

d2
i (x

2 − 1)m0−i .

Hence,

ωµ(x) = Pm+n(x) =

[
m0∑

i=0

b2i (x
2 − 1)m0−i

]
Tn(x) +

[
m0∑

i=0

d2
i (x

2 − 1)m0−i

]
xT ′

n(x) ,

and conclusion (10.3) follows by Lemmas 9.1-9.2, if k ≥ 2m0 =: m.
2) The case m = 2m0 − 1. Similarly, we obtain

Pm(x) = P2m0−1(x) = x

m0−1∑

i=0

b2i (x
2 − 1)m0−1−i ,

and

(x2 − 1)Qm−1(x) = (x2 − 1)Q2m0−2(x) =

m0∑

i=0

d2
i (x

2 − 1)m0−i .

Hence,

ωµ(x) = Pm+n(x) =

[
m0−1∑

i=0

b2i (x
2 − 1)m0−1−i

]
xTn(x) +

[
m0∑

i=0

d2
i (x

2 − 1)m0−i

]
T ′

n(x) ,

and conclusion (10.3) follows by Lemmas 9.1-9.2, if k ≥ 2m0 − 1 =: m. �

Applying Theorem 2.2 we obtain the following Duffin-Schaeffer-type result.
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Theorem 10.2 (Example 2.3, 13◦-14◦) Let

µ(x) =
√
Rm(x2).

Then, we have
Mk,µ = Dk,µ = ω(k)

µ (1), k ≥ m+ 1, n ≥ m.

10.3 The majorant µ(x) = µ(−x)
Lemma 10.3 Let

µ(x) = µ(−x).
Then, for any n, and for any k ≥ n−1

2 , we have

ω(k)
n (x) =

n∑

i=1

aiTi(x), ai ≥ 0. (10.4)

Proof. We have
ωn(x) = Pn(x),

where Pn is either odd or even, all its (symmetric) zeros are in [−1, 1] and it has a positive leading
coefficient. Consider again two cases.

1) The case n = 2n0. Then

Pn(x) = P2n0
(x) =

n0∑

i=0

b2i (x
2 − 1)n0−i , (10.5)

hence

P (n0)
n (x) =

n0∑

i=0

b2iL
(i)
n0−i(x) ,

where

Lm(x) :=
dm

dxm
(x2 − 1)m

is the Legendre polynomial of degreem. Since Lm is known to have a positive Chebyshev expan-
sion, i.e.,

Lm(x) =

m∑

i=0

ajTj(x), ai ≥ 0,

the same is true for its derivatives (because T
(ℓ)
j have positive expansions), hence the conclusion

for k ≥ n0 = n/2, i.e., for all k ≥ n−1
2 .

2) The case n = 2n0 − 1. We may write

Pn(x) = P2n0−1(x) = x

n0−1∑

i=0

b2i (x
2 − 1)n0−1−i =

d

dx
Q2n0

(x)

where

Q2n0
(x) =

n0−1∑

i=0

c2i (x
2 − 1)n0−i, c2i =

b2i
2(n0 − i)

,

so that
P (n0−1)

n (x) = Q
(n0)
2n0

(x).

Now, the polynomial Q2n0
has the same form as the polynomial P2n0

in (10.5), hence its (n0)th
derivative has a positive Chebyshev expansion. So, we have (10.4) for k ≥ n0 − 1 = n−1

2 . �

So, application of Theorem 2.2 gives the following.
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Theorem 10.4 (Example 2.3, 15◦) Let

µ(x) = µ(−x).

Then, we have

Mk,µ = Dk,µ = ω(k)
µ (1), k ≥ n

2
, n ∈ N.

10.4 The majorant µ(x) =

√
m∏

i=1

(1 + c2
i
x2)

Lemma 10.5 Let

µ2(x) =

m∏

i=1

(1 + (a2
i − 1)x2) , ai ≥ 1.

Then, for any n ≥ 0, we have

ωn+m(x) =

n+m∑

j=1

bjTj(x), bj ≥ 0. (10.6)

Proof. With a ≥ 0, and x = cos t, we have

(
ax+ i

√
1 − x2

)
·
(
Tn(x) + i

√
1 − x2Un−1(x)

)

= (a cos t+ i sin t) · (cosnt+ i sinnt)

=

(
a+ 1

2
(cos t+ i sin t) +

a− 1

2
(cos t− i sin t)

)
· (cosnt+ i sinnt)

=
a+ 1

2
(cos(n+ 1)t+ i sin(n+ 1)t) +

a− 1

2
(cos(n− 1)t+ i sin(n− 1)t)

=
a+ 1

2

(
Tn+1(x) + i

√
1 − x2Un(x)

)
+
a− 1

2

(
Tn−1(x) + i

√
1 − x2Un−2(x)

)
,

therefore, in finding expression for

Pn+m(x) = Re

m∏

j=1

(
ajx+ i

√
1 − x2

) [
Tn(x) + i

√
1 − x2Un−1

]
,

we may proceed by induction. In particular, we have: for m = 1,

Pn+1 =
a1 + 1

2
Tn+1(x) +

a1 − 1

2
Tn−1(x) ,

and, for m = 2,

Pn+2 = (a1+1)
2

(a2+1)
2 Tn+2(x)+

(
(a1+1)

2
(a2−1)

2 + (a1−1)
2

(a2+1)
2

)
Tn(x)+ (a1−1)

2
(a2−1)

2 Tn−2(x) , (10.7)

and, generally,

Pm+n(x) =
1

2m

∑

ei

m∏

j=1

(aj + eij)Tn+|ei| ,

where summation is taken over all the vectors ei = (ei,1, . . . , eim) with the components eij = ±1,
and |ei| :=

∑
eij . So, if all aj ≥ 1, then the Chebyshev coefficients of Pm+n are non-negative. �

Thus, the following statement is true.
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Theorem 10.6 (Example 2.3, 12◦) Let

µ2(x) =

m∏

i=1

(1 + c2ix
2) .

Then, for all k ≥ 1, and for all n ≥ m,

Mk,µ = Dk,µ = ω(k)
n (1) , k ≥ 1, n ≥ m.

10.5 The majorant µ(x) =
√

(1 + c2
1
x2)(1 + (a2

2
− 1)x2)

Theorem 10.7 (Example 2.3, 16◦) Let

µ2(x) = (1 + (a2
1 − 1)x2)(1 + (a2

2 − 1)x2), a1 ≥ 1.

Then we have
Mk,µ = Dk,µ = ω(k)

n (1), k ≥ 2, n ≥ 2.

Proof. It is sufficent to prove that the first derivative of the snake-polynomial ωµ = Pn+2 in (10.7)
has a positive Chebyshev expansion. Denote the coeffients of the Chebyshev expansion of Pn+2

in (10.7) by A,B and C, respectively:

Pn+2(x) = ATn+2(x) +BTn(x) + CTn−2(x)

and note that

A = a1+1
2

a2+1
2 , A+B = a1+1

2 a2 + a1−1
2

a2+1
2 , A+B + C = a1a2 ,

hence
a1 ≥ 1, a2 ≥ 0 ⇒ A > 0, A+B ≥ 0, A+B + C ≥ 0 (10.8)

Since
T ′

m(x) = m (Tm−1(x) + Tm−3(x) + · · ·) ,
we obtain

P ′
n+2(x) = A′Tn+1(x) +B′Tn−1(x) + C′ (Tn−3(x) + Tn−5(x) + · · ·) ,

where

A′ = (n+ 2)A, B′ = (n+ 2)A+ nB, C′ = (n+ 2)A+ nB + (n− 2)C,

and all these constants are positive because of (10.8). �

10.6 The majorant µ(x) =
√
ax2 + bx+ 1

Here we will treat the the case of a non-symmetric majorant of the form

µ2(x) = ax2 + bx+ 1 = (αx+ β)2 + γ2(1 − x2).

where we will assume that
µ(−1) ≤ µ(1) ⇔ b ≥ 0.

Equating the coefficients we obtain

β2 + γ2 = 1, α2 − γ2 = a, 2αβ = b (10.9)

whence

α =
µ(1) + µ(−1)

2
≥ 0, β =

µ(1) − µ(−1)

2
∈ [0, 1] γ =

√
1 − β2 ∈ [0, 1] .
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The corresponding snake-polynomial has the form

ωn+1(x) = (αx+ β)Tn(x) +
γ

n
(x2 − 1)T ′

n(x) (10.10)

=
α+ γ

2
Tn+1(x) + βTn(x) +

α− γ

2
Tn−1(x) (10.11)

In order to get

Mk,µ = Dk,µ = ω(k)
n (1)

for a particular k, we need to verify two conditions (of ω belonging to the class Ω):

1b) ‖ω(k−1)‖C[−1,0] = |ω(k−1)(−1)| (10.12)

2) ω(k−1) =
∑

aiTi, ai ≥ 0.

(The right end-point condition (1a) follows from (2).)
1) Case k = 1.

In this case, ω has a positive Chebyshev expansion if

α ≥ γ ⇔ a ≥ 0 .

It is also clear, that the “left end-point condition” (10.12) will be satisfied if

µ(−1) ≥ µ(0) ⇔ a ≥ b.

Thus we have the following statement.

Lemma 10.8 Let
µ(x) =

√
ax2 + bx+ 1, where a ≥ b ≥ 0.

Then, for all n ≥ 1,
M1,µ = D1,µ = ω′

n(1)

2) Case k = 2.
In this case, since xTn(x), T ′

i (x) and [(x2 − 1)T ′
n(x)]′ have positive Chebyshev expansions, it

follows that

ω′(x) =
[
(αx+ β)Tn(x)

]′
+

[γ
n

(x2 − 1)T ′
n(x)

]′
=

∑
aiTi , ai ≥ 0

i.e., ω′
µ has a positive Chebyshev expansions for any µ =

√
ax2 + bx+ c.

However, the ”left end-point” property is not always fulfilled. For example, for µ(x) = x + 1,
and odd n, we have

ω(x) = (x+ 1)Tn(x) ⇒ |ω′(−1)| = 1 < n = |ω′(0)| .

Let us give a necessary and sufficient condition which provides the ”left end-point” property
(10.12) for the first derivative of

ω(x) = (αx+ β)Tn(x) +
γ

n
(x2 − 1)T ′

n(x)

By Vidensky result (10.2), with P (x) = αx+ β and Q(x) = γ, we have

|ω′(x)|2 ≤ V1(x)
2 =

[n(αx+ β) + γx]2 + (1 − x2)[α+ nγ]2

1 − x2
,

=
[(nα+ γ)x+ nβ]2

1 − x2
+ [α+ nγ]2
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with equality attained at n+ 1 points.
Let us show that the majorant V1 (which, is unbounded at +1 for α, β, γ ≥ 0) has exactly one

point of extremum (which is necessarily a minimum) inside [−1, 0]. We have

V ′
1 (x) = 0 ⇔ 2[(nα+ γ)x+ nβ)](nα + γ) · (1 − x2) + [(nα+ γ)x+ nβ)]2 · 2x = 0

which is equivalent to two conditions

1) (nα+ γ)x+ nβ = 0 ⇔ x1 = − nβ

nα+ γ

2) (nα+ γ)(1 − x2) + [(nα+ γ)x+ nβ]x = 0 ⇔ (nα+ γ) + nβx = 0 ⇔ x2 = −nα+ γ

nβ
.

and, since x1 = 1/x2 ∈ [−1, 0], there is exactly one extremum inside the interval.
Therefore, the “left end-point” condition (10.12) will be fullfilled for all n if and only if

|ω′(−1)| ≥ V1(0).

We have

V1(0) =
√

(nβ)2 + (α+ nγ)2) =
√
n2(β2 + γ2) + 2αγn+ α2 =

√
n2 + 2αγn+ α2 ≤ n+ α,

|ω′(−1)| =
α+ γ

2
(n+ 1)2 − βn2 +

α− γ

2
(n− 1)2 = (α− β)n2 + 2γn+ α ,

where in the first line we used relations β2 + γ2 = 1, γ ≤ 1 from (10.9).
So, it is sufficient to require

(α− β)n2 + 2γn+ α ≥ n+ α ⇔ α− β ≥ 1 − 2γ

n
.

Since α− β ≥ 0 by definition, the latter is true if

γ ≥ 1

2
⇔ µ(1) − µ(−1) ≤

√
3 (since 2β = 2

√
1 − γ2),

with a possibility µ(−1) = 0. Another option is

2) γ <
1

2
⇔ n ≥ 1 − 2γ

α− β
=

1 − 2γ

µ(−1)
.

Lemma 10.9 (Example 2.3, 17◦, k = 2) Let

µ(x) =
√
ax2 + bx+ 1.

If µ(1) − µ(−1) ≤
√

3, then for all n ≥ 1, otherwise for all n ≥ 1
µ(−1) , we have

M2,µ = D2,µ = ω′′
n(1) .

The case k ≥ 3.

Let us show that, for m ≥ 2, the left end-point condition

‖ω(m)‖C[0,1] = |ω(m)(−1)|, m ≥ 2,

is fulfilled for any α, β, γ ≥ 0.
We have

ω(m)(x) =
[
(αx + β)Tn(x)

](m)
+
γ

n

[
(x2 − 1)T ′

n(x)
](m)

= α
[
(x+ 1)Tn(x)

](m)
+

[
(β − α)Tn(x)

](m)
+
γ

n

[
(x2 − 1)T ′

n(x)
](m)

.
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At x = −1, since α, γ ≥ 0 and β−α ≤ 0, all the terms in the last line have the same sign (−1)n−m+1,

and because [(x2 − 1)T ′
n(x)

](m)
and T

(m)
n (x) have positive Chebyshev expansions for m ≥ 2, it is

sufficient to prove the left-end property only for the first term.
The latter is the same as the right-end property for the polynomial [(x − 1)Tn(x)](m), i.e. we

need to prove that

gm(x) := |(x− 1)T (m)
n (x) +mT (m−1)

n (x)| ≤ mT (m−1)
n (1) , x ∈ [0, 1] .

For m = 2, on [0, 1], we have, by (8.13) and (8.5),

g2(x) ≤ |(x2 − 1)T ′′
n (x)| + 2|T ′

n(x)| = 2 max(|f1(Tn, x)|, |f2(Tn, x)|) ≤ 2T ′
n(1)

Since T
(m−1)
n =

∑
aiT

′
i , hence T

(m)
n =

∑
aiT

′′
i , with the same ai ≥ 0, the latter implies

|(x− 1)T (m)
n (x)| + 2|T (m−1)

n (x)| ≤ 2T (m−1)
n (1) .

and respectively,

gm(x) ≤ |(x− 1)T (m)
n (x)| +m|T (m−1)

n (x)|
≤

(
|(x− 1)T (m)

n (x)| + 2|T (m−1)
n (x)|

)
+ (m− 2)|T (m−1)

n (x)|
≤ mT (m−1)

n (1).

Lemma 10.10 (Example 2.3, 17◦, k ≥ 3) Let

µ(x) =
√
ax2 + bx+ 1.

Then we have
Mk,µ = Dk,µ = ω(k)

n (1) , k ≥ 3, n ≥ 1 .
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